
Appendix for ‘Toward Efficient and Accurate Covariance Matrix
Estimation on Compressed Data’

This appendix is organized as follows. In Section 1, we state all theoretical results, including our proposed Lemma 1 and
Lemma 2 whose details are not presented in the main text of the paper. In Section 2, we provide detailed proofs for all of
the results. In Section 3, we reformulate and discuss the current theoretical results of the counterparts: Gauss-Inverse and
UniSample-HD. In Section 4, we give a detailed analysis of the computational complexity. Finally, in Section 5, we study
the impact of different α on the estimation accuracy.

Before proceeding, we first show the notations used in this appendix.

Notation. Let [k] denote a set of integers {1, 2, . . . , k}. Given a matrix X ∈ Rd×n, for j ∈ [d], i ∈ [n], we let xi ∈ Rd
denote the i-th column of X, and xji denote the (j, i)-th element of X or j-th element of xi. Let {Xt}kt=1 denote the set of
matrices {X1,X2, . . . ,Xk}, and xji,t denote the (j, i)-th element of Xt. Let XT denote the transpose of X, and Tr(X)
denote its trace. Let |x| denote the absolute value of x. Let ‖X‖2 and ‖X‖F denote the spectral norm and Frobenius norm
of X, respectively. Let ‖x‖q = (

∑d
j=1 |xj |q)1/q for q ≥ 1 be the `q-norm of x ∈ Rd. Let D(x) or D({xj}) be a square

diagonal matrix with the elements of vector x on the main diagonal, and D(X) also be a square diagonal matrix whose
main diagonal has only the main diagonal elements of X. Finally, X � Y means that Y −X is positive semidefinite.

1. Provable Results
For convenience, we first restate the theorems and their corollaries in the following.

Theorem 1. Assume X ∈ Rd×n and the sampling size 2 ≤ m < d. Samplem entries from each xi ∈ Rd with replacement
by running Algorithm 1. Let {pki}dk=1 and Si ∈ Rd×m denote the sampling probabilities and sampling matrix, respectively.
Then, the unbiased estimator for the target covariance matrix C = 1

n

∑n
i=1 xix

T
i = 1

nXXT can be recovered as

Ce = Ĉ1 − Ĉ2, (1)

where Ĉ1 = m
nm−n

∑n
i=1 SiS

T
i xix

T
i SiS

T
i , Ĉ2 = m

nm−n
∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i )D(bi) with bki = 1

1+(m−1)pki
, and

E [Ce] = C.

Theorem 2. Given X ∈ Rd×n and the sampling size 2 ≤ m < d, let C and Ce be defined as in Theorem 1. If the sampling
probabilities satisfy pki = α |xki|‖xi‖1 + (1−α)

x2
ki

‖xi‖22
with 0 < α < 1 for all k ∈ [d] and i ∈ [n], then with probability at least

1− η − δ,

‖Ce −C‖2 ≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
), (2)

where we define that R = maxi∈[n]

[
7‖xi‖22
n + log2( 2nd

η )
14‖xi‖21
nmα2

]
, and σ2 =

∑n
i=1

[
8‖xi‖42

n2m2(1−α)2 +
4‖xi‖21‖xi‖

2
2

n2m3α2(1−α)

+
9‖xi‖42

n2m(1−α) +
2‖xi‖22‖xi‖

2
1

n2m2α(1−α)

]
+ ‖

∑n
i=1

‖xi‖21xix
2
i

n2mα ‖2.

Corollary 1. Given X ∈ Rd×n and sampling size 2 ≤ m < d, let C and Ce be constructed by Algorithm 1. Define
‖xi‖1
‖xi‖2 ≤ ϕ with 1 ≤ ϕ ≤

√
d, and ‖xi‖2 ≤ τ for all i ∈ [n]. Then, with probability at least 1− η − δ we have

‖Ce −C‖2 ≤ min{Õ
(
f +

τ2ϕ

m

√
1

n
+ τ2

√
1

nm

)
, Õ
(
f +

τϕ

m

√
d‖C‖2
n

+ τ

√
d‖C‖2
nm

)
}, (3)

where f = τ2

n + τ2ϕ2

nm + τϕ
√
‖C‖2
nm , and Õ(·) hides the logarithmic factors on η, δ, m, n, d, and α.
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Corollary 2. Given X ∈ Rd×n (2 ≤ d) and an unknown population covariance matrix Cp ∈ Rd×d with each column
vector xi ∈ Rd i.i.d. generated from the Gaussian distribution N (0,Cp). Let Ce be constructed by Algorithm 1 with
sampling size 2 ≤ m < d. Then, with probability at least 1− η − δ − ζ,

‖Ce −Cp‖2
‖Cp‖2

≤ Õ
( d2

nm
+
d

m

√
d

n

)
; (4)

Additionally, assuming rank(Cp)≤ r, with probability at least 1− η − δ − ζ we have

‖[Ce]r −Cp‖2
‖Cp‖2

≤ Õ
( rd
nm

+
r

m

√
d

n
+

√
rd

nm

)
, (5)

where [Ce]r is the solution to minrank(A)≤r ‖A−Ce‖2, and Õ(·) hides the logarithmic factors on η, δ, ζ, m, n, d, and α.

Corollary 3. Given X, d, m, Cp and Ce as in Corollary 2. Let
∏
k =

∑k
i=1 uiu

T
i and

∏̂
k =

∑k
i=1 ûiû

T
i with {ui}ki=1

and {ûi}ki=1 being the leading k eigenvectors of Cp and Ce, respectively. Denote by λk the k-th largest eigenvalue of Cp.
Then, with probability at least 1− η − δ − ζ,

‖
∏̂
k −

∏
k ‖2

‖Cp‖2
≤ 1

λk − λk+1
Õ
( d2

nm
+
d

m

√
d

n

)
, (6)

where the eigengap λk − λk+1 > 0 and Õ(·) hides the logarithmic factors on η, δ, ζ, m, n, d, and α.

Next, we present two lemmas: Lemma 1 and Lemma 2, which are used to prove the foregoing theorems. The detailed
statements of the two lemmas are omitted in the main text of the paper owing to limited space, and now they are
described below.

Lemma 1. Given any vector x ∈ Rd, and m < d, sample m entries from x with replacement by running Algorithm 1 with
the inputs x and m. Let {pk}dk=1 denote the corresponding sampling probabilities, S ∈ Rd×m denote the corresponding
rescaled sampling matrix, and {ek}dk=1 denote the standard basis vectors for Rd. Then, we have

E
[
SSTxxTSST

]
=

d∑
k=1

x2
k

mpk
eke

T
k +

m− 1

m
xxT ; (7)

E
[
D(SSTxxTSST )

]
=

d∑
k=1

(
1

mpk
+
m− 1

m
)x2
keke

T
k ; (8)

E
[
(D(SSTxxTSST ))2

]
=

d∑
k=1

[
1

m3p3
k

+
7(m− 1)

m3p2
k

+
6(m2 − 3m+ 2)

m3pk

+
m3 − 6m2 + 11m− 6

m3

]
x4
keke

T
k ; (9)

E
[
SSTxxTSSTD(SSTxxTSST )

]
= (E

[
D(SSTxxTSST )SSTxxTSST

]
)T

=

d∑
k=1

[
1

m3p3
k

+
6(m− 1)

m3p2
k

+
3(m2 − 3m+ 2)

m3pk

]
x4
keke

T
k +

m− 1

m3
xxTD({x

2
k

p2
k

})

+
3(m2 − 3m+ 2)

m3
xxT

[
D({x

2
k

pk
}) +

m− 3

3
D({x2

k})
]

; (10)

E
[
(SSTxxTSST )2

]
=

d∑
k=1

[
4(m− 1)

m3p2
k

+
1

m3p3
k

]
x4
keke

T
k

+
d∑
k=1

[
‖x‖22(m2 − 3m+ 2)

m3
+
m− 1

m3

d∑
k=1

x2
k

pk

]
x2
k

pk
eke

T
k

+

[
‖x‖22(m3 − 6m2 + 11m− 6)

m3
+
m2 − 3m+ 2

m3

d∑
k=1

x2
k

pk

]
xxT
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+ xxT
[

2(m2 − 3m+ 2)

m3
D({x

2
k

pk
}) +

m− 1

m3
D({x

2
k

p2
k

})
]

+

[
2(m2 − 3m+ 2)

m3
D({x

2
k

pk
}) +

m− 1

m3
D({x

2
k

p2
k

})
]
xxT , (11)

where the expectation is w.r.t. S, and D({x2
k}) denotes a square diagonal matrix with {x2

k}dk=1 on its diagonal that can be
extended to other similar notations.
Lemma 2. Given the definitions in Lemma 1. Then, with probability at least 1−

∑d
k=1 ηk, we have

‖SSTxxSST ‖2 ≤
∑
k∈Γ

f2(xk, ηk,m), (12)

where Γ is a set containing at most m different elements of [d] with its cardinality |Γ| ≤ m, and f(xk, ηk,m) = |xk| +
log( 2

ηk
)
[
|xk|

3mpk
+ |xk|

√
1

9m2p2k
+ 2

log(2/ηk) ( 1
mpk
− 1

m )
]
.

