
MEC: Memory-efficient Convolution for Deep Neural Network

Minsik Cho 1 Daniel Brand 1

Abstract

Convolution is a critical component in modern

deep neural networks, thus several algorithms for

convolution have been developed. Direct con-

volution is simple but suffers from poor per-

formance. As an alternative, multiple indirect

methods have been proposed including im2col-

based convolution, FFT-based convolution, or

Winograd-based algorithm. However, all these

indirect methods have high memory-overhead,

which creates performance degradation and of-

fers a poor trade-off between performance and

memory consumption. In this work, we pro-

pose a memory-efficient convolution or MEC

with compact lowering, which reduces memory-

overhead substantially and accelerates convolu-

tion process. MEC lowers the input matrix in

a simple yet efficient/compact way (i.e., much

less memory-overhead), and then executes mul-

tiple small matrix multiplications in parallel to

get convolution completed. Additionally, the re-

duced memory footprint improves memory sub-

system efficiency, improving performance. Our

experimental results show that MEC reduces

memory consumption significantly with good

speedup on both mobile and server platforms,

compared with other indirect convolution algo-

rithms.

1. Introduction

Deep neural network (DNN) consists of many lay-

ers to perform a task such as image classifica-

tion/recognition, speech recognition, natural language

translation, and so on. Among these layers, the convo-

lution layer is one of the most important, but the slow-

est and most memory-intensive ones in advanced/modern

convolutional DNN (Abuzaid et al., 2015; Chen et al.,

2016; Cong & Xiao, 2014; Denton et al., 2014; Park et al.,

1IBM T. J. Watson Research Center, NY, USA. Correspon-
dence to: Minsik Cho <minsikcho@us.ibm.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

2016a; Vasilache et al., 2014). To address the performance

issues in convolutional layers, efficient/approximation al-

gorithms have been proposed (Chellapilla et al., 2006;

Denton et al., 2014; Jaderberg et al., 2014; Jia, 2014;

Vasilache et al., 2014), tailed implementations for lim-

ited cases have been actively investigated (Lavin, 2015),

and industrial-strength libraries are offered (Chetlur et al.,

2014).

However, the previous approaches have not directly

addressed the memory consumption problem. This

is becoming a critical issue as DNNs are getting

in end-point devices with limited memory (e.g., mo-

bile/IOT devices) (Chen et al., 2015; Collins & Kohli,

2014; Gong et al., 2014; Kim et al., 2015; Lebedev et al.,

2014; Wang & Cheng, 2016) so as to minimize response

delay (e.g., better user experience) and network over-

head (Han et al., 2015; Lane et al., 2016; 2015). On the

other hand, the reduced memory consumption leads to

smaller SRAM usage, which can save energy consump-

tion (e.g., leakage current) on mobile devices (Park et al.,

2015). Moreover, memory footprint itself has critical im-

pact on convolution computation efficiency (Li et al., 2016;

Park et al., 2016b). Therefore, minimizing memory foot-

print in convolution is critical for future deep-learning ap-

plications on wide variety of devices and platforms.

In this paper, we propose a new memory-efficient convolu-

tion algorithm, MEC which can reduce memory-overhead

and further improve the performance of computing convo-

lution in DNN. MEC uses a simple yet novel way of low-

ering the input matrix in a highly compact way, while still

exploiting fast matrix-matrix multiplication available in a

highly-optimized package such as BLAS (Jia, 2014). The

reduced memory footprint improves memory sub-system

efficiency (i.e., improves cache locality), so that MEC ac-

celerates the convolution computation itself without com-

promising accuracy. Through extensive experiments on

both mobile and server platforms with CPU/GPU, we show

that MEC can be a very generic/efficient algorithm suitable

to various platforms with memory constraints. Further, the

key ideas in MEC should be beneficial/complementary to

any variant of conventional im2col-based convolution by

reducing either memory consumption or memory-bus traf-

fic (i.e., less traffic from global memory to shared memory

on GPU) (Chellapilla et al., 2006; Chetlur et al., 2014; Jia,

MEC: Memory-efficient Convolution for Deep Neural Network

Table 1. Notations.

a : b SEQUENCE {a, a+ 1, ... b− 1}
A[a, b] MATRIX ELEMENT

A[a : b, c : d] SUB-MATRIX A[i, j], i ∈ a : b, j ∈ c : d

I INPUT TENSOR in × ih × iw × ic
K KERNEL TENSOR kh × kw × ic × kc
O OUTPUT TENSOR in × oh × ow × kc
L LOWERED TENSOR in × ow × ih × kw × ic
sh, sw KERNEL STRIDE

2014).

The rest of the paper is organized as follows. We review

related works and present preliminaries in Section 2. Sec-

tion 3 presents our proposed algorithm, MEC. Experimen-

tal results are in Section 4. Section 5 concludes this paper.

2. Preliminaries

2.1. Notations

Notation used in this paper is listed in Table 1. For integers

we use small letters, for tensors and matrices we use capital

letters. We adopt the C-language convention as represent-

ing tensors and matrices in row-major order. For example,

a p×q×r tensor is an array of pqr elements. The array can

be interpreted as consisting of p sections, each divided into

q subsections, each having r elements. The same array can

also be interpreted as p × qr matrix, or as pq × r matrix,

etc. We specifically interpret a tensor as a matrix when it

requires matrix operations, otherwise (i.e., for data move-

ment) we keep the tensor form. If we work with a math li-

brary, such as cuBLAS (cuBLAS), which requires column-

major order, then we still use the same row-major represen-

tation, but interpret all matrices as being transposed.

