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Abstract
Recently, reinforcement learning with deep neu-
ral networks has achieved great success in chal-
lenging continuous control problems such as 3D
locomotion and robotic manipulation. However,
in real-world control problems, the actions one
can take are bounded by physical constraints,
which introduces a bias when the standard Gaus-
sian distribution is used as the stochastic policy.
In this work, we propose to use the Beta dis-
tribution as an alternative and analyze the bias
and variance of the policy gradients of both poli-
cies. We show that the Beta policy is bias-free
and provides significantly faster convergence and
higher scores over the Gaussian policy when
both are used with trust region policy optimiza-
tion (TRPO) and actor critic with experience re-
play (ACER), the state-of-the-art on- and off-
policy stochastic methods respectively, on Ope-
nAI Gym’s and MuJoCo’s continuous control en-
vironments.

1. Introduction
Over the past years, reinforcement learning with deep fea-
ture representations (Hinton et al., 2012; Krizhevsky et al.,
2012) has achieved unprecedented (or even super-human
level) successes in many tasks, including playing Go (Sil-
ver et al., 2016) and playing Atari games (Mnih et al., 2013;
2015; Guo et al., 2014; Schulman et al., 2015a).

In reinforcement learning tasks, the agent’s action space
may be discrete, continuous, or some combination of both.
Continuous action spaces are generally more challenging
(Lillicrap et al., 2015). A naive approach to adapting deep
reinforcement learning methods, such as deep Q-learning
(Mnih et al., 2013), to continuous domains is simply dis-
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Figure 1. An example of continuous control with bounded action
space. In most real-world continuous control problems, the ac-
tions can only take on values within some bounded interval (finite
support). For example, the steering angle of most Ackermann-
steered vehicles can only range from −30◦ to +30◦.

cretizing the action space. However, this method has sev-
eral drawbacks. If the discretization is coarse, the result-
ing output will not be smooth; if it is fine, the number
of discretized actions may be intractably high. This issue
is compounded in scenarios with high degrees of freedom
(e.g., robotic manipulators and humanoid robots), due to
the curse of dimensionality (Bellman, 1956).

There has been much recent progress in model-free contin-
uous control with reinforcement learning. Asynchronous
Advantage Actor-Critic (A3C) (Mnih et al., 2016) allows
neural network policies to be trained and updated asyn-
chronously with multiple CPU cores in parallel. Value
Iteration Networks (Tamar et al., 2016), provide a differ-
entiable module that can learn to plan. Exciting results
have been shown on highly challenging 3D locomotion and
manipulation tasks (Heess et al., 2015; Schulman et al.,
2015b;a), including real-world robotics problems where
the inputs is raw visual data (Watter et al., 2015; Lilli-
crap et al., 2015; Levine et al., 2016). Derivative-free black
box optimization like evolution strategies (Salimans et al.,
2017) have also been proven to be very successful in wide
variety of tasks.

Despite recent successes, most reinforcement learning al-
gorithms still require large amounts of training episodes
and huge computational resources. This limits their appli-
cability to richer, more complex, and higher dimensional
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continuous control real-world problems.

In stochastic continuous control problems, it is standard
to represent their distribution with a Normal distribution
N (µ,σ2), and predict the mean (and sometimes the vari-
ance) of it with a function approximator such as deep neural
networks (Williams, 1992; Duan et al., 2016; Mnih et al.,
2016). This is called a Gaussian Policy.

By computing the gradients of the policy with respect to µ
and σ, backpropagation (Rumelhart et al., 1988) and mini-
batch stochastic gradient descent (or ascent) can be used to
train the network efficiently.

However, a little-studied issue in recent approaches is that
for many applications, the action spaces are bounded: ac-
tion can only take on values within a bounded (finite) in-
terval due to physical constraints. Examples include the
joint torque of a robot arm manipulator and the steering an-
gle and acceleration limits of Ackermann-steered vehicles.
In these scenarios, any probability distribution with infi-
nite support like the Gaussian will unavoidably introduce
an estimation bias due to boundary effects (as in Figure 1),
which may slow down the training progress and make these
problems even harder to solve.

