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Abstract

We consider the stochastic bandit problem with
a continuous set of arms, with the expected re-
ward function over the arms assumed to be fixed
but unknown. We provide two new Gaussian
process-based algorithms for continuous bandit
optimization — Improved GP-UCB (IGP-UCB)
and GP-Thomson sampling (GP-TS), and derive
corresponding regret bounds. Specifically, the
bounds hold when the expected reward function
belongs to the reproducing kernel Hilbert space
(RKHS) that naturally corresponds to a Gaus-
sian process kernel used as input by the algo-
rithms. Along the way, we derive a new self-
normalized concentration inequality for vector-
valued martingales of arbitrary, possibly infinite,
dimension. Finally, experimental evaluation and
comparisons to existing algorithms on synthetic
and real-world environments are carried out that
highlight the favorable gains of the proposed
strategies in many cases.

1. Introduction

Optimization over large domains under uncertainty is an
important subproblem arising in a variety of sequential de-
cision making problems, such as dynamic pricing in eco-
nomics (Besbes & Zeevi, 2009), reinforcement learning
with continuous state/action spaces (Kaelbling et al., 1996;
Smart & Kaelbling, 2000), and power control in wireless
communication (Chiang et al., 2008). A typical feature of
such problems is a large, or potentially infinite, domain of
decision points or covariates (prices, actions, transmit pow-
ers), together with only partial and noisy observability of
the associated outcomes (demand, state/reward, communi-
cation rate); reward/loss information is revealed only for
decisions that are chosen. This often makes it hard to bal-
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ance exploration and exploitation, as available knowledge
must be transferred efficiently from a finite set of obser-
vations so far to estimates of the values of infinitely many
decisions. A classic case in point is that of the canonical
stochastic MAB with finitely many arms, where the effort
to optimize scales with the total number of arms or deci-
sions; the effect of this is catastrophic for large or infinite
arm sets.

With suitable structure in the values or rewards of arms,
however, the challenge of sequential optimization can be
efficiently addressed. Parametric bandits, especially lin-
early parameterized bandits (Rusmevichientong & Tsitsik-
lis, 2010), represent a well-studied class of structured de-
cision making settings. Here, every arm corresponds to a
known, finite dimensional vector (its feature vector), and
its expected reward is assumed to be an unknown linear
function of its feature vector. This allows for a large, or
even infinite, set of arms all lying in space of finite dimen-
sion, say d, and a rich line of work gives algorithms that
attain sublinear regret with a polynomial dependence on
the dimension, e.g., Confidence Ball (Dani et al., 2008),
OFUL (Abbasi-Yadkori et al., 2011) (a strengthening of
Confidence Ball) and Thompson sampling for linear ban-
dits (Agrawal & Goyal, 2013)! The insight here is that even
though the number of arms can be large, the number of un-
known parameters (or degrees of freedom) in the problem
is really only d, which makes it possible to learn about the
values of many other arms by playing a single arm.

A different approach to modelling bandit problems with a
continuum of arms is via the framework of Gaussian pro-
cesses (GPs) (Rasmussen & Williams, 2006). GPs are
a flexible class of nonparametric models for expressing
uncertainty over functions on rather general domain sets,
which generalize multivariate Gaussian random vectors.
GPs allow tractable regression for estimating an unknown
function given a set of (noisy) measurements of its values
at chosen domain points. The fact that GPs, being distribu-
tions on functions, can also help quantify function uncer-
tainty makes it attractive for basing decision making strate-
gies on them. This has been exploited to great advantage to

"Roughly, for rewards bounded in [—1,1], these algorithms
achieve optimal regret O (dﬁ ), where O (-) hides polylog(T)
factors.
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build nonparametric bandit algorithms, such as GP-UCB
(Srinivas et al., 2009), GP-EI and GP-PI (Hoffman et al.,
2011). In fact, GP models for bandit optimization, in terms
of their kernel maps, can be viewed as the parametric linear
bandit paradigm pushed to the extreme, where each feature

vector associated to an arm can have infinite dimension 2.