Remark 1. For the expressions in Lemma 1 and Lemma 2, the sampling probability pk appears in the denominator, which
indicates that the derived bound may be sensitive to a highly small pk 6= 0. However, in terms of any pk = 0, we can define
|xk|a
pbk

= 0 for a, b > 0, because we follow the rule that pk = 0 only when xk = 0 and xk = 0 can never be sampled. Thus,
the aforementioned two lemmas and other derived results are applicable to the case where there exists pk = 0.

2. Analysis
2.1. Technical Theorems

Below, we first show the Matrix Bernstein inequality employed for characterizing the sums of independent random vari-
ables/matrices, and then present a matrix perturbation result for eigenvalues.
Theorem 3 (Tropp 2015, p. 76). Let {Ai}Li=1 ∈ Rd×n be independent random matrices with E [Ai] = 0 and ‖Ai‖2 ≤ R.
Define the variance σ2 = max{‖

∑L
i=1 E

[
AiA

T
i

]
‖2, ‖

∑L
i=1 E

[
AT
i Ai

]
‖2}. Then, P(‖

∑L
i=1 Ai‖2 ≥ ε) ≤ (d +

n) exp( −ε
2/2

σ2+Rε/3 ) for all ε ≥ 0.

Theorem 4 (Golub & Van Loan 1996, p. 396). If A ∈ Rd×d and A + E ∈ Rd×d are symmetric matrices, then

λk(A) + λd(E) ≤ λk(A + E) ≤ λk(A) + λ1(E) (13)

for k ∈ [d], where λk(A + E) and λk(A) designate the k-th largest eigenvalues.

2.2. Proof of Lemma 1

Proof. According to Algorithm 1 in the main text of the paper, each column vector in the rescaled sampling matrix S ∈
Rd×m is sampled with replacement from {rk = 1√

mpk
ek}dk=1 with corresponding probabilities {pk}dk=1, where {ek}dk=1

are the standard basis vectors for Rd.

Firstly, we prove Eq. (7). By the definition, we expand

SSTxxTSST =

m∑
j=1

stjs
T
tjx

m∑
j=1

xT stjs
T
tj (14)

=

m∑
j=1

stjs
T
tjxx

T stjs
T
tj +

∑
i 6=j∈[m]

stis
T
tixx

T stjs
T
tj , (15)

where the random variable tj is in [d].

Passing the expectation over S through the sum in Eq. (15), we have

E
m∑
j=1

stjs
T
tjxx

T stjs
T
tj =

m∑
j=1

d∑
k=1

P(tj = k)rkr
T
k xx

T rkr
T
k

=

m∑
j=1

d∑
k=1

pk
1

m2p2
k

eke
T
k xx

Teke
T
k =

d∑
k=1

x2
k

mpk
eke

T
k , (16)
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and similarly

E
∑

i6=j∈[m]

stis
T
tixx

T stjs
T
tj =

∑
i 6=j∈[m]

d∑
k=1

d∑
q=1

P(ti = k)P(tj = q)rkr
T
k xx

T rqr
T
q (17)

=

d∑
k=1

d∑
q=1

xkxq
m− 1

m
eke

T
q =

m− 1

m
xxT . (18)

Now, combing Eq. (16) with Eq. (18) immediately proves Eq. (7).

Then, Eq. (8) can be proved based on Eq. (7) by

E
[
D(SSTxxTSST )

]
= D(E

[
SSTxxTSST

]
) =

d∑
k=1

(
1

mpk
+
m− 1

m
)x2
keke

T
k . (19)

Alternatively, D(SSTxxTSST ) can be explicitly expanded by

D(SSTxxTSST ) =

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj . (20)

Thus, the whole target expectations in Eq. (9), Eq. (10) and Eq. (11) can be explicitly expanded, and we can use similar
ways of proving Eq. (7) to prove the remainder of the lemma.

To prove Eq. (9), we expand

E
[
(D(SSTxxTSST ))2

]
= E

(

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj )

2

 (21)

= E

 m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

 (22)

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj (23)

+ E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj (24)

+ E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj (25)

+ E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj , (26)

where the four terms in the last equations are calculated as:

(23) = E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tjstjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj
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+ E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stis

T
tistjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

=

d∑
k1=1

m∑
j=1

pk1
1

m4p4
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1ek1e

T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

+ E
∑

i 6=j∈[m]

d∑
k1=1

d∑
q=1

pk1pq
1

m4p2
k1
p2
q

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1eqe

T
q

d∑
k=1

x2
keke

T
k eqe

T
q

=

d∑
k=1

x4
k

m3p3
k

eke
T
k +

d∑
k=1

(m2 −m)x4
k

m4p2
k

eke
T
k

=

d∑
k=1

(
1

m3p3
k

+
m− 1

m3p2
k

)x4
keke

T
k ; (27)

(24) = E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

g 6=i6=j∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tgstis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=i6=j∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tgstis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=j 6=i∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tgstis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

=

d∑
k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
ek1e

T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1ek2e

T
k2

d∑
k=1

x2
keke

T
k ek3e

T
k3

+

d∑
k1,k3=1

m(m− 1)

m4p2
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1ek1e

T
k1

d∑
k=1

x2
keke

T
k ek3e

T
k3

+

d∑
k1,k2=1

m(m− 1)

m4p2
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1ek2e

T
k2

d∑
k=1

x2
keke

T
k ek1e

T
k1

=

d∑
k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1ek1e

T
k1 +

d∑
k1=1

m(m− 1)

m4p2
k1

x4
k1ek1e

T
k1 +

d∑
k1=1

m(m− 1)

m4p2
k1

x4
k1ek1e

T
k1

=

d∑
k=1

[
m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)x4
k

m4p2
k

]
eke

T
k ; (28)

(25) = E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

=

d∑
k=1

[
m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)x4
k

m4p2
k

]
eke

T
k ; (29)

(26) = E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
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= E
∑

i 6=j 6=g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i=g,j 6=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i=h,j 6=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i 6=g,j=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i 6=h,j=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i=g,j=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i=h,j=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tjstgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

=

d∑
k=1

[
m(m− 1)(m− 2)(m− 3)

m4
x4
k +

4m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)

m4p2
k

x4
k

]
eke

T
k . (30)

(31)

Combing the above terms with simplification and reformulation completes the proof of Eq. (9).

Now, we continue to prove Eq. (10).

E
[
SSTxxTSSTD(SSTxxTSST )

]
= E

 m∑
j=1

stjs
T
tjx

m∑
j=1

xT stjs
T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj


= E

m∑
j=1

stjs
T
tjxx

T stjs
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tj
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x2
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T
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tj (32)

+ E
m∑
j=1

stjs
T
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T stjs
T
tj
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i 6=j∈[m]
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T
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T
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tj (33)

+ E
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T
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T
tj (34)

+ E
∑

i 6=j∈[m]
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T
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T stjs
T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj , (35)

where we calculate the four terms in the last equation as shown in below:

(32) = E
m∑
j=1

stjs
T
tjxx

T stjs
T
tj

m∑
j=1

stjs
T
tj

d∑
k=1
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T
k stjs

T
tj

= E
m∑
j=1
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T
tjxx

T stjs
T
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T
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d∑
k=1

x2
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T
k stjs

T
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∑
i 6=j∈[m]
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T
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T
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T
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d∑
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T
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T
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+ E
∑

i 6=j∈[m]

d∑
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q
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T
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x4
k
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T
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d∑
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(m2 −m)x4
k

m4p2
k

eke
T
k

=

d∑
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(
1

m3p3
k

+
m− 1

m3p2
k

)x4
keke

T
k ; (36)

(33) = E
m∑
j=1

stjs
T
tjxx

T stjs
T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1
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keke

T
k stjs

T
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∑
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T
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T
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T
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g=i 6=j∈[m]

stgs
T
tgxx

T stgs
T
tgstis

T
ti

d∑
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T
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=
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]
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(34) = E
∑

i 6=j∈[m]
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T
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T
tj
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j=1
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T
tj

d∑
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T
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T
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T
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∑
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d∑
k=1

x2
keke

T
k ek3e

T
k3

=

d∑
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d∑
k=1

x4
k

p2
k

eke
T
k ; (38)

(35) = E
∑
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T
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d∑
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d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i 6=h,j=g,g 6=h∈[m]
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d∑
k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1ek1e

T
k1

+

d∑
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d∑
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Combing the above terms with simplification and reformulation completes the proof of Eq. (10).