In this work, we focus on continuous state-action deep
reinforcement learning. We address the shortcomings of
the Gaussian distribution with a finite support distribution.
Specifically, we use the Beta distribution with shape pa-
rameters α,β as in (9) and call this the Beta policy. It
has several advantages. First, the Beta distrbution is finite-
support and does not suffer from the same boundary ef-
fects as the Gaussian does. Thus it is bias-free and con-
verges faster, which means a faster training process and
a higher score. Second, since we only change the under-
lying distribution, it is compatible with all state-of-the-art
stochastic continuous control on- and off-policy algorithms
such as trust region policy optimization (TRPO) (Schul-
man et al., 2015a) and actor-critic with experience replay
(ACER) (Wang et al., 2017).

We show that the Beta policy provides substantial gains in
scores and training speed over the Gaussian policy on sev-
eral continuous control environments, including two sim-
ple classical control problems in OpenAI Gym (Brockman
et al., 2016), three multi-joint dynamics and control prob-
lems in MuJoCo (Todorov et al., 2012), and one all-terrain-
vehicle (ATV) driving simulation in an off-road environ-
ment.

2. Background
2.1. Preliminaries

We model our continuous control reinforcement learning
as a Markov decision process (MDP). An MDP consists

of a state space S , an action space A, an initial state s0,
and the corresponding state distribution p0(s0), a stationary
transition distribution describing the environment dynam-
ics p(st+1|st, at) that satisfies the Markov property, and a
reward function r(s, a) : S × A → R for every state s
and action a. An agent selects actions to interact with the
environment based on a policy, which can be either deter-
ministic or stochastic. In this paper, we focus on the lat-
ter. A stochastic policy can be described as a probability
distribution of taking an action a given a state s param-
eterized by a n-dimensional vector θ ∈ Rn, denoted as
πθ(a|s) : S → A.

At each timestep t, a policy distribution πθ(a|st) is
constructed from the distribution parameters (e.g., from
µθ(s),σθ(s) if it’s a Normal distribution). An action at
is then sampled from this distribution to interact with the
environment, i.e. at ∼ πθ(·|st). Starting from an ini-
tial state, an agent follows a policy to interact with the
MDP to generate a trajectory of states, actions, and re-
wards {s0, a0, r0, . . . , sT , aT , rT }. The goal of an agent
is to maximize the return from a state, defined as the to-
tal discounted reward rγt =

�∞
i=0 γ

ir(st+i, at+i), where
γ ∈ (0, 1] is the discount factor describing how much we
favor current reward over those in the future.

To describe how good it is being in state s under the pol-
icy π, a state-value function V π(s) = Eπ[r

γ
0 |s0 = s] is

defined as the expected return starting from state s, fol-
lowing the policy π, interacting with environment dynam-
ics, and repeating until the maximum number of episodes
is reached. An action-value function Qπ(s, a), which de-
scribes the value of taking a certain action, is defined sim-
ilarly, except it is the expected return starting from state s
after taking an action a under policy π.

The goal in reinforcement learning is to learn a policy max-
imizing the expected return from the start distribution

J(πθ) =

�

S
ρπ(s)

�

A
πθ(s, a)r(s, a)da ds (1)

= Es∼ρπ,a∼πθ
[r(s, a)] , (2)

where ρπ(s) =
�∞

t=0 γ
tp(st = s) is the unnormalized

discounted state visitation frequency in the limit (Sutton
et al., 1999).