Against this backdrop, our work revisits the problem of
bandit optimization with stochastic rewards. Specifically,
we consider stochastic multiarmed bandit (MAB) problems
with a continuous arm set, and whose (unknown) expected
reward function is assumed to lie in a reproducing kernel
Hilbert space (RKHS), with bounded RKHS norm - this
effectively enforces smoothness on the function®. We make
the following contributions-

e We design a new algorithm — Improved Gaussian
Process-Upper Confidence Bound (IGP-UCB) — for
stochastic bandit optimization. The algorithm can be
viewed as a variant of GP-UCB (Srinivas et al., 2009),
but uses a significantly reduced confidence interval
width resulting in an order-wise improvement in re-
gret compared to GP-UCB. IGP-UCB also shows a
markedly improved numerical performance over GP-
UCB.

e We develop a nonparametric version of Thompson
sampling, called Gaussian Process Thompson sam-
pling (GP-TS), and show that enjoys a regret bound

of O (*yT vV dT). Here, T’ is the total time horizon and

~7 is a quantity depending on the RKHS containing
the reward function. This is, to our knowledge, the
first known regret bound for Thompson sampling in
the agnostic setup with nonparametric structure.

e We prove a new self-normalized concentration in-
equality for infinite-dimensional vector-valued mar-
tingales, which is not only key to the design and
analysis of the IGP-UCB and GP-TS algorithms, but
also potentially of independent interest. The inequal-
ity generalizes a corresponding self-normalized bound
for martingales in finite dimension proven by Abbasi-
Yadkori et al. (2011).

e Empirical comparisons of the algorithms developed
above, with other GP-based algorithms, are presented,
over both synthetic and real-world setups, demonstrat-
ing performance improvements of the proposed algo-
rithms, as well as their performance under misspecifi-
cation.

The completion of the linear span of all feature vectors (im-
ages of the kernel map) is precisely the reproducing kernel Hilbert
space (RKHS) that characterizes the GP.

3Kernels, and their associated RKHSs,

2. Problem Statement

We consider the problem of sequentially maximizing a
fixed but unknown reward function f : D — R over a
(potentially infinite) set of decisions D C R4, also called
actions or arms. An algorithm for this problem chooses, at
each round ¢, an arm z; € D, and subsequently observes
areward y; = f(x;) + €, which is a noisy version of the
function value at z;. The arm x; is chosen causally de-
pending upon the arms played and rewards obtained upto
round ¢ — 1, denoted by the history H;_1 = {(zs,ys) : s =
1,...,t—1}. We assume that the noise sequence {£;}7°, is
conditionally R-sub-Gaussian for a fixed constant R > 0,
ie.,

2 2
vt >0, V) ER, E[e“t|ft71}§exp()\f ), (€Y

where F;_1 is the o-algebra generated by the random vari-
ables {xs, 55}2;11 and x;.This is a mild assumption on the
noise (it holds, for instance, for distributions bounded in
[-R, R)) and is standard in the bandit literature (Abbasi-
Yadkori et al., 2011; Agrawal & Goyal, 2013).

Regret. The goal of an algorithm is to maximize its cu-
mulative reward or alternatively minimize its cumulative
regret — the loss incurred due to not knowing f’s maxi-
mum point beforehand. Let z* € argmax,.p f(z) be
a maximum point of f (assuming the maximum is at-
tained). The instantaneous regret incurred at time ¢ is
re = f(a*) — f(x¢), and the cumulative regret in a time
horizon 7" (not necessarily known a priori) is defined to be
Ry = ZtT:l r¢. A sub-linear growth of Rp in T signifies
that Ry /T — 0 as T — oo, or vanishing per-round regret.

Regularity Assumptions. Attaining sub-linear regret is
impossible in general for arbitrary reward functions f and
domains D, and thus some regularity assumptions are in
order. In what follows, we assume that D is compact. The
smoothness assumption we make on the reward function f
is motivated by Gaussian processes* and their associated
reproducing kernel Hilbert spaces (RKHSs, see Scholkopf
& Smola (2002)). Specifically, we assume that f has small
norm in the RKHS of functions D — R, with positive
semi-definite kernel function k& : D x D — R. This RKHS,
denoted by Hy(D), is completely specified by its kernel
function k(-, -) and vice-versa, with an inner product (-, -}
obeying the reproducing property: f(z) = (f, k(z,-))x for
all f € Hy(D). In other words, the kernel plays the role
of delta functions to represent the evaluation map at each
point x € D via the RKHS inner product. The RKHS

norm || f||,, = V/(f, f),, is a measure of the smoothness’

4Other work has also studied continuum-armed bandits with
weaker smoothness assumptions such as Lipschitz continuity —
see Related work for details and comparison.

SOne way to see this is that for every element g in
the RKHS, [g(z) — g(y)l = [g,k(z,)) — Kk(y, )] <
llgll, |k(z, ) — k(y, -)||,, by Cauchy-Schwarz.
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of f, with respect to the kernel function k, and satisfies:
f € Hy(D) if and only if || f|[, < oo.