We use the notation a : b to denote a sub-matrix. Thus, an

m×n matrix could be written as A[0 : m, 0 : n]. The most

common form of a sub-matrix will be of the form A[i :
i+p, j : j+q]. It is a p×q sub-matrix with top left corner at

the element A[i, j], which can be easily represented in the

BLAS interface without moving any elements by having

leading dimension ld = n.

The subject of this paper is 2-dimensional convolution O =
I ⋆ K with strides sh, sw. For simplicity of explanation

any padding with zeroes is assumed to have been already

applied to the input I . The output matrix O will have the

dimensions

oh,w =
ih,w − kh,w

sh,w
+ 1 (1)

2.2. Previous Work

Due to the importance of DNN, several techniques

for efficient convolution computation have been pro-

posed (Chetlur et al., 2014; Perkins, 2016). The

most relevant to our work is im2col-based convo-

lution, FFT (Fast Fourier Transform)-based convolu-

tion (Highlander & Rodriguez, 2016; Mathieu et al., 2013;

Vasilache et al., 2014), and Winograd-based convolu-

tion (Lavin, 2015). MEC provides the same functionality

with reduced memory requirements.

• im2col-based convolution transforms/lowers the in-

put matrix into a Toeplitz matrix with redundancy

(a.k.a, lowered matrix) such that convolution can be

performed as fast matrix-matrix multiplication, which

can take advantage of highly optimized linear algebra

packages including BLAS (Chellapilla et al., 2006;

Chetlur et al., 2014; Jia, 2014).

• FFT-based convolution relies on the fact that convolu-

tion can be done as simple multiplication in the fre-

quency domain. However, FFT-based convolution in-

curs memory-overhead because all the kernels must

be padded to be at the same size as the input ma-

trix. Thus, memory-overhead becomes really high

when kernels are relatively smaller (e.g., 3x3) than

input matrices (Chetlur et al., 2014; He et al., 2015;

Perkins, 2016; Simonyan & Zisserman, 2014).

• Winograd-based convolution is based on the

Coppersmith-Winograd algorithm (Winograd, 1980)

which shows how to reduce multiplication counts at

a cost of more addition counts and a large number of

intermediate products. It is shown in (Lavin, 2015;

Park et al., 2016a) that Winograd-based convolution

can be efficient for small kernels on GPU.

In contrast to the above schemes, which do not de-

grade accuracy, various approximation strategies have

been proposed including low-rank/monochromatic

approximation (Denton et al., 2014; Jaderberg et al.,

2014), vector quantization (Gong et al., 2014), fine-

tuning (Lebedev et al., 2014), and DCT (Discrete Cosine

Transform)/hashing (Lebedev et al., 2014).

3. Algorithm

In this section, we propose our algorithm for convolution,

MEC, with detailed examples. The main goal of MEC is

to reduce memory-overhead during convolution, which can

be beneficial for any convolutional DNN in three aspects:

• MEC can enable training or inferencing with a larger

model for a given memory capacity.

MEC: Memory-efficient Convolution for Deep Neural Network

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

2 2 1 1 2

2 0 1 1 0

2 0 1 2 0

1 1 1 1 1

0 0 1 0 2

0 01

1

1

1 1

0 -1

3 56

6

5

2 4

3 4

4

4

4

4

2

1

4 3 3 42

2 2 4 30

(a) direct convolution

0

0

1

1

1

1

1

0

-1

0 0 0 0 2 2 0 2 0

0 0 0 2 2 1 2 0 1

0 0 0 2 1 1 0 1 1

1 1 0 1 2 0 1 1 1

1 1 0 0 2 0 0 0 0

.

.

.

.

.

25 x 9 9 x 1

3 56

6

5

2 4

3 4

4

4

4

4

2

1

4 3 3 42

2 2 4 30

(b) im2col-based convolution with lowered matrix

Figure 1. Conventional convolution examples with iw = ih = 7, kh = kw = 3, sh = sw = 1, ow = oh = 5 (in = ic = kc = 1).

• MEC can allow larger mini-batch sizes to speedup

turn-around/per-epoch-latency during training.

• MEC can accelerate computation by improving mem-

ory sub-system efficiency (e.g. more cache hits).

In contrast to the widely-adopted im2col-based convo-

lution (Chellapilla et al., 2006; Chetlur et al., 2014; Jia,

2014), MEC performs compact/BLAS-friendly lowering

such that memory-overhead can be minimized without

degrading performance/accuracy. Section 3.1 motivates

MEC, and Section 3.2 highlights the key idea in MEC.

Section 3.3 formally presents MEC with implementation

details.

3.1. Motivation

In this section, we review im2col-based convolution and its

pros and cons with Fig. 1 which sketches direct convolu-

tion in (a) and im2col-based convolution using BLAS in

(b). In direct convolution, one element of the output matrix

O is produced by a dot-product between the kernel K and

a sub-matrix of the input I . The sub-matrices are obtained

by sliding K over I in both dimensions. Each subsequent

sub-matrix is obtained by sliding the distance sh or sw, re-

spectively. For example, Fig. 1 (a) shows two sub-matrices

in gray and dotted boxes w.r.t. the 3 × 3 kernel are pro-

cessed to generate the corresponding output values in gray

and dotted boxes (i.e., 3 and 4), respectively.