2.2. Stochastic Policy Gradient

Policy gradient methods are featured heavily in the state-
of-the-art model-free reinforcement learning algorithms
(Mnih et al., 2016; Duan et al., 2016; Lillicrap et al., 2015;
Wang et al., 2017). In these methods, training of the pol-
icy is performed by following the gradient of the perfor-
mance with respect to the parameters, ∇θJ(πθ). This gra-
dient can be computed from the Policy Gradient Theorem
(Sutton et al., 1999) by simply changing r(s, a) to Qπ(s, a)
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in (2) and moving the gradient operator inside the integral:

∇θJ(πθ) =

�

S
ρπ(s)

�

A
∇θπθ(a|s)Qπ(s, a)da ds

=

�

S
ρπ(s)

�

A
πθ(a|s)gqda ds

= Es∼ρπ,a∼πθ
[gq] , (3)

where πθ(a|s) instead of πθ(s, a) is used to represent a
stochastic policy and gq is the policy gradient estimator us-
ing Qπ(s, a) as the target

gq = ∇θ log πθ(a|s)Qπ(s, a) . (4)

However, exact computation of the double integral in (3) is
generally intractable. Instead, we can estimate it by sam-
pling: given enough samples of gq , the sample mean ḡq ,
will converge to its expectation, ∇θJ(πθ), by the law of
large numbers

ḡq =
1

n

n�

i=1

gq
P−→ E[gq] = ∇θJ(πθ), as n → ∞ . (5)

Estimating the policy gradient is one of the most important
issues in reinforcement learning. We want gq in (4) to be
bias-free so that it converges to the true policy gradient. As
we will show in the following section, this is not always
true. At the same time, we also want to reduce the sam-
ple variance, so that the gradient is less noisy and stable, as
this improves the convergence rate and speeds up the train-
ing progress. The action-value function Qπ(s, a) can be
estimated by a variety of sample-based algorithms such as
Monte-Carlo (MC) or temporal-difference (TD) learning.
A lookup table is usually used to store Qπ(s, a) for each
state s and action a.

2.3. Stochastic Actor-Critic

For an MDP with intractably large state space, using a
lookup table is no longer practical. Instead, function
approximation methods are more common. Deep Q-
Networks (DQN) (Mnih et al., 2013) use a deep neural net-
work parameterized by θv to approximate the action-value
function, denoted as Qθv (s, a) ≈ Qπ(s, a). This is appeal-
ing since deep learning has been shown to be very powerful
and successful in computer vision, speech recognition and
many other domains (LeCun et al., 2015).

Unfortunately, direct application of DQN to continuous ac-
tion spaces is difficult. First, as mentioned earlier, if we
discretize the action space, it is hampered by the curse
of dimensionality. Second, in the Q-learning algorithm,
one needs to find the (greedy) action that maximizes the
action-value function, i.e. a = argmaxa Qθv (s, a). This
means an additional optimization procedure is required at

every step inside the stochastic gradient descent optimiza-
tion, which makes it impractical.

The solution to this is the Actor-Critic methods (Sutton &
Barto, 1998; Peters & Schaal, 2008; Degris et al., 2012;
Munos et al., 2016). In these methods an actor learns a
policy to select actions and a critic estimates the value func-
tion, and criticizes decisions made by the actor. The actor
with policy πθ(a|s) and the critic with Qθv (s, a) are trained
simultaneously.

Replacing the true action-value function Qπ(s, a) by
a function approximator Qθv (s, a) may introduce bias.
Nonetheless, in practice, with the help of experience replay
(Lin, 1993) and target networks (Mnih et al., 2013) actor-
critic methods still converge to good policies, even with
deep neural networks (Lillicrap et al., 2015; Silver et al.,
2016).

One of the best known variance reduction technique for
actor-critic without introducing any bias is to substract a
baseline function B(s) from Qπ(s, a) in (4) (Greensmith
et al., 2004). A natural choice for B(s) is V π(s), since it is
the expected action-value function Qπ(s, a), i.e. V π(s) =
Ea∼πθ

[Qπ(s, a)]. This gives us the definition of advantage
function Aπ(s, a) and the following stochastic policy gra-
dient estimates:

Aπ(s, a) =Δ Qπ(s, a)− V π(s) , (6)
ga = ∇θ log πθ(a|s)Aπ(s, a) . (7)

The advantage function Aπ(s, a) measures how much bet-
ter than the average it is to take an action a. With this
method, the policy gradient in (4) is shifted in a way such
that it is the relative difference, rather than the absolute
value Qπ(s, a), that determines the gradient.