We assume a known bound on the RKHS norm of the un-
known target function®: || f||,, < B. Moreover, we assume
bounded variance by restricting k(z,z) < 1, forall x € D.
Two common kernels that satisfy bounded variance prop-
erty are Squared Exponential and Matérn, defined as

ksp(z,z') = exp<732/212)’
Erratérn(z,2) = il(:)l(s ZQV)“BV(S l2y)7

where | > 0 and v > 0 are hyperparameters, s =
|lz — 2’|, encodes the similarity between two points
x,2’ € D, and B, (-) is the modified Bessel function. Gen-
erally the bounded variance property holds for any station-
ary kernel, i.e. kernels for which k(x,2') = k(x — ') for
all z,2’ € R? These assumptions are required to make
the regret bounds scale-free and are standard in the litera-
ture (Agrawal & Goyal, 2013). Instead if k(x,z) < cor
|l f|l, < ¢B, then our regret bounds would increase by a
factor of c.

3. Algorithms

Design philosophy. Both the algorithms we propose
use Gaussian likelihood models for observations, and
Gaussian process (GP) priors for uncertainty over re-
ward functions. A Gaussian process over D, denoted
by GPp(u(-),k(+,-)), is a collection of random variables
(f(x))zep, one for each x € D, such that every finite
sub-collection of random variables (f(x;))", is jointly
Gaussian with mean E [f(z;)] = p(z;) and covariance
E[(f(xi) — ple)(f(5) — mla;)] = k(winag), 1 <
i,j < m, m € N. The algorithms use GPp (0, v%k(-,)),
v > 0, as an initial prior distribution for the unknown re-
ward function f over D, where k(-,-) is the kernel func-
tion associated with the RKHS Hy (D) in which f is as-
sumed to have ‘small’ norm at most B. The algorithms
also assume that the noise variables ¢; = y; — f(x¢)
are drawn independently, across ¢, from N'(0, \v?), with
A > 0. Thus, the prior distribution for each f(z), is as-
sumed to be N (0,v%k(x,2)), x € D. Moreover, given
a set of sampling points A; = (x1,...,x¢) within D, it
follows under the assumption that the corresponding vec-
tor of observed rewards y1.; = [y1,...,y:]? has the mul-
tivariate Gaussian distribution N'(0,v2(K; + AI)), where
K, = [k(x,2)]z 2, is the kernel matrix at time ¢. Then,
by the properties of GPs, we have that y;1.; and f(x) are

jointly Gaussian given Ay:
02k ()T
VIK+ A )

F@]  pr (o, [24 )
Yi:t v2ky()

SThis is analogous to the bound on the weight 6 typically as-

sumed in regret analyses of linear parametric bandits.

where k¢(z) = [k(z1,2),...,k(x,2)]T. Therefore con-
ditioned on the history #,, the posterior distribution over f
is GPp(pi(+), v?ke (-, -)), where

pe() ko (2)T (Ko 4+ M)y, 2
k(z,2) = k(z,2') — k(2)" (K + M) ke (2)(3)
of(z) = ki(z,2). )

Thus for every « € D, the posterior distribution of f(z),
given Hy, is N (ue (), v207 ().

Remark. Note that the GP prior and Gaussian likelihood
model described above is only an aid to algorithm design,
and has nothing to do with the actual reward distribution
or noise model as in the problem statement (Section 2).
The reward function f is a fixed, unknown, member of the
RKHS Hj (D), and the true sequence of noise variables &;
is allowed to be a conditionally [?-sub-Gaussian martingale
difference sequence (Equation 1). In general, thus, this rep-
resents a misspecified prior and noise model, also termed
the agnostic setting by Srinivas et al. (2009).

The proposed algorithms, to follow, assume the knowledge
of only the sub-Gaussianity parameter R, kernel function %
and upper bound B on the RKHS norm of f. Note that v, A
are free parameters (possibly time-dependent) that can be
set specific to the algorithm.

3.1. Improved GP-UCB (IGP-UCB) Algorithm

We introduce the IGP-UCB algorithm (Algorithm 1), that
uses a combination of the current posterior mean ;1 ()
and standard deviation vo;_; () to (a) construct an upper
confidence bound (UCB) envelope for the actual function
f over D, and (b) choose an action to maximize it. Specif-
ically it chooses, at each round ¢, the action

xy = argmax py—1(x) + Sror—1(x), (5)
zeD

with the scale parameter v set to be 1. Such a rule
trades off exploration (picking points with high uncertainty
ot—1(x)) with exploitation (picking points with high re-
ward f1;—1(z)), with 8, = B+ R\/2(v,—1 + 1 + In(1/6))
being the parameter governing the tradeoff, which we later
show is related to the width of the confidence interval for f
atround t. & € (0,1) is a free confidence parameter used
by the algorithm, and ~; is the maximum information gain
at time ¢, defined as:

V= I(ya; fa).