Finally, we have to prove Eq. (11).

E
[
(SSTxxTSST )2

]
= E

(

m∑
j=1

stjs
T
tjx

m∑
j=1

xT stjs
T
tj )

2


= E(

m∑
j=1

stjs
T
tjxx

T stjs
T
tj +

∑
i6=j∈[m]

stis
T
tixx

T stjs
T
tj )

2

= E(

m∑
j=1

stjs
T
tjxx

T stjs
T
tj )

2 (40)

+ E(
∑
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T
tixx
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T
tj )

2 (41)

+ E
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T
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T
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T
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tj , (43)

where we calculate the four terms in the last equation as shown in below:
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(43) =
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Combing the above terms with simplification and reformulation completes the proof of Eq. (11). To this end, we complete
the whole proof.

2.3. Proof of Lemma 2

Proof. According to the setting, we have that

‖SSTxxTSST ‖2
(a)
= ‖SSTx‖22 = ‖

m∑
j=1

stjs
T
tjx‖

2
2 = ‖

m∑
j=1

1

mptj
xtjetj‖22

= ‖
m∑
j=1

d∑
k=1

δtjk

mpk
xkek‖22 =

d∑
k=1

(

m∑
j=1

δtjkxk

mpk
)2 (b)

=
∑
k∈Γ

(

m∑
j=1

δtjkxk

mpk
)2, (48)

where we let Γ = {γt}|Γ|t=1 be a set containing at most m different elements of [d] with its cardinality |Γ| ≤ m.

In Eq. (48), (a) follows because SSTxxTSST is a positive semidefinite matrix of rank 1, δtjk returns 1 only when tj = k
and 0 otherwise, and P(δtjk = 1) = P(tj = k) = pk. (b) holds due to that we perform random sampling with replacement
m times on the d entries of x ∈ Rd, and consequently at most m certain different entries from x are sampled.

Let k = γ1 with γ1 ∈ Γ, and we first bound |
∑m
j=1

δtjγ1xγ1
mpγ1

|. Define a random variable aj =
δtjγ1xγ1
mpγ1

− xγ1
m for all

j ∈ [m]. We can easily check that {aj}mj=1 are independent with E [aj ] = 0, so that we can leverage Theorem 3 to
continue our following analysis. We see that

max
j∈[m]

|aj | = max{ |xγ1 |
m

(
1

pγ1
− 1),

|xγ1 |
m
} ≤ |xγ1 |

mpγ1
, (49)
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and
m∑
j=1

E
[
a2
j

]
=

x2
γ1

mpγ1
−
x2
γ1

m
. (50)

Thus, applying Theorem 3 with R =
|xγ1 |
mpγ1

and σ2 =
x2
γ1

mpγ1
− x2

γ1

m obtains that

P(|
m∑
j=1

aj | ≥ ε) ≤ 2 exp(
−ε2/2

x2
γ1/(mpγ1)− x2

γ1/m+ |xγ1 |ε/(3mpγ1)
), (51)

whose RHS is denoted by ηγ1 . Then, with probability at least 1 − ηγ1 we have |
∑m
j=1 aj | ≤ ε, i.e., |

∑m
j=1

δtjγ1xγ1
mp1

| ≤
|xγ1 |+ ε. We then replace ε by other variables to obtain that

|xγ1 |+ ε = |xγ1 |+ log(
2

ηγ1
)

[
|xγ1 |

3mpγ1
+ |xγ1 |

√
1

9m2p2
γ1

+
2

log(2/ηγ1)
(

1

mpγ1
− 1

m
)

]
, (52)

which is denoted by f(xγ1 , ηγ1 ,m).

In a similar way, we can bound |
∑m
j=1

δtjkxk

mpk
| for any other k ∈ [d]. The lemma then follows by using the union bound

over cases for all k ∈ [d].

2.4. Proof of Theorem 1

Proof. We have to prove that the unbiased estimator for original covariance matrix C is Eq. (1), i.e., Ce = Ĉ1 − Ĉ2,
where Ĉ1 = m

mn−n
∑n
i=1 SiS

T
i xix

T
i SiS

T
i , and Ĉ2 = m

mn−n
∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i )D(bi) with bki = 1

1+(m−1)pki
.

Note that each Si is created by running Algorithm 1, and {Si}ni=1 are independent matrices. Thus, taking all summands
E
[
SiS

T
i xix

T
i SiS

T
i

]
together and leveraging Eq. (7) in Lemma 1 achieves the expectation of Ĉ1,

E[Ĉ1] =
m

nm− n
E

n∑
i=1

SiS
T
i xix

T
i SiS

T
i =

m

nm− n

n∑
i=1

[
d∑
k=1

x2
ki

mpki
eke

T
k +

m− 1

m
xix

T
i

]

=
1

nm− n

n∑
i=1

d∑
k=1

x2
ki

pki
eke

T
k +

1

n
XXT . (53)

Eq. (53) indicates that Ĉ1 is a biased estimator for the original covariance matrix C = 1
nXXT = 1

n

∑n
i=1 xix

T
i . We still

need to apply a debiasing procedure to Ĉ1 to get an unbiased estimator. By Eq. (8) in Lemma 1, it can be shown that

E[Ĉ2] =
m

nm− n

n∑
i=1

E
[
D(SiS

T
i xix

T
i SiS

T
i )
]
D(bi) =

1

nm− n

n∑
i=1

d∑
k=1

x2
ki

pki
eke

T
k . (54)

Combing Eq. (53) with Eq. (54), we immediately see that Ce = Ĉ1 − Ĉ2 is unbiased for C.

2.5. Proof of Theorem 2

Proof. Here, we have to bound the error ‖Ce−C‖2. To make the representation compact, we define Ai = Ai1−Ai2−Ai3

with Ai1 =
mSiS

T
i xix

T
i SiS

T
i

nm−n , Ai2 =
mD(SiS

T
i xix

T
i SiS

T
i )D(bi)

nm−n , Ai3 =
xix

T
i

n . Then,
∑n
i=1 Ai = Ce − C holds. It

is straightforward to see that {Ai}ni=1 are independent zero-mean random matrices, which are exactly the setting of the
Matrix Bernstein inequality, as shown in Theorem 3. To bound ‖Ce−C‖2 via Theorem 3, we need to calculate the relevant
parameters R and σ2 that characterize the range and variance of Ai respectively.

We first derive R by bounding ‖Ai‖2 so that ‖Ai‖2 ≤ R for all i ∈ [n]. Expanding ‖Ai‖2 gets that

‖Ai‖2 = ‖Ai1 −Ai2 −Ai3‖2 ≤ ‖Ai1 −Ai2‖2 + ‖Ai3‖2



Appendix for ‘Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data’

≤‖Ai1‖2 + ‖Ai3‖2. (55)

The last inequality in Eq. (55) results from

‖Ai1 −Ai2‖2 = max
k∈[d]

|λk(Ai1 −Ai2)|

(a)

≤ max{|λd(Ai1)− λ1(Ai2)|, |λ1(Ai1)− λd(Ai2)|} (56)
(b)
= max{λ1(Ai2), |λ1(Ai1)− λd(Ai2)|} (57)
(c)
= max{λ1(Ai2), λ1(Ai1)− λd(Ai2)} (58)
(d)

≤ λ1(Ai1) (59)
(e)
= ‖Ai1‖2, (60)

where λk(·) is the k-th largest eigenvalue.

(a) follows from that λk(Ai1)− λ1(Ai2) ≤ λk(Ai1 −Ai2) ≤ λk(Ai1)− λd(Ai2) for any k ∈ [d], which can be proved
by combining Theorem 4 with the fact that λd(−Ai2) = −λ1(Ai2) and λ1(−Ai2) = −λd(Ai2) for Ai2 ∈ Rd×d.

(b) holds because of that λk≥2(Ai1) = 0 since Ai1 is a positive semidefinite matrix of rank 1, and λk∈[d](Ai2) ≥ 0 since
Ai2 is positive semidefinite.

(c) follows owing to that λ1(Ai1) = Tr(Ai1) ≥ Tr(Ai2) =
∑d
k=1 λk(Ai2) ≥ λd(Ai2) ≥ 0, where the first equality

holds because λk≥2(Ai1) = 0, the first inequality results from the fact that the diagonal matrix Ai2 is constructed by the
diagonal elements of Ai1 multiplied by positive scalars not bigger than 1, and the second inequality is the consequence of
λk∈[d](Ai2) ≥ 0.

(d) results from that λk∈[d](Ai2) ≥ 0.

(e) follows owing to that Ai1 is positive semidefinite.