3. Infinite/Finite Support Distribution for
Stochastic Policy in Continuous Control

Using the Gaussian distribution as a stochastic policy
in continous control has been well-studied and com-
monly used in the reinforcement learning community since
(Williams, 1992). This is most likely because the Gaus-
sian distribution is easy to sample and has gradients that
are easy to compute, which makes it the first choice of the
probability distribution.

However, we argue that this is not always a good choice.
In most continuous control reinforcement learning applica-
tions, actions can only take on values within some finite in-
terval due to physical constraints, which introduces a non-
negligible bias caused by boundary effects, as we show be-
low.

This motivates us to use a distribution that can solve this
problem. Among continuous distributions with finite sup-
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Figure 2. An example of over estimation of rewards outside the
boundary.

port, the well-known Beta distribution emerges as a natural
candidate, as it is expressive yet simple, with two easily
interpretable parameters.

In Bayesian statistics, the Beta distribution is often used
as the conjugate prior probability distribution for the
Bernoulli and binomial distributions, describing the ini-
tial belief about the probability of the success of each trial
(Bernardo & Smith, 1994). One loose inspiration behind
our use of the Beta function is spike-rate coding, as seen
in biological neurons (Gerstner et al., 1997), or pulse den-
sity modulation, as used in artificial systems; here, the Beta
could be seen as modeling the probability of a neuron fir-
ing, or a pulse being emitted, over a small time interval.

In the following, we show that the Beta policy is bias-free
and a better choice than the Gaussian. We compare the
variance of the policy gradient of both policies and show
that as with the Gaussian policy, Natural Policy Gradient is
also necessary for the Beta policy to achieve a good perfor-
mance.

3.1. Gaussian Policy

To employ a Gaussian policy, we can define the policy as

πθ(a|s) =
1√
2πσ

exp

�
− (a− µ)2

2σ2

�
, (8)

where the mean µ = µθ(s) and the standard deviation
σ = σθ(s) are given by a function approximator param-
eterized by θ. To enable the use of backpropagation, we
can reparameterize (Heess et al., 2015) action a ∼ πθ(·|s)
as a = µθ(s) + σθ(s)ξ, where ξ ∼ N (0, 1). The pol-
icy gradient with respective to µ,σ can be computed ex-
plicitly as ∇µ log πθ(a|s) = (a−µ)

σ2 and ∇σ log πθ(a|s) =
(a−µ)2

σ3 − 1
σ . In general, for problem with higher degrees of

freedom, all action dimensions are assumed to be mutually
independent.

3.2. Bias due to Boundary Effect

Modeling a finite support stochastic policy with an infinite
support probability distribution may introduce bias. By the

definition of infinite support, every action a is assigned
with a probability density πθ(a|s) that is greater than 0.
Nonetheless, in reality, all actions outside the finite support
have probability exactly equal to 0 (see Figure 1).

To simplify the analysis, we consider the phased update
framework (Kearns & Singh, 2000): in each phase, we are
given n samples of Qπθ (s, a) from environments under a
fixed πθ. In other words, we focus mainly on the inner ex-
pectation of (2). Without loss of generality, let us consider
an one-dimensional action space A = [−h, h], where 2h is
the width of the closed interval. For any action space that
is not symmetric around 0, we can always map it to [−h, h]
by scaling and shifting.

So far we have seen two main approaches to employ the
Gaussian policy in this bounded action scenario in the ex-
isting RL implementations:

1. Send the action to the environment without capping
(truncating) it first, let the environment cap it for us,
and use the uncapped action to compute the policy
gradient.

2. Cap the action to the limit, send it to the environment,
and use the capped action to compute the policy gra-
dient.

In the first approach, by letting the environment capping
the actions for us, we simply pretend there are no action
bounds. In other words, all actions outside the bounds just
happen to have the same effect as the actions at the limits.
The policy gradient estimator in (4) now becomes g�q =
∇θ log πθ(a|s)Qπ(s, a�), where a� is the truncated action.
The bias of the estimator g�q is

E[g�q]−∇θJ(πθ)

= Es

�� ∞

−∞
πθ(a|s)∇θ log πθ(a|s)Qπ(s, a�)da

�
−∇θJ(πθ)

= Es

�� −h

−∞
πθ(a|s)∇θ log πθ(a|s) [Qπ(s,−h)−Qπ(s, a)] da

+

� ∞

h

πθ(a|s)∇θ log πθ(a|s) [Qπ(s, h)−Qπ(s, a)] da

�
.

