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A. Proof Detailed Proofs in Section 3
A.1. Proof of Proposition 3.4

Proof. Before we proceed, we first introduce the following lemma.
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We then proceed with the main proof. Since the optimization problem is symmetric about u and v, we only prove the claim
for u. Specifically, we first compute u
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A.2. Proof of Theorem 3.5

Proof. We first bound the infinitesimal conditional variance. Since the optimization problem is symmetric about u and v,
we only prove the claim for u.
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Furthermore, by Cauchy-Schwarz inequality, we have
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B. Proof Detailed Proofs in Section 4
B.1. Proof of Theorem 4.1

Proof. We calculate the infinitesimal conditional expectation and variance for Z(i)
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By (B.1) and (B.2), we get the limit stochastic differential equation,
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B.3. Proof of Proposition 4.3

Proof. After Phase I, we restart our counter, i.e., h(1)
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B.4. Proof of Theorem 4.4

Proof. For i = 2, ..., 2d, we compute the infinitesimal conditional expectation and variance,
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Following similar lines to the proof of Theorem 4.1, by Section 4 of Chapter 7 in (Ethier and Kurtz, 2009), we have for
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we use the Markov inequality:
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Given a small enough ✏, we choose ⌘ as follow:
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Combining the above sample complexities (B.5), (B.6), (B.7), and (B.8), we get
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By Proposition 4.5 with (B.3), given ⌫ < 1/9, after at most N iterations, we have
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with probability at least 2

3

.