Now, we only need to bound ‖Ai1‖2 and ‖Ai3‖2. We have that

‖Ai3‖2 = ‖xix
T
i

n
‖2 =

‖xi‖22
n

. (61)

Then, Lemma 2 reveals that with probability at least 1−
∑d
k=1 ηki,

‖Ai1‖2 ≤
m

nm− n
∑
k∈Γi

f2(xki, ηki,m), (62)

where Γi = {γti}|Γi|t=1 is a set occupying at most m different elements of [d] with its cardinality |Γi| ≤ m, and

f(xki, ηki,m) = |xki|+ log( 2
ηki

)
[
|xki|

3mpki
+ |xki|

√
1

9m2p2ki
+ 2

log(2/ηki)
( 1
mpki

− 1
m )
]
.

We derive the similar results for all {xi}ni=1. Then, by union bound, with probability at least 1−
∑n
i=1

∑d
k=1 ηki, we have

R = max
i∈[n]

[
m

nm− n
∑
k∈Γi

f2(xki, ηki,m) +
‖xi‖22
n

]
. (63)

Applying the well known inequality (
∑n
t=1 at)

2 ≤ n
∑n
t=1 a

2
t , we have

f2(xki, ηki,m) ≤ 3x2
ki + 3 log2(

2

ηki
)

x2
ki

9m2p2
ki

+ 3 log2(
2

ηki
)

x2
ki

9m2p2
ki

+ 6 log(
2

ηki
)(
x2
ki

mpki
− x2

ki

m
)

≤ 3x2
ki + log2(

2

ηki
)

2x2
ki

3m2p2
ki

+ log(
2

ηki
)

6x2
ki

mpki
. (64)
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Before continuing characterizing R in Eq. (63), we set the sampling probabilities as pki = α |xki|‖xi‖1 + (1 − α)
x2
ki

‖xi‖22
. It is

easy to check that
∑d
k=1 pki = 1. For 0 < α < 1, we also have pki ≥ α |xki|‖xi‖1 , then plugging it in the second and third

term of Eq. (64) respectively getting that

f2(xki, ηki,m) ≤ 3x2
ki + log2(

2

ηki
)
2‖xi‖21
3m2α2

+ log(
2

ηki
)
6|xki|‖xi‖1

mα
. (65)

Equipped with Eq. (63) and setting ηki = η
nd for all i ∈ [n] and k ∈ [d], we bound R with probability at least 1 −∑n

i=1

∑d
k=1 ηki = 1− η by

R ≤ max
i∈[n]

[
m

nm− n
∑
k∈Γi

(
3x2

ki + log2(
2nd

η
)
2‖xi‖21
3m2α2

+ log(
2nd

η
)
6|xki|‖xi‖1

mα

)
+
‖xi‖22
n

]

≤ max
i∈[n]

[
2

n

(
3‖xi‖22 + log2(

2nd

η
)
2‖xi‖21
3mα2

+ log(
2nd

η
)
6‖xi‖21
mα

)
+
‖xi‖22
n

]
≤ max

i∈[n]

[
7‖xi‖22
n

+ log2(
2nd

η
)
14‖xi‖21
nmα2

]
, (66)

where the second inequality follows from that m
m−1 ≤ 2 for m ≥ 2 and |Γi| ≤ m, and the last inequality results from that

α ≤ 1 and log( 2nd
η ) ≥ 1 for n ≥ 1, d ≥ 2, and η ≤ 1.

At this stage, we have to derive σ2 by only bounding for ‖
∑n
i=1 E [AiAi] ‖2 since Ai is symmetric. Expanding E [AiAi]

obtains that

0 � E [AiAi] = E [Ai1Ai1 + Ai2Ai2 + Ai3Ai3 −Ai1Ai2 −Ai2Ai1

−Ai1Ai3 −Ai3Ai1 + Ai2Ai3 + Ai3Ai2 ] ,

in RHS of which, we bound the expectation of each term. Specifically, invoking Lemma 1, we have that

n2E [AiAi] =

d∑
k=1

[
4

m(m− 1)p2
ki

+
1

(m− 1)2mp3
ki

]
x4
kieke

T
k︸ ︷︷ ︸

1©

+

d∑
k=1

[
‖xi‖22(m− 2)

m(m− 1)
+

1

m(m− 1)

d∑
k=1

x2
ki

pki

]
x2
ki

pki
eke

T
k︸ ︷︷ ︸

2©

+

[
‖xi‖22(m2 − 5m+ 6)

m(m− 1)
+

m− 2

m(m− 1)

d∑
k=1

x2
ki

pki

]
xix

T
i︸ ︷︷ ︸

3©

+
2(m− 2)

m(m− 1)
xix

T
i D({x

2
ki

pki
})︸ ︷︷ ︸

4©

+
1

m(m− 1)
xix

T
i D({x

2
ki

p2
ki

})︸ ︷︷ ︸
5©

+
2(m− 2)

m(m− 1)
D({x

2
ki

pki
})xixTi︸ ︷︷ ︸

6©

+
1

m(m− 1)
D({x

2
ki

p2
ki

})xixTi︸ ︷︷ ︸
7©

+ D(bi)D(bi)

d∑
k=1

[
1

m(m− 1)2p3
ki

+
7

m(m− 1)p2
ki

+
6(m− 2)

m(m− 1)pki
+

(m− 2)(m− 3)

m(m− 1)

]
x4
kieke

T
k︸ ︷︷ ︸

8©

+ ‖xi‖22xixTi︸ ︷︷ ︸
9©

+

d∑
k=1

(
1

(m− 1)pki
+ 1)x2

kieke
T
kD(bi)xix

T
i︸ ︷︷ ︸

10©

+xix
T
i

d∑
k=1

(
1

(m− 1)pki
+ 1)x2

kieke
T
kD(bi)︸ ︷︷ ︸

11©

− 2

d∑
k=1

[
1

m(m− 1)2p3
ki

+
6

m(m− 1)p2
ki

+
3(m− 2)

m(m− 1)pki

]
x4
kieke

T
kD(bi)︸ ︷︷ ︸

12©

− 3(m− 2)

m(m− 1)
xix

T
i D({x

2
ki

pki
})D(bi)︸ ︷︷ ︸

13©
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− (m− 2)(m− 3)

m(m− 1)
xix

T
i D({x2

ki})D(bi)︸ ︷︷ ︸
14©

− 3(m− 2)

m(m− 1)
D(bi)D({x

2
ki

pki
})xixTi︸ ︷︷ ︸

15©

− (m− 2)(m− 3)

m(m− 1)
D(bi)D({x2

ki})xixTi︸ ︷︷ ︸
16©

−
d∑
k=1

x2
ki

(m− 1)pki
eke

T
k xix

T
i︸ ︷︷ ︸

17©

−‖xi‖22xixTi︸ ︷︷ ︸
18©

−
d∑
k=1

x2
ki

(m− 1)pki
xix

T
i eke

T
k︸ ︷︷ ︸

19©

−‖xi‖22xixTi︸ ︷︷ ︸
20©

− 1

m(m− 1)
xix

T
i D({x

2
ki

p2
ki

})D(bi)︸ ︷︷ ︸
21©

− 1

m(m− 1)
D(bi)D({x

2
ki

p2
ki

})xixTi︸ ︷︷ ︸
22©

. (67)

Because of the limited space, D({x
2
ki

pki
}) is to denote a square diagonal matrix in Rd×d with {x

2
ki

pki
}dk=1 on its diagonal,

which is also extended to other similar notations.

In Eq. (67), it can be checked that for m ≥ 2, we have

10©− 17© = 0;

11©− 19© = 0;

4©− 13©+ 5©− 14©− 21© =
xix

T
i

m(m− 1)
D({ ((m− 1)/pki)x

2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
});

6©− 15©+ 7©− 16©− 22© = D({ ((m− 1)/pki)x
2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
}) xix

T
i

m(m− 1)
;

3©+ 9©− 18©− 20© =

[
(6− 4m)‖xi‖22
m(m− 1)

+
m− 2

m(m− 1)

d∑
k=1

x2
ki

pki

]
xix

T
i

� 1

m

d∑
k=1

x2
ki

pki
xix

T
i ;

8©− 12© � 0;

1© �
d∑
k=1

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

]
eke

T
k ;

2© �
d∑
k=1

[
‖xi‖22x2

ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]
eke

T
k . (68)

Then, applying Eq. (67) and Eq. (68) obtains that

0 � E [AiAi] �
1

n2

d∑
k=1

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖22x2

ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]
eke

T
k

+
xix

T
i

n2m(m− 1)
D({ ((m− 1)/pki)x

2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
})

+ D({ ((m− 1)/pki)x
2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
}) xix

T
i

n2m(m− 1)

+
1

n2m

d∑
k=1

x2
ki

pki
xix

T
i . (69)

With Eq. (69) in hand, we can formulate σ2 as

σ2 = ‖
n∑
i=1

E [AiAi] ‖2 ≤
n∑
i=1

max
k∈[d]