We can see that as long as the action space A covers the
support of the policy distribution (i.e. supp(πθ(a|s)) ⊂ A
or as h → ∞) the last two integrals immediately evaluate to
zero. Otherwise, there is a bias due to the boundary effect.

The boundary effect can be better illustrated by the exam-
ple in Figure 2 where the reward function peaks (assum-
ing a single mode) at a good action close to the boundary.
This effectively extends the domain of reward (or value)
function to previously undefined region by extrapolating, or
more precisely, the “replicated” padding, which results in
artificially higher rewards outside the bounds and therefore
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bias the estimated policy distribution toward the boundary.
As for multimodal reward functions, one might need to
consider the use of a mixture model or other density es-
timation methods since neither the Gaussian nor the Beta
suffices under this scenario. However, this is beyond the
scope of our discussion.

To make things worse, as σ grows, bias also increases. This
makes sense intuitively, because as σ grows, more proba-
bility density falls outside the boundary. Note that this is
not an unusual case: to encourage the actor to explore the
state space in the early stage of training, larger σ is needed.

In the second approach, the policy gradient estima-
tor is even more biased because the truncated action
a� is used both in the state-value function Qπ and in
the gradient of log probability ∇θ log πθ, i.e. g��q =
∇θ log πθ(a

�|s)Qπ(s, a�). In this case, the commonly
used variance reduction techique is less useful since
Ea∼πθ

[∇θ log πθ(a
�|s)V π(s)] no longer integrates to 0 as

it should be if a instead of a� was used. Not only does it
suffer from the same bias problem we saw earlier, another
bias is also introduced through the substraction of the base-
line function.

3.3. Beta Policy

Let us now consider the Beta distribution

f(x;α,β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 , (9)

where α and β are the shape parameters and Γ(·) is the
Gamma function that extends factorial to real numbers, i.e.
Γ(n) = (n−1)! for positive integer n. The beta distribution
has a support x ∈ [0, 1] (as shown in Figure 3) and it is
often used to describe the probability of success, where α−
1 and β − 1 can be thought of as the counts of successes
and failures from the prior knowledge respectively.

We use πθ(a|s) = f(a+h
2h ;α,β) to represent the stochastic

policy and call it the Beta Policy. Since the beta distribu-
tion has finite support and no probability density falls out-
side the boundary, the Beta policy is bias-free. The shape
parameters α = αθ(s),β = βθ(s) are also modeled by
neural networks with parameter θ. In this paper, we only
consider the case where α,β > 1, in which the Beta distri-
bution is concave and unimodal.

3.3.1. VARIANCE COMPARED TO GAUSSIAN POLICY

One unfortunate property of the Gaussian policy is that the
variance of policy gradient estimator is inversely propor-
tional to σ2. As the policy improves and becomes more
deterministic (σ → 0), the variance of (4) goes to infinity
(Sehnke et al., 2008; Zhao et al., 2011; Silver et al., 2014).

This is mainly because the ordinary policy gradient defined

Figure 3. Probability density function of Beta distributions with
different α and β.

in (4) does not always yield the steepest direction (Amari,
1998), but the natural policy gradient (Kakade, 2002; Pe-
ters & Schaal, 2006) does. The natural policy gradient is
given by

gnatq = I−1(θ)gq , (10)

where I(θ) is the Fisher information matrix defined as

I(θ) = Ea∼πθ

�
∇θ log πθ(a|s)∇θ log πθ(a|s)T

�
(11)

and the variance of the policy gradient is

Va[gq] = Ea[g
2
q ]− E2

a[gq]

= Ea

�
∇θ log πθ(a|s)∇θ log πθ(a|s)TQπ2(s, a)

�
− E2

a[gq] .