= max
ACD:|A|=t
Here, I(ya; fa) denotes the mutual information between
fa = [f(@)]zca and ya = fa + €4, where €4 ~
N (0, \?I) and quantifies the reduction in uncertainty
about f after observing y4 at points A C D. -~ is
a problem dependent quantity and can be found given
the knowledge of domain D and kernel function k. For
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a compact subset D of R%, 47 is O((InT)4*1) and
O(TUd+1)/(2v+d(d+1)) In T), respectively, for the Squared
Exponential and Matérn kernels (Srinivas et al., 2009), de-
pending only polylogarithmically on the time 7.

Algorithm 1 Improved-GP-UCB (IGP-UCB)
Input: Prior GP(0, k), parameters B, R, ), 6.
fort=1,2,3...Tdo

Set f; = B+ R\/2(y—1 + 1+ In(1/9)).
Choose x; = argmax py—1(x) + Bror—1(x).
eD

Observe reward y; = f(xt) + &4
Perform update to get i+ and o using 2, 3 and 4.
end for

Discussion. Srinivas et al. (2009) have proposed the GP-
UCB algorithm, and Valko et al. (2013) the KernelUCB
algorithm, for sequentially optimizing reward functions ly-
ing in the RKHS Hj (D). Both algorithms play an arm
at time ¢ using the rule: =, = argmax,cp p—1(z) +
Btat,l(w). GP-UCB uses the exploration parameter B, =

\/232 + 3007;_1 1n3(t/6), with \ set to o2, where o is
additionally assumed to be a known, uniform (i.e., almost-
sure) upper bound on all noise variables ; (Srinivas et al.,
2009, Theorem 3). Compared to GP-UCB, IGP-UCB (Al-
gorithm 1) reduces the width of the confidence interval by
a factor roughly O(ln3/ 2 t) at every round ¢, and, as we
will see, this small but critical adjustment leads to much
better theoretical and empirical performance compared to
GP-UCB. In KernelUCB, f, is set as /A/2, where 7 is
the exploration parameter and A is the regularization con-
stant. Thus IGP-UCB can be viewed as a special case of
KernelUCB where n = f3;.

3.2. Gaussian Process Thompson Sampling (GP-TS)

Our second algorithm, GP-TS (Algorithm 2), inspired
by the success of Thompson sampling for standard and
parametric bandits (Agrawal & Goyal, 2012; Kaufmann
et al., 2012; Gopalan et al., 2014; Agrawal & Goyal,
2013), uses the time-varying scale parameter vy = B +
Ry\/2(vi—1 +1+1n(2/0)) and operates as follows. At
each round ¢, GP-TS samples a random function f;(-) from
the GP with mean function p;_ () and covariance function
v2ki—1(+,+). Next, it chooses a decision set D; C D, and
plays the arm z; € D, that maximizes f.7. We call it GP-
Thompson-Sampling as it falls under the general frame-
work of Thompson Sampling, i.e., (a) assume a prior on the
underlying parameters of the reward distribution, (b) play
the arm according to the prior probability that it is optimal,

"If D; = D for all t, then this is simply exact Thompson
sampling. For technical reasons, however, our regret bound is
valid when D; is chosen as a suitable discretization of D, so we
include D, as an algorithmic parameter.

and (c) observe the outcome and update the prior. However,
note that the prior is nonparametric in this case.

Algorithm 2 GP-Thompson-Sampling (GP-TS)
Input: Prior GP(0, k), parameters B, R, A, 6.
fort=1,2,3...,do

Setvy = B+ R\/2(vi—1 + 1 +In(2/9)).

Sample f;(-) from GPp(us—1(-), vike—1(-,+)).

Choose the current decision set D; C D.

Choose z; = argmax f;(x).

z€D:

Observe reward y; = f(xt) + &¢.

Perform update to get 1+ and k; using 2 and 3.
end for

4. Main Results

We begin by presenting two key concentration inequalities
which are essential in bounding the regret of the proposed
algorithms.

Theorem 1 Let {x,}3°, be an Ré-valued discrete time
stochastic process predictable with respect to the filtration
{Fi}52 i.e, xy is Fi_1-measurable ¥t > 1. Let {&,}52,
be a real-valued stochastic process such that for some R >
0 and forallt > 1, ¢ is (a) F¢-measurable, and (b) R-sub-
Gaussian conditionally on F;_1. Let k : RIxRY - Rbea
symmetric, positive-semidefinite kernel, and let 0 < § < 1.
For a given 1) > 0, with probability at least 1 — 9, the fol-
lowing holds simultaneously over all t > 0:

n Vdet((1+n)I + Kt).

(6)
(Here, K, denotes the t x t matrix K;(i,j) = k(x;, x;),
1 <4,j <tandforanyz € R and A € R™, ||z|| , :=
VaT Ax). Moreover, if K, is positive definite ¥Vt > 1 with
probability 1, then the conclusion above holds with n = 0.