Direct convolution is simple and straightforward without

memory-overhead. However, it is known that the same con-

volution can be done more efficiently with a lowered ma-

trix (a.k.a. im2col) and gemm in BLAS (Chellapilla et al.,

2006; Chetlur et al., 2014; Jia, 2014) by off-loading the

geometry-specific specializations in convolution to a plain

matrix, which is depicted in Fig. 1 (b). Specifically, each

sub-matrix instance w.r.t. K is linearized into a row of the

lowered matrix L as in (b). For example, the gray and

dotted sub-matrices in (a) are transformed into the gray

and dotted rows in (b), respectively. Then the output ma-

trix O = L × K, can be computed efficiently by op-

timized libraries (cuBLAS; Kågström et al., 1998; MKL;

OpenBLAS). im2col-based convolution is generic enough

to be used in any DNN on both mobile/IoT and high-end

platforms (Chetlur et al., 2014; Lane et al., 2015).

The major drawback of im2col-based convolution is that

it comes with memory-overhead of temporarily storing the

lowered matrix L with dimension

inohow × khkwkc (2)

which shows that the memory requirement grows quadrat-

ically with problem size. The example in Fig. 1 (b) shows

that the lowered matrix has size 25×9, which is even lager

than the original input matrix. MEC mainly aims to per-

form the same convolution yet with less memory-overhead,

while improving computational efficiency.

3.2. MEC Overview

In this section, we highlight the key idea in our memory-

efficient convolution algorithm, MEC based on a com-

pact lowering scheme. The main reason why the im2col-

based algorithm has large memory-overhead is because

there is a significant amount of redundancy in the low-

ered matrix when sh or sw is small and K is large. And,

the overhead becomes even worse when K is relatively

smaller than I which occurs frequently in the state-of-

the-art DNN architectures (He et al., 2015; Perkins, 2016;

Simonyan & Zisserman, 2014; Szegedy et al., 2014). In or-

der to reduce memory-overhead, therefore, it is critical to

reduce the amount of redundancy in the lowered matrix

and keep the computation pattern BLAS-compatible (oth-

erwise, the poor computation itself may slow down the en-

tire convolution).

MEC overcomes such challenges by lowering multiple

columns at once rather than each single individual sub-

matrix w.r.t. K. Consider the example in Fig. 2 for key

ideas and details. MEC copies sub-matrices W (shaded in

Fig. 2) of size ih × kw (which is 7× 3) into one row of L.

MEC: Memory-efficient Convolution for Deep Neural Network

3 56

6

5

2 4

3

4

4

4

4

2

1

4 3 3 42

2 2 4 30

0 0 0 0 2 2 0 2 0 0 2 0 0 1 1 0 0 0 0 0 0

0 0 0 2 2 1 2 0 1 2 0 1 1 1 1 0 0 1 0 0 0

0 0 0 2 1 1 0 1 1 0 1 2 1 1 1 0 1 0 0 0 0

0 0 0 1 1 2 1 1 0 1 2 0 1 1 1 1 0 2 0 0 0

0 0 0 1 2 0 1 0 0 2 0 0 1 1 0 0 2 0 0 0 0

0

0

1

1

1

1

1

0

-1

4

P
Q

R
S

T

5 × 9

P

Q

R

S

T

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

2 2 1 1 2

2 0 1 1 0

2 0 1 2 0

1 1 1 1 1

0 0 1 0 2
5 × 21

A

B

C

D

E

A

B

C

D

E

W

I L K

O

Figure 2. MEC example for the same problem in Fig. 1

For example, A is the first partition of I , A = I[0 : 7, 0 : 3].
Then, we slide W by sw (which is 1) to the right and cre-

ate another partition B = I[0 : 7, 1 : 4]. As we continue

this process in Fig. 2, there will be 5 horizontal partitions,

{A,B,C,D,E} in L eventually. The resulting lowered

matrix, L has dimensions 5 × 21, which is 54% smaller

than one in Fig. 1 with dimensions 25× 9.

Once the lowered matrix L is formed, MEC multiplies L
by K in a way significantly different from im2col-based

algorithms. MEC creates another set of vertical partitions,

{P,Q,R, S, T} within L, where each partition is of size

of ow × khkw (which is 5 × 9). Each subsequent parti-

tion is obtained by shifting to the right by shkw (which

is 3) elements. For example, P = L[0 : 5, 0 : 9] and

Q = L[0 : 5, 3 : 12]. Then each row of the output

matrix O is the product between one of the partitions in

{P,Q,R, S, T} and K. Rows in O in Fig. 2 are annotated

with the corresponding source partitions.

These multiplications rely on the BLAS gemm interface in

three ways. First, the kh × kw matrix K is interpreted as

a khkw × 1 matrix. Second, the partitions {P,Q,R, S, T}
are specified by providing a pointer to the initial element

and ld = ihkw, which is the entire length of one row of L.

Thirdly, each row of O is formed by 5 separate gemm calls

between {P,Q,R, S, T} and K. Although the number of

gemm calls increases, the total number of mult/add opera-

tions remains identical to that of the im2col-based convo-

lution, keeping computationally complexity same.