First note that it is often more useful (and informative) to
say X standard deviations rather than just Y points above
the average. In other words, one should consider the metric
defined on the underlying statistical manifold instead of the
Euclidean distance. The Fisher information matrix I(θ) is
such metric (Jeffreys, 1946). A gradient vector consists of
direction and length. For a univariate Gaussian distribu-
tion, the ordinary policy gradient has the correct direction,
but not the correct length. As one moves in the parameter
space, the metric defined on this space also changes, which
effectively changes the length of the ordinary gradient vec-
tor. The natural gradient adjusts the learning rate according
to the probability distribution, slowing down the learning
rate when the distance on the parameter space compresses,
and speeding it up as the distance expands.

For the Gaussian distribution, the Fisher information ma-
trix has the form of 1/σ2 (see Supplementary Section A).
The more deterministic the policy becomes, the smaller the
size of step (proportional to σ2) is needed to take in order
to increase the same amount of objective function. As a re-
sult, a constant step of the ordinary gradient descent update
will overshoot, which results in higher variance of (4).
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Figure 4. Log-likelihood of Beta distributions. For each curve,
we sample N data points xi ∼ f(x;α,β) and plot the the aver-
aged log-likelihood curve by evaluating

�N
i=1 log f(xi;α,β) at

α = β ranging from 0 to 20. The maximum log-likehood will
peak at the same α,β where the samples were drawn from ini-
tially if N is large enough. Unlike the Normal distribution, the
more deterministic the Beta distribution becomes, the flatter the
log-likelihood curve (from blue, orange . . . to cyan).

As for the Beta policy, the Fisher information matrix goes
to zero as policy becomes deterministic, as does the vari-
ance of the policy gradient (see Supplementary Section B).
However, this is not a desirable property. This can be better
illustrated by the example in Figure 4, where the curvature
flattens out at a rate so high that it is impossible for the
ordinary policy gradient to catch up with, making the es-
timation of α and β increasingly hard without the use of
the natural policy gradient. In this case, not just the length
has to be adjusted, but also the off-diagonal terms in the
information matrix.

4. Experiments
We evaluate our proposed methods in a variety of environ-
ments, including the classical control problems in OpenAI
Gym, the physical control and locomotion tasks in Multi-
Joint dynamics with Contact (MuJoCo) physical simulator,
and a setup intended to simulate an autonomous driving in
an off-road environment.

In all experiments, inputs are processed using neural net-
works with architectures depending on the observation and
action spaces. For both distributions, we assume the ac-
tion dimensions are independent and thus have zero covari-
ance. For all architectures, the last two layers output two
�A�-dimensional real vectors: either (a) the mean µ and
the variance σ2 for a multivariate normal distribution with
a spherical covariance, or (b) the shape vectors α,β for a
Beta distribution.

Specifically, for the Normal distribution, µ is modeled by
a linear layer and σ2 by a softplus element-wise operation,
log(1 + exp(x)). For the Beta distribution, α,β are also

Table 1. List of Environments

ENVIRONMENTS �S� �A�
MOUNTAINCARCONTINUOUS-V0 2 1
PENDULUM-V0 3 1
INVERTEDPENDULUM-V1 4 1
INVERTEDDOUBLEPENDULUM-V1 11 1
HUMANOID-V1 376 17
OFF-ROAD DRIVING 400 + 6 2

modeled by softplus, except a constant 1 is added to the
output to make sure α,β ≥ 1 (see Section 3).

For both policy distributions, we add the entropy of pol-
icy πθ(a|s) with a constant multiplier 0.001 encouraging
exploration in order to prevent premature convergence to
sub-optimal policies (Mnih et al., 2016). A discount factor
γ is set to 0.995 across all tasks.