2
||€11t||((Kt+nI)*1+I)*1 < 2R?

Theorem 1 represents a self-normalized concentration in-
equality: the ‘size’ of the increasing-length sequence {&; }+
of martingale differences is normalized by the growing
quantity ((K; +nI)~% + I)~! that explicitly depends on
the sequence. The following lemma helps provide an al-
ternative, abstract, view of the self-normalized process of
Theorem 1, based on the feature space representation in-
duced by a kernel.

Lemma 1 Let k : R? x R? — R be a symmetric, positive-
semidefinite kernel, with associated feature map o : R —
Hj; and the reproducing kernel Hilbert space8 (RKHS) Hy..

8Such a pair (o, Hy) always exists, see e.g., Rasmussen &
Williams (2006).
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Letting Sy = Zi:l esp(xs) and the (possibly infinite di-
mensional) matrix’ V; = I+ZZ:1 o(zs)p(xs)T
whenever K, is positive definite, that

, we have,

HEl;tH(K:lJ’_I)—l = HStHV;I )

where ||Si|\ -1 = HVfl/QStHH denotes the norm of
¢ k
V; /28, in the RKHS H,.

Observe that Sy is Fy-measurable and also E [S; | Fy—1] =
Si—1. The process {S;}>0 is thus a martingale with val-
ues'® in the RKHS H, which can possibly be infinite-
dimensional, and moreover, whose deviation is measured
by the norm weighted by V;~*, which is itself derived from
Si. Theorem 1 represents the kernelized generalization
of the finite-dimensional result of Abbasi-Yadkori et al.
(2011), and we recover their result under the special case
of a linear kernel: p(z) = z for all z € R%.

We remark that when ¢ is a mapping to a finite-dimensional
Hilbert space, the argument of Abbasi-Yadkori et al. (2011,
Theorem 1) can be lifted to establish Theorem 1, but
it breaks down in the generalized, infinite-dimensional
RKHS setting, as the self-normalized bound in their pa-
per has an explicit, growing dependence on the feature di-
mension. Specifically, the method of mixtures (de la Pena
et al.,, 2009) or Laplace method, as dubbed by Maillard
(2016), fails to hold in infinite dimension. The primary rea-
son for this is that the mixture distribution for finite dimen-
sional spaces can be chosen independently of time, but in a
nonparametric setup like ours, where the dimensionality of

the self-normalizing factor (K P ) ~itself grows with
time, the use of (random) stopping times, precludes using
time-dependent mixtures. We get around this difficulty by
applying a novel ‘double mixture’ construction, in which a
pair of mixtures on (a) the space of real-valued functions on
R?, ie., the support of a Gaussian process, and (b) on real
sequences is simultaneously used to obtain a more general
result, of potentially independent interest.

Our next result shows that how the posterior mean is con-
centrated around the unknown reward function f.

Theorem 2 Under the same hypotheses as those of Theo-
rem 1, let D C R and f : D — R be a member of the
RKHS of real-valued functions on D with kernel k, with
RKHS norm bounded by B. Then, with probability at least
1 — 9, the following holds for all x € D andt > 1:

le-1(2) = £(@)] < (B+ RyV2(0-1 + 1+ (1/8)) )ora (@),

where ;1 is the maximum information gain after t — 1
rounds and p;_1(x), o?_,(x) are mean and variance of

“More formally, V; : H, — Hj, is the linear operator defined
by Ve(2) = 2 + 300, @(@s){p(2s), 2) Vz € Hy.
'We ignore issues of measurability here.

posterior distribution defined as in Equation 2, 3, 4, with \
settol +mnandn=2/T.

Theorem 3.5 of Maillard (2016) states a similar result on
the estimation of the unknown reward function from the
RKHS. We improve upon it in the sense that the confidence
bound in Theorem 2 is simultaneous over all x € D, while
the bound has been shown only for a single, fixed x in the
Kernel Least-squares setting. We are able to achieve this
result by virtue of Theorem 1.

4.1. Regret Bound of IGP-UCB

Theorem 3 Let § € (0,1), || f||, < B and & is condition-
ally R-sub-Gaussian. Running IGP-UCB for a function f
lying in the RKHS Hy (D), we obtain a regret bound of

O(\/T(B‘/’VT + ’YT)) with high probability. More pre-
cisely, with probability at least 1 — §, Ry = O (B\/T’yT +

VTG T In(i/)).

