Online Partial Least Square Optimization

A. Proof Detailed Proofs in Section 3
A.1. Proof of Proposition 3.4
Proof. Before we proceed, we first introduce the following lemma.

Lemma A.1. For |z| < 3, we have
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Proof of Lemma A.1. By the Taylor Expansion with Lagrange remainder, we have
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We then proceed with the main proof. Since the optimization problem is symmetric about v and v, we only prove the claim
for u. Specifically, we first compute u41 — ug. By (2.2) and (2.3), we have
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Since nBd < i, by Cauchy-Schwarz inequality, we have
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which satisfies the condition of Lemma A.1. We denote
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Then by Lemma A.1, we have |T1| < 3 (|2nuy " X3 Y, vp + UQUJYkXJXkYkTkaQ + $1?B2d?. Therefore, we have
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A.2. Proof of Theorem 3.5

Proof. We first bound the infinitesimal conditional variance. Since the optimization problem is symmetric about u and v,
we only prove the claim for u.
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T
= n_lE [(7] (XkYkTuk — u;XkYkTvkuk) + fk(uk,vk)) ( (XkYkTuk — u,l—XkYkTvkuk) + fk(uk, vk))}
=nE (v Vi Xy XiYy wpe — 2ul Y X, weug XYy vp 4w we(ul XYy ve)?) + O(n?).

Furthermore, by Cauchy-Schwarz inequality, we have
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By Section 4 of Chapter 7 in (Ethier and Kurtz, 2009), we know that, as n — 0%, U, (¢) and V,,(t) weakly converge to the
solution of (3.1) and (3.2) with the same initial. By definition of U, (t) and V;,(t), we complete the proof. O

A.3. Proof of Theorem 3.6

Proof. Since P is an orthonormal matrix,

, ..., d. Thus, we have

d i - N2 77 (i
%H( ) = \H® _Z/\j(H(J)) H®
J=1
2d 2d
=\ Z(H(j))2H(i) _ Z)\j(H(J) 2
Jj=1 Jj=1
2d
= HOY (- ) (O
j=1

We then verify (3.8) satisfies (3.7). By (Evans, 1988), we know that since H;(¢) is continuously differentiable in ¢, the
solution to the ODE is unique. For notational simplicity, we denote

SW(t) = HY)(0) exp(\jt).
Then we have
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Now we only need to verify
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which completes the proof. O
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B. Proof Detailed Proofs in Section 4

B.1. Proof of Theorem 4.1
Proof. We calculate the infinitesimal conditional expectation and variance for Z,gi)7 i .

LB2P W),y = [25)(n) — 259(0)|H,(0) = 4]

dt
=B [n7V2 (H () = B (0)) | Hy (0) = 4]
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=1

where the last equality comes from the assumption that the algorithm starts near j** column of P, j # 1,i.e., h =~ e;. To
compute variance, we first compute A,

A=PTQP=
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where () is defined in (3.3). Then we analyze eiT/A\ej by cases:

(@)
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- % _Y(j)?(i—d)_’_y(i—d)?(j) ifj < d<i,
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2

_Y(i*d)?(j*d) _Y(j*d)?(i*d)) if min(i, ;) > d,

which further implies
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1

= (viw; + vjw; + 2sign(i —d — 1/2) - sign(j — 1/2 — d) - ai;). (B.2)

By (B.1) and (B.2), we get the limit stochastic differential equation,

dZD(t) = —(\j — M) ZD (t)dt + Bi;dB(t).

B.2. Proof of Proposition 4.2

Proof. Our analysis is based on approximating 27(71,1 by its continuous approximation Z7(71) (t), which is normal distributed
at time ¢. By simple manipulation, we have

P((h7h)? <1-08%) =P (20,02 <77 (1= 6%) 2 Bl | = 0 20).

We then prove P (‘zf}lj)vl‘ > n_%(S) > 1—v. Attime t, 27(7111 approximates to a normal distribution with mean 0 and

variance 2(/\6722/\2) [exp (2(A1 — A2)nNy) — 1]. Therefore, let ®(z) be the CDF of N (0, 1), we have
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which requires

v 2

Solving the above inequality, we get

-1 —152 _
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200 =% o (17,

B.3. Proof of Proposition 4.3

Proof. After Phase I, we restart our counter, i.e., hglo = 4. By (3.8) and hn N, approximating to the process H W (nNy),
we obtain
—1

(h7(71,3v2(t))2 (H(l) NNy ) i ((H(J) ) exp (2)\j77N2)> (H(l)(O))QeXp (2A1mN2)

> ((52 exp(2A1nN2) + (1 =6 )exp(QAgnNg))fl 62 exp(2A1nNy),

which requires
(6% exp(2A1nN2) + (1 — 6°) exp(2)\277N2))71 62 exp(2A1nNy) > 71 (1 — 6%).

Solving the above inequality, we get

Ny = log

B.4. Proof of Theorem 4.4

Proof. Fori =2, ...,2d, we compute the infinitesimal conditional expectation and variance,

d 7 — 7 7
%]EZT(, )(t)|t:t0 =n'E [Zy(, )(to +1n) — Zv(] )(t0)|H”(t0) = h}
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) [n2(7\h — hTAhh)(Ah — hTKhh)TL +0(m)
i (viwr +y1w; — 2sign(i — d — 1/2)ai1) + o(1).
Following similar lines to the proof of Theorem 4.1, by Section 4 of Chapter 7 in (Ethier and Kurtz, 2009), we have for

each k =2, ...,2d,if Z()(0) = 7771/2}15;;)0 as 7 — 07, then the stochastic process 1 1/2h§7 itn‘lj

solution of the stochastic differential equation (4.3). O

= E(ez—xeleIKTei) +o(1) =
weakly converges to the

B.5. Proof of Proposition 4.5

Proof. Since we restart our counter, we have Zfiz (37%)2 n~162. Since z( Y % approximates to Z () (nk) and its second
moment:
2

E (Z(z‘) (t))2 - 2(}\1512_1&) + <<Z(i) (O)>2 _ M) exp [—2(A1 — A\)t], fori#1,
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we use the Markov inequality:
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B.6. Proof of Corollary 4.6

N2
Proof. First, we prove that ||u, , — 1|3 + ||v,x — 0||3 can be bounded by 3 2?12 (hf;)k) , when it is near the optima.

Recall that h,, 1, = %PT(u;k v;k) ande; = h = L P(AT © 7). Our analysis has shown that when k is large enough,
the SGD iterates near the optima. Then we have

e = T3+ 0g6 = D3 = 4 = 2{ug 1, @) — 2{vg k) = 4 — dhy

2d - 1632 h(i) ?
:4—4\/1—§ () = 2o ( ) <3§ ) (B.3)
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where the last inequality holds since k is large enough such that Z?iz (hs)k) is sufficiently small. By Proposi-
tions 4.2, 4.3, and 4.5, the total iteration number is

N = Ny + Ny + Ns. (B.4)

To explicitily bound /V in (B.4) in terms of sample size n, we consider
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Given a small enough €, we choose 7 as follow:

e(A1 — A
0= (A1 — A2)

SR S Y B.8
dmaxi<i<d B3 ®8

Combining the above sample complexities (B.5), (B.6), (B.7), and (B.8), we get

d d

By Proposition 4.5 with (B.3), given v < 1/9, after at most NV iterations, we have
g, = @3 + [y = D13 < 3llhyn = Al3 < 3e,

with probability at least 2. O