4.1. Classical Control

First, as a proof of concept, we compare the Beta distri-
bution with Normal distribution in two classical continu-
ous control: MountainCarContinuous-v0 and Pendulum-v0
(see Figure 5(a) and 5(c)) using the simplest actor-critic
method: no asynchronuous updates (Mnih et al., 2016), ex-
perience replays, or natural policy gradient are used. For
the actor, we only use low-dimensional physical state like
joint velocities and vehicle speed. No visual input, such
as RGB pixel values, is used. We first featurize the in-
put state to 400-dimensional vectors using random Radial
Basis Functions (Rahimi et al.) and then pass it to a sim-
ple neural network where the only layer is the final output
layer generating statistics for the policy distribution. This is
effectively a linear combination of state features: φ(s)T θ,
where φ is the featurizing function and θ is the weight vec-
tor to be learnt. For the critic, we use 1-step TD-error1 as
an unbiased estimation of the advantage function in (7).

In both tasks, we found that Beta policies consistently pro-
vide faster convergence than Gaussian policies (see Figure
5(b) and 5(d)).

4.2. MuJoCo

Next, we evaluate Beta policies on three OpenAI
Gym’s MuJoCo environments: InvertedPendulum-v1,
InvertedDoublePendulum-v1 and Humanoid-v1 (see Figure
5(e), 5(g), and 5(i)) using both on-policy and off-policy
methods. Results are shown in Figure 5(f), 5(h), and 5(j).
The goal for the first two is to balance the inverted pendu-
lum and stay upright as long as possible. For the humanoid
robot, the goal is to walk as fast as possible without falling

1k-step TD error =
�k−1

i=0

�
γirt+i + γkVθ(st+k)

�
− Vθ(st)
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(d) Pendulum

(e) Inverted Pendulum
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Figure 5. Screenshots of the continuous control tasks on OpenAI
Gym (first two) and MuJoCo (last three) and training summary
for Normal distribution and Beta distribution. The x-axis shows
the total number of training epochs. The y-axis shows the average
scores (also 1 standard deviation) over several trials.

at the same time minimize actions to take and impacts of
each joint.

In the on-policy experiments, we use the original imple-
mentation2 provided by the authors of TRPO (Schulman
et al., 2015a) with the same hyperparameters and configu-
ration that were used to generate their state-of-the-art train-
ing results. TRPO is similar to natural policy gradient
methods but more efficient for optimizing large function
approximators such as neural networks.

By simply changing the policy distribution, we find that
TRPO+Beta provides a significant performance improve-
ment (about 2x faster) over TRPO+Gaussian on the most
difficult Humanoid environment. However, only a slight
improvement over the Gaussian policy is observed on the
less difficult Inverted Double Pendulum. For the simplest
task, Inverted Pendulum, Gaussian+TRPO has a slight ad-
vantage over TRPO+Beta; however, since both methods
completely solve the Inverted Pendulum in a matter of min-
utes, the absolute difference is small.

For the off-policy experiments, we implement ACER in
TensorFlow according to Algorithm 3 in (Wang et al.,
2017). Asynchronous updates with four CPUs and non-
prioritized experience replays of ratio 8 are used. The
learning rate is sampled log-uniformly from [10−4, 5 ×
10−4]. The soft updating parameter for the average policy
network is set to 0.995 across all tasks. For the Gaussian
distribution, σ is squashed by a hyperbolic tangent func-
tion to prevent a variance that is too large (too unstable to
be compared) or too small (underflow). Specifically, we
only allow σ ranging from 10−4 to h (see Section 3.2).

Substantial improvements over Gaussian policies are also
observed in the off-policy experiments among all tasks.
Though sometimes Gaussian can find a good policy faster
than the Beta, it plummets after tens of training episodes,
then repeats, which results in a lower average score and
higher variance (Figure 5(h)). The improvement over the
Gaussian policy on the Humanoid is the most prominent
and that on the Inverted Pendulum is less significant. This
trend suggests that the bias introduced by constrained ac-
tion spaces is compounded in systems with higher degrees
of freedom.