Intuitively, MEC eliminates the vertical redundancy in the

conventional im2col-based convolution. Then it recovers

the information by merely shifting the vertical partitions

(i.e., P,Q,R, S, T) by a constant interval. These sub-

matrix manipulations are made efficient by keeping the pat-

tern BLAS compatible. The lowering in MEC is highly

efficient as we move fewer elements from I to smaller L,

Algorithm 1 O = V anillaMEC(I,K, s)

1: Allocate O with ohow elements

2: Allocate L with owihkw elements

3: Interpret L as ow × ih × kw tensor

4: for w ∈ 0 : ow, h ∈ 0 : ih in parallel do

5: L[w, h, 0 : kw] = I[h, sww : sww + kw]
6: end for

7: Interpret L as ow × ihkw matrix

8: Interpret K as khkw × 1 matrix

9: Interpret O as oh × ow matrix

10: for h ∈ 0 : oh in parallel do

11: O[h, 0 : ow] =
L[0 : ow, shkwh : shkwh+ khkw]×K

12: end for

13: Return O

compared with im2col-based convolution, saving memory-

bus traffic as well.

The process is stated in Algorithm 1 where in = ic = kc =
1. It first allocates the output O and temporary L. The

first loop in line 4 forms the matrix L, which copies kw
consecutive elements from I to L, and all these copies can

be done in parallel. The second loop in line 10 forms the

output O. Each execution of the body is done by one gemm

call, and those matrix multiplications can be parallelized.

3.3. MEC Algorithm

In this section, we present the complete MEC by extend-

ing Algorithm 1 to Algorithm 2 in order to handle channels

(ic and kc) and mini-batches (in), and discuss the imple-

mentation details in the context of deep-learning (mainly

about image format issue). Due to the compact lowering

in MEC, it is computationally advantageous to use I in

in × ih × iw × ic (or n-h-w-c) as in Table 2, because

it ensures vertical redundant pixels to be eliminated and re-

MEC: Memory-efficient Convolution for Deep Neural Network

0 0 0 0 2 2 0 2 0 0 2 0 0 1 1 0 0 0 0 0 0

0 0 0 2 2 1 2 0 1 2 0 1 1 1 1 0 0 1 0 0 0

0 0 0 2 1 1 0 1 1 0 1 2 1 1 1 0 1 0 0 0 0

0 0 0 1 1 2 1 1 0 1 2 0 1 1 1 1 0 2 0 0 0

0 0 0 1 2 0 1 0 0 2 0 0 1 1 0 0 2 0 0 0 0

0

0

1

1

1

1

1

0

-1

0 0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0 0 0 0 0 0

2 2 1 1 2
2 0 1 1 0
2 0 1 2 0
1 1 1 1 1
0 0 1 0 2

0 0 0 0 2 2 0 2 0 0 2 0 0 1 1 0 0 0 0 0 0

0 0 0 2 2 1 2 0 1 2 0 1 1 1 1 0 0 1 0 0 0

0 0 0 2 1 1 0 1 1 0 1 2 1 1 1 0 1 0 0 0 0

0 0 0 1 1 2 1 1 0 1 2 0 1 1 1 1 0 2 0 0 0

0 0 0 1 2 0 1 0 0 2 0 0 1 1 0 0 2 0 0 0 0

0 0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0 0 0 0 0 0

2 2 1 1 2
2 0 1 1 0
2 0 1 2 0
1 1 1 1 1
0 0 1 0 2

0 0 0 0 2 2 0 2 0 0 2 0 0 1 1 0 0 0 0 0 0

0 0 0 2 2 1 2 0 1 2 0 1 1 1 1 0 0 1 0 0 0

0 0 0 2 1 1 0 1 1 0 1 2 1 1 1 0 1 0 0 0 0

0 0 0 1 1 2 1 1 0 1 2 0 1 1 1 1 0 2 0 0 0

0 0 0 1 2 0 1 0 0 2 0 0 1 1 0 0 2 0 0 0 0

0 0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0 0 0 0 0 0

2 2 1 1 2
2 0 1 1 0
2 0 1 2 0
1 1 1 1 1
0 0 1 0 2 n-h-w-c

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

h-n-w-c

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

n-h-w-c

5 gemm

15 gemm
3 56

6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

3 56
6
5

2 4
3

4
4
4

4
2
1

4 3 3 42
2 2 4 30

4

n-h-w-c

Solution A

Solution B

Figure 3. MEC with mini-batch example

covered in a contiguous memory space.

Algorithm 2 O = MEC(I,K, s)

1: Allocate O with inohowkc elements

2: Allocate L with inowihkwic elements

3: Interpret L as in × ow × ih × kw × ic tensor

4: for n ∈ 0 : in, w ∈ 0 : ow, h ∈ 0 : ih in parallel do

5: L[n, w, h, 0 : kw, 0 : ic] =
I[n, h, sww : sww+kw, 0 : ic]

6: end for

7: Interpret K as khkwic × kc matrix

8: if ow ≤ T and |O| ≤ |L| then

9: Interpret L as inow × ihkwic matrix

10: Interpret O as oh × inowkc matrix

11: for h ∈ 0 : oh in parallel do

12: O[h, 0 : inowkc] =
L[0 : inow, shkwich : shkwich+khkwic]×K

13: end for

14: Copy L = O
15: Interpret L as oh × in × owkc tensor

16: Interpret O as in × oh × owkc tensor

17: for n ∈ 0 : in, h ∈ 0 : oh in parallel do

18: O[n, h, 0 : owkc] = L[h, n, 0 : owkc]
19: end for

20: else

21: Interpret L as in matrices of ow × ihkwic
22: Interpret O as in matrices of oh × owkc
23: for n ∈ 0 : in, h ∈ 0 : oh in parallel do

24: O[n][h, 0 : owkc] =
L[n][0 : ow, shkwich : shkwich+khkwic]×K

25: end for

26: end if

27: Return O as in × oh × owkc tensor

Based on I as in × ih × iw × ic, Algorithm 2 still has the

same key idea in presence of channels and mini-batches.