1

n2

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖22x2

ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]
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+

n∑
i=1

max
k∈[d]

1

n2

[
2‖xi‖22

m(m− 1)
(
((m− 1)/pki)x

2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1 + 1/pki)x
2
ki

1 + (m− 1)pki
)

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

x2
ki

pki
xix

T
i ‖2

≤
n∑
i=1

max
k∈[d]

1

n2

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖22x2

ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]

+

n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖22x2

ki

mpki

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

x2
ki

pki
xix

T
i ‖2. (70)

Again, we have to consider the sampling distributions pki = α |xki|‖xi‖1 + (1 − α)
x2
ki

‖xi‖22
with 0 < α < 1. Plugging pki ≥

α |xki|‖xi‖1 and pki ≥ (1− α)
x2
ki

‖xi‖22
in Eq. (70), we have

σ2 ≤
n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖42

m2(1− α)2
+

4‖xi‖21‖xi‖22
m3α2(1− α)

+
‖xi‖42

m(1− α)
+

2‖xi‖22
m2(1− α)

d∑
k=1

|xki|‖xi‖1
α

]

+
n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖42
m(1− α)

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

|xki|‖xi‖1
α

xix
T
i ‖2

=

n∑
i=1

[
8‖xi‖42

n2m2(1− α)2
+

4‖xi‖21‖xi‖22
n2m3α2(1− α)

+
9‖xi‖42

n2m(1− α)
+

2‖xi‖22‖xi‖21
n2m2α(1− α)

]

+ ‖
n∑
i=1

‖xi‖21xix2
i

n2mα
‖2. (71)

Note that employing pki = Ω( |xki|4/3∑d
k=1 |xki|4/3

) for the term 4x4
ki

m3p3ki
in Eq. (70) can produce a result tighter than that in

Eq. (71), which is because of the fact that (
∑d
k=1 |xki|4/3)3 ≤ ‖xi‖21‖xi‖22 always holds owing to the Holder’s in-

equality. However, it is not necessary to apply pki = Ω( |xki|4/3∑d
k=1 |xki|4/3

) to the term 4x4
ki

m3p3ki
in Eq. (70), because the term

4‖xi‖21‖xi‖
2
2

n2m3α2(1−α) = O(
‖xi‖21‖xi‖

2
2

n2m3 ) in Eq. (71) obtained by applying pki = α |xki|‖xi‖1 + (1 − α)
x2
ki

‖xi‖22
= Ω( |xki|‖xi‖1 +

x2
ki

‖xi‖22
)

to the term 4x4
ki

m3p3ki
in Eq. (70) has already been small enough, which can be smaller than other terms in Eq. (71) like

2‖xi‖22‖xi‖
2
1

n2m2α(1−α) = O(
‖xi‖21‖xi‖

2
2

n2m2 ). Similarly, applying other sampling probabilities pki = Ω( |xki|q∑d
k=1 |xki|q

) with q 6= 1, 4
3 , 2

to Eq. (70) will produce a result larger than Eq. (71), which may not be bounded. This is also why we only use
pki = α |xki|‖xi‖1 + (1 − α)

x2
ki

‖xi‖22
= Ω( |xki|‖xi‖1 ) to tighten R in Eq. (66). This derivation justifies our selection of q = 1, 2 in

pki = Ω( |xki|q∑d
k=1 |xki|q

) used for constructing the sampling probability pki = α |xki|‖xi‖1 + (1− α)
x2
ki

‖xi‖22
.

We then invoke Theorem 3 to obtain that for ε ≥ 0,

P(‖Ce −C‖2 ≥ ε) ≤ 2d exp(
−ε2/2

σ2 +Rε/3
). (72)

Denote the RHS of Eq. (72) by δ = 2d exp( −ε
2/2

σ2+Rε/3 ) and consider the failure probability η in Eq. (66), then by union

bound we have ‖Ce −C‖2 ≤ ε holds with probability at least 1 − η − δ. Furthermore, δ = 2d exp( −ε
2/2

σ2+Rε/3 ) yields the
following quadratic equation in ε

ε2

2 log(2d/δ)
− Rε

3
− σ2 = 0. (73)

Solving Eq. (73) gets only one positive root

ε = log(
2d

δ
)

[
R

3
+

√
(
R

3
)2 +

2σ2

log(2d/δ)

]
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≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
). (74)

Thus, immediately we have ‖Ce −C‖2 ≤ log( 2d
δ ) 2R

3 +
√

2σ2 log( 2d
δ ) holds with probability at least 1 − η − δ, which

completes the whole proof.

2.6. Proof of Corollary 1

Proof. According to the setting, substituting that ‖xi‖2 ≤ τ for all i ∈ [n], ‖xi‖1‖xi‖2 ≤ ϕ with 1 ≤ ϕ ≤
√
d, and m < d into

Theorem 2 establishes that

‖Ce −C‖2 ≤ Õ
(τ2

n
+
τ2ϕ2

nm
+

√
τ4

nm2
+
τ4ϕ2

nm3
+

τ4

nm
+
τ4ϕ2

nm2
+
‖C‖2τ2ϕ2

nm

)
≤ Õ

(τ2

n
+
τ2ϕ2

nm
+
τ2ϕ

m

√
1

n
+ τ2

√
1

nm
+ τϕ

√
‖C‖2
nm

)
, (75)

where the first inequality invokes
∑n
i=n ‖xi‖42 ≤ nτ4, and C =

∑n
i=1

xix
T
i

n is the original covariance matrix.

Also, we can adopt
∑n
i=1 ‖xi‖42 ≤ ndτ2‖C‖2, which holds because

∑n
i=1 ‖xi‖42 ≤ τ2

∑n
i=1 ‖xi‖22 and

∑n
i=1 ‖xi‖22 =

nTr(C) ≤ nd‖C‖2.

Hence, we have

‖Ce −C‖2 ≤ Õ
(τ2

n
+
τ2ϕ2

nm
+ τ
√
‖C‖2

√
d

nm2
+
dϕ2

nm3
+

d

nm
+
dϕ2

nm2
+

ϕ2

nm

)
≤ Õ

(τ2

n
+
τ2ϕ2

nm
+
τϕ

m

√
d‖C‖2
n

+ τ

√
d‖C‖2
nm

+ τϕ

√
‖C‖2
nm

)
. (76)

Finally, assigning ‖Ce −C‖2 by the smaller one of Eq. (75) and Eq. (76) completes the proof.

2.7. Proof of Corollaries 2 and 3

Proof. The proof follows (Azizyan et al., 2015, Corollaries 4-6), where the key component ‖Ce−Cp‖2 is upper bounded
by ‖Ce − 1

n

∑n
i=1 xix

T
i ‖2 + ‖ 1

n

∑n
i=1 xix

T
i −Cp‖2. Then, the derivation results from Theorem 2 in our paper and the

Gaussian tail bounds in (Azizyan et al., 2015, Proposition 14).

(Azizyan et al., 2015, Proposition 14) shows that with probability at least 1− ζ for d ≥ 2,

max
i∈[n]
‖xi‖2 ≤

√
2Tr(Cp) log(nd/ζ);

‖ 1

n

n∑
i=1

xix
T
i −Cp‖2 ≤ O

(
‖Cp‖2

√
log(2/ζ)/n

)
. (77)

Then, applying them and Corollary 1 along with the fact that ‖xi‖1 ≤
√
d‖xi‖2 and Tr(Cp) ≤ d‖Cp‖2 establishes

‖Ce −Cp‖2 ≤ ‖Ce −
1

n

n∑
i=1

xix
T
i ‖2 + ‖ 1

n

n∑
i=1

xix
T
i −Cp‖2

≤ Õ
(τ2

n
+
τ2ϕ2

nm
+
τ2ϕ

m

√
1

n
+ τ2

√
1

nm
+ τϕ

√
‖ 1
n

∑n
i=1 xix

T
i ‖2

nm

)
+ Õ

(
‖Cp‖2

√
1

n

)
≤ Õ

(τ2

n
+
τ2ϕ2

nm
+
τ2ϕ

m

√
1

n
+ τ2

√
1

nm
+ τϕ

√
‖Cp‖2
nm

)
+ Õ

(
‖Cp‖2

√
1

n

)
(78)

≤ Õ
(d2‖Cp‖2

nm
+
d‖Cp‖2
m

√
d

n
+ d‖Cp‖2

√
1

nm
+ d‖Cp‖2

√
1

nm
+ ‖Cp‖2

√
1

n

)
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≤ Õ
(d2‖Cp‖2

nm
+
d‖Cp‖2
m

√
d

n

)
(79)

with probability at least 1 − η − δ − ζ, where Eq. (78) results from that we invoke Eq. (77) to get ‖ 1
n

∑n
i=1 xix

T
i ‖2 ≤

‖ 1
n

∑n
i=1 xix

T
i −Cp‖2 + ‖Cp‖2 ≤ Õ(‖Cp‖2).