Note that these results are not directly comparable with the
previous on-policy TRPO. First, a fast and efficient variant
of TRPO was proposed in ACER as a trade-off. Second,
we do not use the generalized advantage estimator (GAE)
(Schulman et al., 2015b), though it can be done by modi-
fying the Retrace (Munos et al., 2016) target update rule in
ACER. Third, a smaller batch size is usually used during
the alternating on-policy and off-policy updates in ACER.
Similar unstable behaviors can also be observed when we
2See https://github.com/joschu/modular_rl.
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Figure 6. Screenshots of off-road driving task and training sum-
mary for the Normal distribution and Beta distribution. The x-
axis shows the total number of training epochs. The y-axis shows
the average scores (also 1 standard deviation) over 10 different
experiments with varying parameters (see text for details).

try to reduce the batch size of update in on-policy TRPO
experiments. We believe this is because a smaller batch
size means more frequent updates, which helps the agents
to explore faster in the early stage of training but starts to
hamper the performance in the later stage, when a larger
sample size is needed to reduce the sample variance in such
unstable robot arm (or locomotion) configurations.

Similar to the findings in evolution strategies (Salimans
et al., 2017), humanoid robots under different stochastic
policies also exhibit different gaits: those with Beta poli-
cies always walk sideways but those with Gaussian policies
always walk forwards. We believe this suggests a different
exploration behavior and could be an interesting research
direction in the future.

4.3. Off-Road Autonomous Driving in Local Maps

Last, we consider a simplified All Terrain Vehicle (ATV)
autonomous navigation problem. In this problem, the an-
gent (an ATV vehicle) must navigate an off-road 2D map
where each position in the map has a scalar traversability
value. The vehicle is rewarded for driving on smoother ter-
rain, while maintaining a minimum speed.

The map is 20 × 20 meters, represented as a 40 × 40 grid
(as shown in Figure 6(a)). The input of the agent is the ve-
hicle’s physical state and top-down view of 20× 20 grid in
front of the vehicle, rotated to the vehicle frame. The vehi-
cle’s action space consists of two commands updated every

5 Hz: steering angle and forward speed. Steering angle
is constrained to [−30◦, 30◦] and speed is constrained to
[6, 40] km/h. The vehicle’s state is (x, y,ω, ẋ, ẏ, ω̇), where
x, y are velocity in lateral and forward direction, ω is the
yaw rate, and ẋ, ẏ, ω̇ are the time derivatives. The vehicle
commands are related to ẏ and ω̇ by a second order vehicle
model.

The vehicle’s dynamics, which are unknown to the agent
(thus model-free), are derived from a vehicle model ob-
tained by system identification. The data for the identifi-
cation was recorded by driving an ATV manually in an off-
road environment. In all simulations, a constant timestep
of 0.025 seconds is used to integrate ẋ, ẏ, ω̇ for generation
of trajectories with a unicycle model.

We follow the (convolutional) network architectures used
for 3D maze navigation in (Mirowski et al., 2017) and use
the same setup of ACER as in Section 4.2, except we use a
replay ratio sampled over the values {0.25, 1, 4}.

Results show the Beta policy consistently outperforms the
Gaussian policy significantly under all different replay ra-
tios. We found that higher replay ratio works better for the
Beta but not for the Gaussian. We suspect that despite off-
policy training being more sample efficient (a sample can
be learnt several times using experience replay), it is gen-
erally noisier due to the use of importance sampling. Even
with the help of Retrace, off-policy training with high ex-
perience replay ratio still destabilizes the Gaussian policy
(Figure 6(d)).

5. Conclusions
We introduce a new stochastic policy based on the Beta
distribution for continuous control reinforcement learn-
ing. This method solves the bias problem due to bound-
ary effects arising from the mismatch of infinite sup-
port of the commonly used Gaussian distribution and the
bounded controls that can be found in most real-world
problems. Our approach outperforms the Gaussian pol-
icy when TRPO and ACER, the state-of-the-art on- and
off-policy methods, are used. It is also compatible with
all other continuous control reinforcement algorithms with
Gaussian policies. For future work, we aim to apply this
to more challenging real-world robotic learning tasks such
as autonomous driving and humanoid robots, and extend it
for more complex problems, e.g. by using mixtures of Beta
distributions for multimodal stochastic policies.
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