The lowering step lines 4-6 in Algorithm 1 is similar to

lines 4-6 in Algorithm 2. However, the parallel multipli-

cation loop in lines 10-12 in Algorithm 1 extends to lines

8-25 in Algorithm 2 mainly due to the image format issue.

A direct extension of Algorithm 1 would interpret O as

oh × inowkc matrix, and perform oh multiplications for

convolution of the whole mini-batch. This leads to the out-

put format h-n-w-c, which is different from the input for-

mat of I . This may be acceptable in DNNs, where each

convolution layer is followed by a pooling layer expecting

h-n-w-c format and generating the standard n-h-w-c

format. However, it would be troublesome in a network

where all layers expect and produce the n-h-w-c format.

Therefore, we provide two solutions depicted in Fig. 3 to

handle such format-related issues.

Solution A (Lines 9 to 19 of Algorithm 2) First we per-

form the direct extension of Algorithm 1 (lines 9 -

13) and end up with O in format h-n-w-c. Then,

we transform O into n-h-w-c format (lines 14-19)

where we repurpose L as an auxiliary space.

Solution B (lines 21 to 25 of Algorithm 2) We can han-

dle the in samples in the mini-batch separately as

in line 21, resulting in inoh parallel/batched gemm

calls with smaller inputs, as opposed to oh gemm calls

with larger inputs. This will directly generate O in

n-h-w-c.

In terms of complexity, both solutions perform the same

number of floating point multiplications. In practice, how-

ever, the size of sub-matrices can impact performance, par-

ticularly on implementation-sensitive platform like GPU.

Therefore, MEC tries to find a good trade-off between So-

lution A and B with a tunable parameter T in line 8. (In

addition, Solution A is available only if L can be used as

an auxiliary space, i.e. it is at least as large as O). T is a

platform-dependent parameter (e.g., on CPU vs. GPU, or

MEC: Memory-efficient Convolution for Deep Neural Network

on GPU-compute capability), and we found T around 100

to be a good threshold for latest GPUs.

3.4. Analysis

In this section, we analyze the memory saving in MEC over

im2col-based convolution. The size of the lowered matrix,

L in MEC is:

inowihkwkc (3)

In comparison with the lowered matrix of im2col (see

Eq. (2)), there is approximately a factor of kh. For a more

exact comparison, let us form their difference R.

R = inkc(ohowkhkw − owihkw)

= inkcowkw(ohkh − ih)

= inkcowkw(
ih − kh

sh
kh + kh − ih)

= inkcowkw(ih − kh)(
kh
sh

− 1) (4)

Since ih > kh, MEC always reduces memory footprint as

long as kh > sh (i.e., there is an overlap between kernel

instances). Note that in case kh ≤ sh, there is no redundant

information to eliminate.

4. Experimental Results

We implemented MEC for CPU/GPU in C++ with multi-

threaded OpenBLAS, OpenMP, and cuBLAS (cuBLAS)

using single 32-bit precision. We also implemented a fully

parallelized im2col-based convolution on CPU/GPU (Jia,

2014) with the same libraries. We compared MEC with

other open-source convolution packages in C++, in or-

der to make fair point-by-point comparison and accu-

rately capture the memory-overhead and performance.

We downloaded an open-source FFT-based convolu-

tion (cuFFT; Theano-FFT) for GPU. We took an open-

Table 2. Benchmarks.

INPUT KERNEL

NAME ih × iw × ic kh × kw × oc, sh(sw)

CV1 227×227×3 11×11×96, 4
CV2 231×231×3 11×11×96, 4
CV3 227×227×3 7×7×64, 2
CV4 224×224×64 7×7×64, 2
CV5 24×24×96 5×5×256, 1
CV6 12×12×256 3×3×512, 1
CV7 224×224×3 3×3×64, 1
CV8 112×112×64 3×3×128, 1
CV9 56×56×64 3×3×64, 1
CV10 28×28×128 3×3×128, 1
CV11 14×14×256 3×3×256, 1
CV12 7×7×512 3×3×512, 1

source Winograd-based convolution (Falcon, 2016) and op-

timized it to reduce memory-overhead for CPU, and fur-

ther modified/optimized it for GPU following (Lavin, 2015;

Park et al., 2016a). The brief descriptions of the convolu-

tion algorithms in this section are as follows:

Conv.cpu Conventional im2col-based convolution for

CPU with openBLAS/openMP

Conv.gpu Conventional im2col-based convolution for

GPU with cuBLAS

Wino.cpu Winograd-based F (2×2, 3×3) convolution for

CPU (applicable only when kh = kw = 3)

Wino.gpu Winograd-based F (2 × 2, 3 × 3) convolution

for GPU (applicable only when kh = kw = 3)

FFT.gpu FFT-based convolution for GPU with cuFFT

MEC.cpu MEC for CPU with OpenBLAS/OpenMP

MEC.gpu MEC for GPU with cuBLAS

Note that it is performance-critical to combine multiple

sgemm calls into a single cublasSgemmBatched call

in MEC.gpu. When modifying/optimizing Wino.gpu,

we tried to make the best trade-off between parallelism

and memory-overhead (i.e., global memory) by utilizing

register/shared-memory as much as possible, and ensured

experiments representative. Please see Appendix for de-

tails on Wino.gpu optimization.