The proof for the low-rank case where rank(Cp)≤ r additionally adopts

‖[Ce]r −Cp‖2 ≤ ‖[Ce]r −Ce‖2 + ‖Ce −Cp‖2
≤ ‖[Cp]r −Ce‖2 + ‖Ce −Cp‖2
≤ ‖[Cp]r −Cp‖2 + ‖Cp −Ce‖2 + ‖Ce −Cp‖2
= 2‖Ce −Cp‖2, (80)

where the last equality holds because rank(Cp) ≤ r. Then, armed with Tr(Cp) ≤ rank(Cp)‖Cp‖2 ≤ r‖Cp‖2, we have

‖[Ce]r −Cp‖2 ≤ O(‖Ce −Cp‖2) ≤ O(‖Ce −
1

n

n∑
i=1

xix
T
i ‖2 + ‖ 1

n

n∑
i=1

xix
T
i −Cp‖2)

≤ Õ
(rd‖Cp‖2

nm
+
r‖Cp‖2
m

√
d

n
+ r‖Cp‖2

√
1

nm
+ ‖Cp‖2

√
rd

nm
+ ‖Cp‖2

√
1

n

)
≤ Õ

(rd‖Cp‖2
nm

+
r‖Cp‖2
m

√
d

n
+ ‖Cp‖2

√
rd

nm

)
(81)

with probability at least 1− η − δ − ζ.

The given definitions also implicitly indicate that Cp and Ce are symmetric. Then, following (Azizyan et al., 2015), the
desired bound in Corollary 3 immediately results from Corollary 2 combined with the Davis-Kahan Theorem (Davis &
Kahan, 1970) that shows ‖

∏̂
k −

∏
k ‖2 ≤

1
λk−λk+1

‖Ce −Cp‖2.

3. Discussion for Counterparts
3.1. Theorems for Gauss-Inverse and UniSample-HD

We first use our notations to rephrase current theoretical results provided in (Azizyan et al., 2015, Theorem 3) and (Anaraki
& Becker, 2017, Theorem 6), which correspond to Gauss-Inverse and UniSample-HD, respectively.

Theorem 5 (Azizyan et al. 2015, Theorem 3). Let d ≥ 2 and define,

S1 = ‖ 1

n

n∑
i=1

‖xi‖22xixTi ‖2, S2 =
1

n

n∑
i=1

‖xi‖42.

There exists universal constants κ1, κ2 > 0 such that for any 0 < δ < 1, with probability at least 1− δ,

‖Ce −C‖2 ≤ κ1

(√ d

m
S1 +

√
d

m2
S2

)√ log(d/δ)

n
+ κ2

dmaxi∈[n] ‖xi‖22
nm

log(d/δ). (82)

Theorem 6 (Anaraki & Becker 2017, Theorem 6). Let each column of Si ∈ Rd×m be chosen uniformly at random from
the set of all canonical basis vectors without replacement. Let ρ > 0 be a bound such that ‖SiSTi xi‖22 ≤ ρ‖xi‖22 for all
i ∈ [n]. Then, with probability at least 1− δ

‖Ce −C‖2 ≤ ε, (83)

where δ = d exp
(
−ε2/2

σ2+Rε/3

)
, R = 1

n

[(
d(d−1)
m(m−1)ρ+ 1

)
maxi∈[n] ‖xi‖22 + d(d−m)

m(m−1) maxk∈[d],i∈[n] x
2
ki

]
, and σ2 =

d(d−1)
nm(m−1)

[
(ρ− m(m−1)

d(d−1) ) maxi∈[n] ‖xi‖22‖C‖2 + d−m
m−1ρmaxi∈[n] ‖xi‖22‖D(C)‖2

+
2(d−m)‖X‖2F
n(m−1) maxk∈[d],i∈[n] x

2
ki +

(d−m)2 maxk∈[d]

∑n
i=1 x

4
ki

n(d−1)(m−1)

]
.
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3.2. Discussion

In this subsection, we will simplify the foregoing two theorems by making Eq. (82) and Eq. (83) explicitly dependent on
n, m and d. Our derivations are natural and straightforward, and we will not deliberately loose Eq. (82) and Eq. (83) in
order to demonstrate the superiority of the theoretical results gained by our weighted sampling method. We define that
maxi∈n ‖xi‖2 ≤ τ .

In terms of Eq. (82) in Theorem 5, S1 ≤ maxi∈[n] ‖xi‖22‖C‖2 and S2 ≤ maxi∈[n] ‖xi‖42. Note that 1
nd‖X‖

2
F ≤ ‖C‖2 ≤

maxi∈[n] ‖xi‖22. Then, Eq. (82) can be simplified and reformulated as

‖Ce −C‖2 ≤ Õ
(√d‖C‖2 maxi∈[n] ‖xi‖22

nm
+

√
dmaxi∈[n] ‖xi‖42

nm2
+
dmaxi∈[n] ‖xi‖22

nm

)
≤ Õ

(
τ

√
d‖C‖2
nm

+
τ2

m

√
d

n
+
τ2d

nm

)
. (84)

If applying S2 ≤ dmaxi∈[n] ‖xi‖22‖C‖2 in the original paper (Azizyan et al., 2015), we will get that

‖Ce −C‖2 ≤ Õ
(√d‖C‖2 maxi∈[n] ‖xi‖22

nm
+

√
d2 maxi∈[n] ‖xi‖22‖C‖2

nm2
+
dmaxi∈[n] ‖xi‖22

nm

)
≤ Õ

(τd
m

√
‖C‖2
n

+
τ2d

nm

)
. (85)

In summary,

‖Ce −C‖2 ≤ min{Õ
(
τ

√
d‖C‖2
nm

+
τ2

m

√
d

n
+
τ2d

nm

)
, Õ
(τd
m

√
‖C‖2
n

+
τ2d

nm

)
}. (86)

For Eq. (83) in Theorem 6, we first simplify itsR and σ2. According to (Anaraki & Becker, 2017), to obtain a more accurate
estimation, each xi is required to be multiplied by HD to flatten its large entries before being sampled uniformly without
replacement, where H is a Hadamard matrix with its dimension being 2l (l is a certain positive integer), and D is a diagonal
matrix with its diagonal elements being i.i.d. Rademacher random variables. Note that HDDTHT = DTHTHD is an
identity matrix.

Suppose that we do not have to pad X with zeros until its dimension d = 2l holds. Hence, assuming that d = 2l for
X ∈ Rd×n without loss of generality, we define Y = HDX ∈ Rd×n below.

Corollary 2 of (Anaraki & Becker, 2017) indicates that with probability at least 1− β, we have

max
k∈[d],i∈[n]

|yki| ≤
√

1

d

√
2 log(

2nd

β
) max
i∈[n]
‖xi‖2 (87)

and

max
i∈[n]
‖yi‖2 ≤

√
2 log(

2nd

β
) max
i∈[n]
‖xi‖2. (88)

Corollary 3 of (Anaraki & Becker, 2017) indicates that with probability at least 1− β, we have

‖SiSTi yi‖2 ≤
√
m

d

√
2 log(

2nd

β
)‖xi‖2. (89)

To make a compact representation, we define θ =
√

2 log(2nd
β ). Obviously, θ > 1.

Then, in Theorem 6, we can replace the input data X by Y. Combing Eq. (89) with the fact that ‖yi‖2 = ‖HDxi‖2 =

‖xi‖2 getting ρ = ((
√

m
d θ)

2) = mθ2

d for the setting of Theorem 6. Along with θ > 1 and m ≤ d, we have
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R =
1

n
O
(

(
d2

m2

mθ2

d
+ 1)θ2 max

i∈[n]
‖xi‖22 +

d(d−m)

m2
(

√
1

d
θ)2 max

i∈[n]
‖xi‖22

)
= O

(
(
dθ2

nm
)θ2 max

i∈[n]
‖xi‖22

)
= Õ

( d

nm
max
i∈[n]
‖xi‖22

)
= Õ

(τ2d

nm

)
, (90)

and

σ2 ≤ d2

nm2
O
(

(
mθ2

d
− m(m− 1)

d(d− 1)
)θ2 max

i∈[n]
‖xi‖22‖

HDXXTDTHT

n
‖2 (91)