Improvement over GP-UCB. Srinivas et al. (2009), in
the course of analyzing the GP-UCB algorithm, show
that when the reward function lies in the RKHS Hy (D),
GP-UCB obtains regret O(\/T(B\/% + vy 1n®/ 2(T)))
with high probability (see Theorem 3 therein for the ex-
act bound). Furthermore, they assume that the noise &;
is uniformly bounded by o, while our sub-Gaussianity as-
sumption (see Equation 1) is slightly more general, and
we are able to obtain a O(In*? T') multiplicative factor
improvement in the final regret bound thanks to the new
self-normalized inequality (Theorem 1). Additionally, in
our numerical experiments, we observe a significantly im-
proved performance of IGP-UCB over GP-UCB, both on
synthetically generated function, and on real-world sensor
measurement data (see Section 6).

Comparison with KernelUCB. Valko et al. (2013) show

that the cumulative regret of KernelUCB is O(\/(T ),
where cz defined as the effective dimension, measures, in
a sense, the number of principal directions over which
the projection of the data in the RKHS is spread. They
show that d is at least as good as ~yr, precisely yr >
Q(dInlnT) and thus the regret bound of KernelUCB is
roughly O(y/T7), which is /7 factor better than IGP-
UCB. However, KernelUCB requires the number of actions
to be finite, so the regret bound is not applicable for infinite
or continuum action spaces.

4.2. Regret Bound of GP-TS

For technical reasons, we will analyze the following ver-
sion of GP-TS. At each round ¢, the decision set used
by GP-TS is restricted to be a unique discretization Dy
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of D with the property that |f(x) — f([z];)] < 1/t
for all z+ € D, where [z]; is the closest point to x in
D;. This can always be achieved by choosing a com-
pact and convex domain D C [0,7]? and discretization
D; with size |D;| = (BLrdt?)? such that ||z — [z]]|, <

rd/BLrdt?> = 1/BLt? for all x € D, where L =
sup sup (8;’?%”?) |p:q:x) 1/2. This implies, for every z €
eeD jeld) N P19

-D’

(@) = f(ll < IFll Llle = [alell, <1/, (D

as any f € Hy(D) is Lipschitz continuous with constant
| fIl, L (De Freitas et al., 2012, Lemma 1).

Theorem 4 (Regret bound for GP-TS) Ler § € (0,1),
D C [0,7]¢ be compact and convex, ||f||, < B and
{et}+ a conditionally R-sub-Gaussian sequence. Run-
ning GP-TS for a function f lying in the RKHS Hy (D)
and with decision sets D; chosen as above, with prob-
ability at least 1 — 6, the regret of GP-TS satis-

fies Ry = O(/(rr + n(2/8)dn(BdT) (VTr +
Tln(2/6))>.

Comparison with IGP-UCB. Observe that regret scal-
ing of GP-TS is O(y7VdT) which is a multiplicative
\/d factor away from the bound O(v7+/T) obtained for
IGP-UCB and similar behavior is reflected in our simula-
tions on synthetic data. The additional multiplicative fac-
tor of y/dIn(BdT) in the regret bound of GP-TS is es-
sentially a consequence of discretization. How to remove
this extra logarithmic dependency, and make the analysis
discretization-independent, remains an open question.

Remark. The regret bound for GP-TS is inferior compared
to IGP-UCB in terms of the dependency on dimension d,
but to the best of our knowledge, Theorem 4 is the first
(frequentist) regret guarantee of Thompson Sampling in the
agnostic, non-parametric setting of infinite action spaces.

Linear Models and a Matching Lower Bound. If the
mean rewards are perfectly linear, i.e. if there exists a
0 € R? such that f(x) = 6T for all x € D, then we
are in the parametric setup, and one way of casting this
in the kernelized framework is by using the linear kernel
k(z,2') = ™. For this kernel, 77 = O(dInT), and the
regret scaling of IGP-UCB is O(d+/T') and that of GP-TS
is O(d3/?\/T), which recovers the regret bounds of their
linear, parametric analogues OFUL (Abbasi-Yadkori et al.,
2011) and Linear Thompson sampling (Agrawal & Goyal,
2013), respectively. Moreover, in this case d = d, thus
the regret of IGP-UCB is v/d factor away from that of Ker-
nelUCB. But the regret bound of KernelUCB also depends
on the number of arms N, and if NV is exponential in d,
then it also suffers O(d+/T') regret. We remark that a sim-

ilar O(In®/?T') factor improvement, as obtained by IGP-
UCB over GP-UCB, was achieved in the linear parametric
setting by (Abbasi-Yadkori et al., 2011) in the OFUL al-
gorithm, over its predecessor ConfidenceBall (Dani et al.,
2008). Finally we see that the for linear bandit problem
with infinitely many actions, IGP-UCB attains the infor-
mation theoretic lower bound of Q(d\/f) (see (Dani et al.,
2008)), but GP-TS is a factor of v/d away from it.