For thorough comparison, we built a comprehensive

benchmark set consisting of 12 unique convolution lay-

ers, cv1-cv12 from various public DNNs (He et al.,

2015; Krizhevsky et al., 2012; Sermanet et al., 2013;

Simonyan & Zisserman, 2014; Szegedy et al., 2014) as in

Table 2. The runtime in our experiments is measured as

a wall-clock time by a standard C++ library, running each

algorithm 10 times and reporting the average. Our experi-

ments were performed on the two platforms:

Mobile Android phone with ARM7 (MSM8960) for user-

side inference and training (mini-bath size=1)

Server Linux server with Intel CPU (E5-2680) and Nvidia

GPU (P100) for inference and training (mini-bath

size=32)

We present our results in Fig. 4, and made the following

summaries:

• (a) plots the factor by which MEC.cpu improves

memory-overhead and performance over Conv.cpu

for cv1 on Server-CPU. While the kernel K is fixed at

MEC: Memory-efficient Convolution for Deep Neural Network

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11

Im
p
ro

ve
m

e
n
t

F
ac

to
r

sh (sw) with K= 11x11

memory

runtime

(a) Memory and runtime change for various sh = sw values

0

1

2

3

4

5

6

cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 cv11 cv12

N
o

rm
al

iz
e
d
 M

e
m

o
ry

 O
ve

rh
e
ad

Wino.cpu

Conv.cpu

MEC.cpu

18.5

(b) Memory-overhead on Mobile and Server-CPU

0

0.5

1

1.5

2

2.5

3

3.5

cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 cv11 cv12

N
o

rm
al

iz
e
d
 R

u
n
ti

m
e

Wino.cpu

Conv.cpu Lowering

Conv.cpu Sgemm

MEC.cpu Lowering

MEC.cpu Sgemm

(c) Runtime on Mobile

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 cv11 cv12

N
o

rm
al

iz
e
d
 R

u
n
ti

m
e

Wino.cpu

Conv.cpu Lowering

Conv.cpu Sgemm

MEC.cpu Lowering

MEC.cpu Sgemm

10.5 9.3 9.7 12.3 10.9 15.4 11.0 8.8 6.1

(d) Runtime on Server-CPU

0

0.5

1

1.5

2

2.5

3

3.5

4

cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 cv11 cv12

N
o

ra
m

li
ze

d
 M

e
m

o
ry

 O
ve

rh
e
ad

FFT.gpu

Wino.gpu

Conv.gpu

MEC.gpu

13.6 13.6 7.1 6.5 10.1 8.3 5.0 9.6

(e) Memory-overhead on Server-GPU

0

1

2

3

4

5

6

7

cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 cv11 cv12

N
o

rm
al

iz
e
d
 R

u
n
ti

m
e

FFT.gpu Wino.gpu

Conv.gpu Lowering Conv.gpu Sgemm

MEC.gpu Lowering MEC.gpu Sgemm

21.3

(f) Runtime on Server-GPU

Figure 4. Memory-overhead and Performance of various sorting convolution algorithms on Mobile and Server.

11×11, sh = sw varies from 1 to 10 on the x-axis. We

can clearly observe that both memory-overhead and

runtime improve with a larger k/s ratio as explained

in Eq. (4).

• (b) supports that MEC can substantially reduce the

memory-overhead. Compared with Conv.cpu, the im-

provement is as large as 3.4x with high k/s ratio, and

is on average 3.2x. For cv6-cv12, MEC.cpu improves

memory-overhead by 5.9x on average, compared with

Wino.cpu.

• (c) shows that MEC.cpu is overall 20% faster than

Conv.cpu on Mobile, yet can be over 90% faster

for some layers like cv6. MEC.cpu is faster than

Wino.cpu on 5 benchmarks out of 7.

• (d) shows that on Server-CPU, MEC.cpu over-

all shows about 8.8x better runtime than Conv.cpu.

Compared with Wino.cpu, performance is highly de-

pendent on the benchmarks: it is similar or faster for

cv7,cv8, and cv9.
• (e) presents memory-overheads from various algo-

rithms on Server-GPU. MEC.gpu shows the least

MEC: Memory-efficient Convolution for Deep Neural Network

Table 3. ResNet-101 (He et al., 2015) on Mobile.

CONV.CPU MEC.CPU

NAME WEIGHT

MEM

(MB)

RUNTIME

(MSEC)

MEM

(MB)

RUNTIME

(MSEC)

CV4 1 142.1 1228.9 41.7 1061.3
CV9 3 19.2 26.8 6.7 16.0
CV10 4 11.9 126.7 4.3 81.0
CV11 23 29.1 302.7 11.3 222.9
CV12 3 1.3 16.5 0.6 10.4

SUM 203.6 1701.6 64.6 1391.6

RATIO 3.2 1.2 1.0 1.0

memory-overhead on all benchmarks. FFT.gpu

requires substantially large memory-overhead.

Wino.gpu is tested for only cv6-cv12 due to its kernel

configuration limitation.