+
(d−m)

m

mθ2

d
θ2 max

i∈[n]
‖xi‖22‖D(

HDXXTDTHT

n
)‖2

+
d−m
nm

θ2

d
max
i∈[n]
‖xi‖22‖HDX‖2F +

(d−m)2

ndm
n
θ4

d2
max
i∈[n]
‖xi‖42

)
=

d2

nm2
O
(m
d

(θ2 − m− 1

d− 1
)θ2 max

i∈[n]
‖xi‖22‖C‖2 +

(d−m)θ4

d
max
i∈[n]
‖xi‖22

n(
√

1/dθ)2 maxi∈[n] ‖xi‖22
n

+
(d−m)θ2

nmd
max
i∈[n]
‖xi‖22nd

θ2

d
max
i∈[n]
‖xi‖22 +

(d−m)2θ4

d3m
max
i∈[n]
‖xi‖42

)
= Õ

( d

nm
max
i∈[n]
‖xi‖22‖C‖2 +

d−m
nm2

max
i∈[n]
‖xi‖42

+
d(d−m)

nm3
max
i∈[n]
‖xi‖42 +

(d−m)2

nm3d
max
i∈[n]
‖xi‖42

)
= Õ

( d

nm
max
i∈[n]
‖xi‖22‖C‖2 +

d(d−m)

nm3
max
i∈[n]
‖xi‖42 +

(d−m)2

nm3d
max
i∈[n]
‖xi‖42

)
= Õ

(τ2d‖C‖2
nm

+
τ4d(d−m)

nm3
+
τ4(d−m)2

nm3d

)
. (92)

Note that Eq. (92) for simplifying σ2 in Eq. (83) is tighter than the simplification result in the original paper (Anaraki &
Becker, 2017) that scales with d2

nm2 . Recalling Eq. (83), and replacing its ε by R and σ2 to get that with probability at least
1− δ − β, we have

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2
nm

+
τ2

m

√
d(d−m)

nm
+
τ2(d−m)

m

√
1

nmd
+
τ2d

nm

)
. (93)

If m = d, then

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2
nm

+
τ2d

nm

)
. (94)

Although pure sampling without replacement makes no estimation error when m = d, processing the data by a Hadamard
matrix before sampling can result in the error as shown in Eq. (94).

If m < d with m being close to d, then d−m = O(1), and thus we have

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2
nm

+
τ2

m

√
d

nm
+
τ2d

nm

)
. (95)

If m � d or there exists a certain constant κ < 1 with m < κd, then O(d −m) = O(d). In addition to considering that
1
nd‖X‖

2
F ≤ ‖C‖2 ≤ maxi∈[n] ‖xi‖22 = τ2, then we have

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2
nm

+
τ2d

m

√
1

nm
+
τ2d

nm

)
. (96)
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4. Computational Complexity
Recall that we have n data samples in the d-dimensional space, and let m be the target compressed dimension. The
computational comparisons between our proposed method and the other approaches are presented in Table 1, in which
Standard method means computing C directly without data compression. We should explain some terms in the table
before proceeding.

Storage: storing data and random projection matrices (if any) in the remote sites and the fusion center, and storing the
covariance matrix in the fusion center.

Communication: shipping the data and random projection matrices (if any) from remote sites to the fusion center (high
communication cost requires tremendous bandwidth and power consumption).

Time (FLOPS): compressing the data in the remote sites, and calculating the covariance matrix in the fusion center (a low
time complexity means a low power cost and high efficiency for the data processing).

Note that, instead of only using the fusion center, data have to be first collected from many remote sites like a network of
g � n sensors. Then, they are transmitted to the fusion center to estimate the covariance matrix. This procedure shows
why communication cost is required. In the table, except for the communication, the two other compared terms have
contained the total costs in both the remote sites and fusion center.

For a covariance matrix defined as C = 1
nXXT − x̄x̄T , we can exactly calculate x̄ = 1

n

∑n
i=1 xi in the fusion center by

x̄ = 1
n

∑g
j=1 uj , where {xi}ni=1 are distributed in g � n remote sites, and uj ∈ Rd is the summation of all data vectors in

the j-th remote site before being compressed. Hence, about O(gd) storage, O(gd) communication cost, and O(nd) time
have to be added to the last four methods in Table 1, with g � n.

Table 1. Computational costs in terms of storage, communication, and time.
Method Storage Communication Time
Standard O(nd+ d2) O(nd) O(nd2)

Gauss-Inverse O(nm+ d2) O(nm) O(nmd+ nm2d+ nd2) + TG
Sparse O(nm+ d2) O(nm) O(d+ nm2) + TS

UniSample-HD O(nm+ d2) O(nm) O(nd log d+ nm2)
Our method O(nm+ d2) O(nm) O(nd+ nm log d+ nm2)

From now on, we can focus on the covariance matrix defined as C = 1
nXXT .

First, we derive the computational costs in our propose algorithm. Computing {pki}k∈[d],i∈[n] takes O(nd) time. Then,
sampling nm entries from all data vectors to get Y ∈ Rm×n takes time that is scaled on nm log d up to a certain small
constant. In Eq. (1), each Si, STi xi, SiS

T
i xi, and SiS

T
i (squared diagonal), has at most m non-zero entries. Hence,

recovering {Si}ni=1 via the sampled nm entries in Y and the sampling indices in T ∈ Rm×n incurs O(nm) time. With
Y and T in hand, {SiSTi xi}ni=1 can be accurately computed in O(nm) time. Equipped with {SiSTi xi}ni=1, computing
Ĉ1 = m

nm−n
∑n
i=1 SiS

T
i xix

T
i SiS

T
i additionally takes only O(nm2) time, this is due to that each SiS

T
i xi ∈ Rd and

SiS
T
i xix

T
i SiS

T
i ∈ Rd×d has at most m and m2 non-zero entries respectively. Based on the obtained Ĉ1, computing

the square diagonal matrix Ĉ2 = m
nm−n

∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i )D(bi) takes O(nm) time since each SiS

T
i xix

T
i SiS

T
i

has at most m non-zero entries in its diagonal. Finally, obtaining C = Ĉ1 − Ĉ2 incurs O(d) extra time. The total
running time is about O(nd + nm log d + nm + nm + nm + nm2 + nm + d) = O(nd + nm log d + nm2). In the
remote sites, data are compressed into m dimensional space. Computing bki only corresponding to the sampled entries
is enough to exactly calculate the Ĉ2 = m

nm−n
∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i )D(bi) in Eq. (1), so that at most nm entries

from {pki}k∈[d],i∈[n] have to be retained to obtain {bki}, since bki = 1
1+(m−1)pki

. Thus, in the remote sites, Y ∈ Rm×n

and T ∈ Rm×n dominate the storage cost, taking about O(nm) space in total. In the fusion center, O(d2) storage is
additionally used to store the estimated covariance Ce ∈ Rd×d. Similarly, about O(nm) communication cost is required
because of transmitting Y ∈ Rm×n, T ∈ Rm×n, v ∈ Rn, w ∈ Rn and α.

Then, for Standard in Table 1 that means directly calculating covariance matrix through the observed data samples without
compression, it is straightforward to check its computational complexity. X ∈ Rd×n and C ∈ Rd×d takes aboutO(nd+d2)
storage in total, and X ∈ Rd×n leads to about O(nd) communication burden. Calculating the covariance matrix C =
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1
nXXT costs O(nd2) time.

For Gauss-Inverse,
∑n
i=1 Si(S

T
i Si)

−1STi xix
T
i Si(S

T
i Si)

−1STi , which is the main part of its unbiased estimator, dominates
the computational cost. Generating n different Gaussian matrices {Si ∈ Rd×m}ni=1 by the pseudorandom number genera-
tor like Mersenne twister (Matsumoto & Nishimura, 1998), which is by far the most widely used, takes considerably large
amount of time in practice. The time cost can be denoted by TG. As Si is dense, computing {STi xi}ni=1 takes O(nmd)
time. Calculating {(STi Si)−1}ni=1 requires O(nm2d+ nm3), which involves matrix multiplications and inversions. Sub-
sequently, we repeat the matrix-vector multiplications in {Si(STi Si)−1STi xi ∈ Rd}ni=1 from the left to right, based on
which we get the target covariance matrix. Finally, it takes at least O(nmd+nm2d+nm3 +nm2 +ndm+nd2) +TG =
O(nmd+nm2d+nd2)+TG time for Gauss-Inverse. In the remote sites, we compress data by STi xi ∈ Rm before sending
them to the fusion center. Along with O(d2) storage for the derived covariance matrix, about O(nm+ d2) storage space is
required in total. Also, sending {STi xi ∈ Rm}ni=1 requires about a O(nm) computational burden.

Note that we have not listed the synchronization cost of Gauss-Inverse in Table 1. In practice, a pseudo-random number
generator is applied to the program in both the remote sites and the fusion center to generate/reconstruct nGaussian random
matrices {Si ∈ Rd×m}ni=1, and only n seeds are required to be transmitted from remote sites to the fusion center to recover
the Gaussian random matrices. Therefore, only about O(n) storage and communication cost have to be added in Table 1.
Also, calculating each (STi Si)

−1 has to load each STi Si ∈ Rm×m into memory, hence at least O(m2) memory is required.