5. Overview of Techniques

We briefly outline here the key arguments for all the theo-
rems in Section 4. See Chowdhury & Gopalan (2017) for
complete proofs.

Proof Sketch for Theorem 1. It is convenient to as-
sume that K, the induced kernel matrix at time ¢, is in-
vertible, since this is where the crux of the argument lies.
First we show that for any function ¢ : D — R and
for all ¢ > 0, thanks to the sub-Gaussian property (1),
the process {M,gq = exp(el g1t — 3 H91:t||2)} is a non-
negative super-martingale with respect to the ﬁlttration Fi,
where g4 = [g(z1),...,9(z)]T and in fact satisfies
E[M/] < 1. The chief difficulty is to handle the behav-
ior of M, at a (random) stopping time, since the sizes of
quantities such as €., at the stopping time will be random.

We next construct a mixture martingale M; by mix-
ing M} over g drawn from an independent GPp (0, k)
Gaussian process, which is a measure over a large
space of functions, i.e., the space RP. Then, by a
change of measure argument, we show that this induces
a mixture distribution which is essentially (0, K;) over
any desired finite dimension ¢, thus obtaining M, =

1 1 2
o exp (2 Hsl:tH(HK:l),l ) Next from the fact

that E[M,;] < 1 and from Markov’s inequality, for any
9 € (0,1), we obtain

P [levr s viry > 2l (VT + K7)/6) | <5

Finally, we lift this bound for all ¢ through a standard stop-
ping time construction as in Abbasi-Yadkori et al. (2011).

Proof Sketch for Theorem 2. Here we sketch the
special case of n = 0, ie. A= 1 Ob-
serve that | (x) — f(x )| is upper bounded by sum of
two terms P = |k(2)T(Ki+ 1) 'ery| and Q :=
|ke(2) (K + 1)~ fre — f(z)|. Now we observe that

o?(z) = p(x)T(®T®; + I)"'¢(z) and use this obser-
vation to show that P = |o(@)"(®F @, + 1)1 0] ey
and Q = |¢(z)" (@] ®; + 1)~ f|, which are in turn up-

per bounded by the terms o () ||St\|v v and || fl], o¢(x)
respectively. Then the result follows" using Theorem 1,
along with the assumption that || f||, < B and the fact that
2 In(det(I + K;)) < 7 as. when K, is invertible.



On Kernelized Multi-armed Bandits

Proof Sketch for Theorem 3. First from Theorem 2 and
the choice of x; in Algorithm 1, we show that the instanta-
neous regret 7, at round ¢ is upper bounded by 25,041 ()
with probability at least 1 — §. Then the result follows by
bounding the term ZtT:l oi—1(x¢) by O\/THr).

Proof Sketch for Theorem 4. We follow a similar ap-
proach given in Agrawal & Goyal (2013) to prove the re-
gret bound of GP-TS. First observe that from our choice of
discretization sets Dy, the instantaneous regret at round ¢
is given by r, = f(2*) — f([a*])) + f(la*]e) — f(ar) <
& + Ay(z), where Ay(z) := f([z*]¢) — f(z) and [2*],
is the closest point to * in D;. Now at each round ¢, af-
ter an action is chosen, our algorithm improves the confi-
dence about true reward function f, via an update of 1, (-)
and k. (-, -). However, if we play a suboptimal arm, the re-
gret suffered can be much higher than the improvement of
our knowledge. To overcome this difficulty, at any round
t, we divide the arms (in the present discretization D)
into two groups: saturated arms, Sy, defined as those with
Ai(z) > ciop—1(x) and unsaturated otherwise, where c;
is an appropriate constant. The idea is to show that the
probability of playing a saturated arm is small and then
bound the regret of playing an unsaturated arm in terms
of standard deviation. This is useful because the inequality
Zle oi—1(x¢) < O(v/T~r) allows us to bound the total
regret due to unsaturated arms.

First we lower bound the probability of playing an unsatu-
rated arm at round ¢. We define a filtration F,_; as the his-
tory H:—1 up to round ¢ — 1 and prove that for “most” (in
a high probability sense) F,_,, P [a:t €D\ S | f;_l} >
p—1/t2, where p = 1/4e+/w. This observation, along with
concentration bounds for f;(z) and f(x) and “smoothness”
of f, allow us to show that the expected regret at round
t is upper bounded in terms of o;_j(x¢), i.e. in terms
of regret due to playing an unsaturated arm. More pre-

cisely, we show that for “most” ‘Ft/—l? E {rt | ]-";_1} <

711;‘33 {O’t—l(ajt) |‘7:,;_1} + 2BFL and use it to prove

12
that X, ~ r, — B0y y(z) — 2BH:t > 1is a
super-martingale difference sequence adapted to filtration
{F.}+>1. Now, using the Azuma-Hoeffding inequality,
along with the bound on Zthl ot—1(x¢), we obtain the de-

sired high-probability regret bound.