• (f) compares performance of various algorithms on

Server-GPU. MEC.gpu can lower the matrix about

85% faster than Conv.gpu due to much fewer bytes to

write (which is especially critical on GPU). Wino.gpu

still has larger memory-overhead than MEC.gpu due

to the fully parallelized computation of transformed

matrices (i.e., GgGT for each kernel and BT dB for

each channel (Lavin, 2015; Park et al., 2016a)), even

though M matrix is kept at registers/shared-memory.

As observed, MEC shows greater performance boost on

Server-CPU than on Mobile or Server-GPU, because

Server-CPU is very sensitive to memory-footprint due to

the complex cache-architecture. For the example of cv10,

we observed through Valgrind cache simulation (Valgrind)

that the last-level cache miss in MEC.cpu is 0.3%, sub-

stantially smaller than 4% in Conv.cpu, on a default cache

system. Mobile has tiny/simple caches, and GPU does not

have a sophisticated memory sub-system (deep/big cache

hierarchy) to benefit from large memory footprint reduc-

tion. Also, cuBLAS is highly optimized to efficiently use

fast shared-memory. Overall, MEC is all-around player on

both Mobile or Server-CPU/GPU that has no limitation

on kernel configuration, incurs the least memory-overhead,

yet offers high-performance.

In practice, some convolution layers appear more fre-

quently than others. Therefore, we applied MEC.cpu and

Conv.cpu to ResNet-101 in (He et al., 2015) and esti-

mated the weighted impact on memory-overhead and run-

time on Mobile as in Table 3, which shows that MEC.cpu

can reduce the memory-overhead by 3x and improve run-

time by 20% for a large scale convolutional DNN.

5. Conclusion

In this paper, we presented MEC, a memory-efficient con-

volution algorithm for deep learning. We proposed a novel

matrix lowering scheme to improve memory efficiency for

MEC which also improves the computational efficiency

due to reduced memory footprint. We can clearly ob-

serve through extensive experiments that MEC needs the

least memory-overhead, yet offers high-performance in

most cases on both mobile and server platforms without

any restriction, positioning MEC as an attractive convolu-

tion engine on various platforms. MEC is well suited for

DNN-based applications in memory-constrained environ-

ment such as mobile/IoT, while allowing to increase the

learning capacity of DNN on high-end server systems.

Appendix

In this appendix, we sketch Wino.gpu optimizations in

Section 4 in detail. Our Wino.gpu are all hand-tuned/fully-

unrolled F (2 × 2, 3 × 3) which can fit into the instruction

cache in GPU (Lavin, 2015) for maximum performance.

We started with an open-source package (Falcon, 2016) and

followed the techniques in (Lavin, 2015; Park et al., 2016a)

to improve it for GPU. We mainly focused on the high-level

optimization including the following:

• For a given input matrix, all transformed kernel and

input matrices across all kernels/channels are com-

puted in full parallel for maximum GPU utilization.

• The output matrix is computed by multiplying all pairs

of the transformed kernel and input matrices in full

parallel for maximum GPU utilization.

• All intermediate products from multiplications are

kept in thread registers first and reduced using shared-

memory.

• All loops are manually unrolled for maximum perfor-

mance.

• Read-only cache (ldg) is actively used when com-

puting the output matrix with transformed kernel and

input matrices which are shared across blocks.

References

Abuzaid, Firas, Hadjis, Stefan, Zhang, Ce, and Ré, Christo-

pher. Caffe con troll: Shallow ideas to speed up deep

learning. CoRR, abs/1504.04343, 2015.

Chellapilla, Kumar, Puri, Sidd, and Simard, Patrice. High

Performance Convolutional Neural Networks for Docu-

ment Processing. In Tenth International Workshop on

Frontiers in Handwriting Recognition, October 2006.

MEC: Memory-efficient Convolution for Deep Neural Network

Chen, Wenlin, Wilson, James T., Tyree, Stephen, Wein-

berger, Kilian Q., and Chen, Yixin. Compressing neural

networks with the hashing trick. CoRR, abs/1504.04788,

2015.

Chen, Yu-Hsin, Krishna, Tushar, Emer, Joel, and Sze,

Vivienne. Eyeriss: An Energy-Efficient Reconfigurable

Accelerator for Deep Convolutional Neural Networks.

In IEEE International Solid-State Circuits Conference,

ISSCC 2016, Digest of Technical Papers, pp. 262–263,

2016.

Chetlur, Sharan, Woolley, Cliff, Vandermersch, Philippe,

Cohen, Jonathan, Tran, John, Catanzaro, Bryan, and

Shelhamer, Evan. cudnn: Efficient primitives for deep

learning. CoRR, abs/1410.0759, 2014.

Collins, Maxwell D. and Kohli, Pushmeet. Mem-

ory bounded deep convolutional networks. CoRR,

abs/1412.1442, 2014.

Cong, Jason and Xiao, Bingjun. Minimizing computa-

tion in convolutional neural networks. In International

Conference on Artificial Neural Networks, pp. 281–290.

Springer, 2014.

cuBLAS. http://docs.nvidia.com/cuda/cublas.

cuFFT. http://docs.nvidia.com/cuda/cufft.

Denton, Emily, Zaremba, Wojciech, Bruna, Joan, LeCun,

Yann, and Fergus, Rob. Exploiting linear structure

within convolutional networks for efficient evaluation.

CoRR, abs/1404.0736, 2014.

Falcon. https://colfaxresearch.com/falcon-library. 2016.