For Sparse, calculating
∑n
i=1 SiS

T
i xix

T
i SiS

T
i and subtracting its rescaled diagonal entries dominate the computational

cost (Anaraki, 2016). Generating sparse projection matrices {Si ∈ Rd×q}ni=1 is also expensive (Anaraki & Becker, 2017),
whose time cost is denoted by TS . The entries of each Si are distributed on {−1, 0, 1} with probabilities { 1

2s , 1−
1
s ,

1
2s}.

Then, each column of Si has d
s non-zero entries in expectation. Empirically, we can fix that q/d = 0.2 or 0.4 according

to (Anaraki & Hughes, 2014; Anaraki, 2016). The number of non-zero entries of SiSTi xi ∈ Rd is at least d(1− (1− 1
s )q)

in expectation, which ranges from dq
s (1 − q

2s ) to dq
s . Define d(1 − (1 − 1

s )q) = m < d, thus we can solve s with
q/d = 0.2 or 0.4 fixed to obtain that s = O(d

2

m ). Then computing {STi xi ∈ Rq}ni=1 takes O(ndqs ) = O(nm) time
in expectation. Based on it, computing {SiSTi xi ∈ Rd}ni=1 additionally costs O(ndqs ) = O(nm) time in expectation.
Since each SiS

T
i xi ∈ Rd contains only m non-zeros entries in expectation, thus obtaining

∑n
i=1 SiS

T
i xix

T
i SiS

T
i and

subtracting its rescaled diagonal entries requires O(nm+nm+nm2 +d)+TS = O(nm2 +d)+TS time in total. Storing
{SiSTi xi ∈ Rd}ni=1 and the estimated covariance matrix requiresO(nm+d2) storage in expectation, where aO(nm) cost
results from O(nm) non-zero entries in {SiSTi xi ∈ Rd}ni=1 along with O(nm) corresponding indices. Similarly, sending
{SiSTi xi ∈ Rd}ni=1 from remote sites to the fusion center takes at most O(nm) communication cost in expectation.

For UniSample-HD, processing data by a Hadamard matrix by HDX ∈ Rd×n requiresO(nd log d) time, where H ∈ Rd×d
can be a Hadamard matrix, D ∈ Rd×d is a diagonal matrix with diagonal elements being i.i.d. Rademacher random
variables, and we suppose that d = 2l holds (l is a certain positive integer). Then, sampling m entries uniformly without
replacement on each data vector by {STi HDxi ∈ Rd}ni=1 takes O(nm) time. Hence, it is straightforward to check that∑n
i=1 HDSiS

T
i D

THTxix
T
i D

THTSiS
T
i HD ∈ Rd×d requiresO(nd log d+nm+nm2+d2 log d) = O(nd log d+nm2)

time in total. HD ∈ Rd×d can be generated on the fly when we process the data. About O(nm + d2) storage has to be
used for the compressed data and estimated covariance matrix. Obviously, about O(nm) communication cost is required.

5. Impact of the Parameter ααα
5.1. Discussion

To determine if the k-th entry of the data vector xi ∈ Rd should be retained or not, the sampling probability applied in our
method is

pki = α
|xki|
‖xi‖1

+ (1− α)
x2
ki

‖xi‖22
. (97)

Achieving our theoretical bound of Theorem 2 requires 0 < α < 1. However, The case α = 1 and α = 0 can also
obtain weaker error bounds, which can be straightforwardly derived from Eqs. (64)(65) and Eqs. (70)(71). The following
illustration reveals the connection between α and error bounds on data owning different properties.

1. Only using α = 0, i.e., `2-norm based sampling pki =
x2
ki

‖xi‖22
can yield a very weak bound if there exist some very
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small entries |xki| in xi ∈ Rd. E.g., substituting pki =
x2
ki

‖xi‖22
into the term maxk∈[d]

x2
ki

p2ki
of Eq. (64) or Eq. (70) results

in maxk∈[d]
‖xi‖42
x2
ki

in the final error bound, which becomes infinite if the positive entry |xki| gets close to 0;

2. Only using α = 1, i.e., `1-norm based sampling pki = |xki|
‖xi‖1 yields a slightly weak bound if there exist some very

large entries |xki| in xi ∈ Rd. E.g., substituting pki = |xki|
‖xi‖1 into the term maxk∈[d]

x4
ki

p2ki
of Eq. (70) results in

maxk∈[d] x
2
ki‖xi‖21 in the final error bound, which is always greater than or equal to maxk∈[d] ‖xi‖42 = ‖xi‖42 derived

by employing pki =
x2
ki

‖xi‖22
to bound maxk∈[d]

x4
ki

p2ki
. Specifically, assume ‖xi‖42 = 1 without loss of generality, then

it is possible that maxxi⊂Rd,‖xi‖42=1 maxk∈[d] x
2
ki‖xi‖21 = d+2

√
d+1

4 � 1 if when xji =
√√

d+1
2
√
d

and xki,k 6=j =√
1

2d+2
√
d

for all k ∈ [d] with k 6= j. Also, minxi⊂Rd,‖xi‖42=1 maxk∈[d] x
2
ki‖xi‖21 = 1 if we have xki =

√
1
d for all

k ∈ [d] or we have xji = 1 and xki,k 6=j = 0 for all k ∈ [d] with k 6= j. Note xi ⊂ Rd in the above optimizations
means that xi is a vector variable in the d-dimensional space, and j is an arbitrary integer in the set [d].

3. Therefore, α balances the performance by `1-norm based sampling and `2-norm based sampling. `2 sampling penal-
izes small entries more than `1 sampling, hence `2 sampling is more likely to select larger entries to decrease error
(e.g., case 2). However, different from `1 sampling, `2 sampling is unstable and sensitive to small entries, and it can
make estimation error incredibly high if extremely small entries are picked (e.g., case 1). Then 0 < α < 1 is applied
to achieve the desired tight bound with pki ≥ (1 − α)

x2
ki

‖xi‖22
to tackle the extreme situation in the case 2 that cannot

be well handled purely by pki ≥ α |xki|‖xi‖1 . When α turns from 1 to 0, the estimation error is likely to first decrease and
then increase.

5.2. Experiments

Accordingly, we create four different synthetic datasets: {Ai}4i=1 ∈ R1000×10000 (i.e., d = 1000 and n = 10000). All
entries in A1 and A2 are i.i.d. generated from the Gaussian distributions N (

√
1

2d+2
√
d
, 1

1000 ) and N (
√

1
2d+2

√
d
, 1

100 ),

respectively. For A3, the entries of its one row are i.i.d. generated from N (
√√

d+1
2
√
d
, 1

100 ), and the other entries follow

N (
√

1
2d+2

√
d
, 1

100 ). For A4, its generation follows the way of X1 in the main text of the paper.

m/d
0.05 0.1 0.15 0.2

E
rr

or

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
DggGaussian1X8, d=1024 n=10000

Alpha-1
Alpha-0.9
Alpha-0.8
Alpha-0.7
Alpha-0.6
Alpha-0.5
Alpha-0.4
Alpha-0.3
Alpha-0.2
Alpha-0.1
Alpha-0 m/d

0.05 0.1 0.15 0.2

R
e

s
c
a

le
d

 E
rr

o
r

0.6

0.8

1

1.2

1.4

1.6
A1, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e

s
c
a

le
d

 E
rr

o
r

0.6

0.8

1

1.2

1.4

1.6
A2, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e

s
c
a

le
d

 E
rr

o
r

0.6

0.8

1

1.2

1.4

1.6
A3, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e

s
c
a

le
d

 E
rr

o
r

0

2

4
A4, d=1000 n=10000

Figure 1. Accuracy comparison by decreasing α from 1 to 0 with a step size of 0.1. The error at each α is normalized by that at α = 1
on y-axis, and m/d varies from 0.005 to 0.2 with a step size of 0.005 on x-axis. Roughly, α = 0.9 is a good choice, and the smaller
parameter like α = 0 usually leads to a poorer accuracy and higher variance compared with the other α values.

In Figure 1, the y-axis reports the errors that are normalized by the error incurred at α = 1. For A1, the magnitudes of
the data entries tend to be highly uniformly distributed. Thus, nearly the same results are returned over all α. For A2,
its entries are slightly uniformly distributed with some entries having extremely small magnitudes. Hence, α = 0 has a
poorer performance compared with the others, which is consistent with the case 1 in Section 5.1. A3 contains some entries
larger than the others, and neither α = 0 nor α = 1 achieves the best performance obtained roughly at α = 0.9. Also,
the estimation error first decreases and then increases when α turns from 1 to 0. All such simulation results conform to
the case 2 and case 3 in Section 5.1. Considering A4 that is not likely to contain the extreme situation as mentioned in the
case 2 of Section 5.1, we see that best performance is roughly achieved when α gets close to 1.
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