Gong, Yunchao, Liu, Liu, Yang, Ming, and Bourdev,

Lubomir D. Compressing deep convolutional networks

using vector quantization. CoRR, abs/1412.6115, 2014.

Han, Song, Mao, Huizi, and Dally, William J. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Deep residual learning for image recognition. In

arXiv prepring arXiv:1506.01497, 2015.

Highlander, Tyler and Rodriguez, Andres. Very effi-

cient training of convolutional neural networks using

fast fourier transform and overlap-and-add. CoRR,

abs/1601.06815, 2016.

Jaderberg, Max, Vedaldi, Andrea, and Zisserman, Andrew.

Speeding up convolutional neural networks with low

rank expansions. CoRR, abs/1405.3866, 2014.

Jia, Yangqing. Learning Semantic Image Representations

at a Large Scale. PhD thesis, EECS Department, Uni-

versity of California, Berkeley, May 2014.

Kågström, Bo, Ling, Per, and van Loan, Charles. Gemm-

based level 3 blas: High-performance model implemen-

tations and performance evaluation benchmark. ACM

Trans. Math. Softw., 24(3):268–302, September 1998.

ISSN 0098-3500.

Kim, Yong-Deok, Park, Eunhyeok, Yoo, Sungjoo, Choi,

Taelim, Yang, Lu, and Shin, Dongjun. Compression

of deep convolutional neural networks for fast and low

power mobile applications. CoRR, abs/1511.06530,

2015.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.

Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing

Systems 25, pp. 1097–1105. 2012.

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C.,

Jiao, L., Qendro, L., and Kawsar, F. Deepx: A soft-

ware accelerator for low-power deep learning inference

on mobile devices. In 2016 15th ACM/IEEE Interna-

tional Conference on Information Processing in Sensor

Networks (IPSN), pp. 1–12, April 2016.

Lane, Nicholas D., Bhattacharya, Sourav, Georgiev, Petko,

Forlivesi, Claudio, and Kawsar, Fahim. An early re-

source characterization of deep learning on wearables,

smartphones and internet-of-things devices. In Proceed-

ings of the 2015 International Workshop on Internet of

Things Towards Applications, IoT-App ’15, pp. 7–12,

2015. ISBN 978-1-4503-3838-7.

Lavin, Andrew. Fast algorithms for convolutional neural

networks. CoRR, abs/1509.09308, 2015.

Lebedev, Vadim, Ganin, Yaroslav, Rakhuba, Maksim, Os-

eledets, Ivan V., and Lempitsky, Victor S. Speeding-

up convolutional neural networks using fine-tuned cp-

decomposition. CoRR, abs/1412.6553, 2014.

Li, Chao, Yang, Yi, Feng, Min, Chakradhar, Srimat, and

Zhou, Huiyang. Optimizing memory efficiency for deep

convolutional neural networks on gpus. In Proceedings

of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’16,

pp. 54:1–54:12, 2016. ISBN 978-1-4673-8815-3.

Mathieu, Michaël, Henaff, Mikael, and LeCun, Yann. Fast

training of convolutional networks through ffts. CoRR,

abs/1312.5851, 2013.

MKL. https://software.intel.com/en-us/intel-mkl.

OpenBLAS. http://www.openblas.net.

MEC: Memory-efficient Convolution for Deep Neural Network

Park, Eunhyeok, Kim, Dongyoung, Kim, Soobeom, Kim,

Yong-Deok, Kim, Gunhee, Yoon, Sungroh, and Yoo,

Sungjoo. Big/little deep neural network for ultra low

power inference. In Proceedings of the 10th Interna-

tional Conference on Hardware/Software Codesign and

System Synthesis, CODES ’15, 2015.

Park, Hyunsun, Kim, Dongyoung, Ahn, Junwhan, and Yoo,

Sungjoo. Zero and data reuse-aware fast convolution

for deep neural networks on gpu. In Proceedings of

the Eleventh IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis,

CODES ’16, 2016a.

Park, Jongsoo, Li, Sheng R., Wen, Wei, Li, Hai, Chen,

Yiran, and Dubey, Pradeep. Holistic sparsecnn: Forg-

ing the trident of accuracy, speed, and size. CoRR,

abs/1608.01409, 2016b.

Perkins, Hugh. cltorch: a hardware-agnostic backend for

the torch deep neural network library, based on opencl.

CoRR, abs/1606.04884, 2016.

Sermanet, Pierre, Eigen, David, Zhang, Xiang, Mathieu,

Michaël, Fergus, Rob, and LeCun, Yann. Overfeat: Inte-

grated recognition, localization and detection using con-

volutional networks. CoRR, abs/1312.6229, 2013.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,

Pierre, Reed, Scott E., Anguelov, Dragomir, Erhan, Du-

mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014.

Theano-FFT. https://github.com/andersbll/theano ops.

Valgrind. http://valgrind.org.

Vasilache, Nicolas, Johnson, Jeff, Mathieu, Michaël, Chin-

tala, Soumith, Piantino, Serkan, and LeCun, Yann. Fast

convolutional nets with fbfft: A GPU performance eval-

uation. CoRR, abs/1412.7580, 2014.

Wang, Peisong and Cheng, Jian. Accelerating convolu-

tional neural networks for mobile applications. In Pro-

ceedings of the 2016 ACM on Multimedia Conference,

2016.

Winograd, Shmuel. Arithmetic complexity of computa-

tions. SIAM, 1980.