6. Experiments

In this section we provide numerical results on both syn-
thetically generated test functions and functions from real-
world data. We compare GP-UCB, IGP-UCB and GP-TS
with GP-EI and GP-PI'!.

""GP-EI and PI perform similarly and thus are not separately
distinguishable in the plots.

GP-PI GP-PI
2~ GP-FI e
sfj e~ GP-T8 ~4—GP-TS
,ol|e-cP-UcB -e-GP-UCB
-~ IGP-UCB *ll -=-16P-UCB
2

Cumulative Regret
Cumulative Regret

(a) (b)

Figure 1. Cumulative regret for functions lying in the RKHS cor-
responding to (a) Squared Exponential kernel and (b) Matérn ker-
nel.

Cumulative Regret

Cumulative Regret

T 2 5 15 B
Rounds x10* Rounds x10*

(a) ()

Figure 2. Cumulative regret for functions lying in the GP corre-
sponding to (a) Squared Exponential kernel and (b) Matérn ker-
nel.

Synthetic Test Functions. We use the following procedure
to generate test functions from the RKHS. First we sample
100 points uniformly from the interval [0, 1] and use that as
our decision set. Then we compute a kernel matrix K on
those points and draw reward vector y ~ N (0, K). Finally,
the mean of the resulting posterior distribution is used as
the test function f. We set noise parameter R? to be 1%
of function range and use A = R2. We used Squared Ex-
ponential kernel with lengthscale parameter [ = 0.2 and
Matérn kernel with parameters v = 2.5, = 0.2. Pa-
rameters (3, Bt» v; of IGP-UCB, GP-UCB and GP-TS are
chosen as given in Section 3, with § = 0.1, B2 = fTKf
and v, set according to theoretical upper bounds for corre-
sponding kernels. We run each algorithm for 7" = 30000
iterations, over 25 independent trials (samples from the
RKHS) and plot the average cumulative regret along with
standard deviations (Figure 1). We see a significant im-
provement in the performance of IGP-UCB over GP-UCB.
In fact IGP-UCB performs the best in the pool of competi-
tors, while GP-TS also fares reasonably well compared to
GP-UCB and GP-EI/GP-PL

We next sample 25 random functions from the GP(0, K)
and perform the same experiment (Figure 2) for both ker-
nels with exactly same set of parameters. The relative per-
formance of all methods is similar to that in the previous
experiment, which is the arguably harder “agnostic” setting
of a fixed, unknown target function.

Standard Test Functions. We consider 2 well-known
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GP-EI

0ol - GP-TS

£ 0|| - GP-UCB
-=-IGP-UCB

GP-PL
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-~ GP-UCB
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Figure 3. Cumulative regret for (a) Rosenbrock and (b) Hartman3
benchmark function.

synthetic benchmark functions for Bayesian Optimization:
Rosenbrock and Hartman3 (see Azimi et al. (2012) for ex-
act analytical expressions). We sample 100 d points uni-
formly from the domain of each benchmark function, d be-
ing the dimension of respective domain, as the decision set.
We consider the Squared Exponential kernel with | = 0.2
and set all parameters exactly as in previous experiment.
The cumulative regret for 25 independent trials on Rosen-
brock and Hartman3 benchmarks is shown in Figure 3. We
see GP-EI/PI perform better than the rest, while IGP-UCB
and GP-TS show competitive performance. Here no al-
gorithm is aware of the underlying kernel function, hence
we conjecture that the UCB- and TS- based algorithms are
somewhat less robust on the choice of kernel than EI/PI.

Temperature Sensor Data. We use temperature data'?
collected from 54 sensors deployed in the Intel Berkeley
Research lab between February 28th and April 5th, 2004
with samples collected at 30 second intervals. We tested all
algorithms in the context of learning the maximum read-
ing of the sensors collected between 8 am to 9 am. We
take measurements of first 5 consecutive days (starting Feb.
28th 2004) to learn algorithm parameters. Following Srini-
vas et al. (2009), we calculate the empirical covariance ma-
trix of the sensor measurements and use it as the kernel
matrix in the algorithms. Here R? is set to be 5% of the
average empirical variance of sensor readings and other al-
gorithm parameters is set similarly as in the previous exper-
iment with v, = 1 (found via cross-validation). The func-
tions for testing consist of one set of measurements from all
sensors in the two following days and the cumulative regret
is plotted over all such test functions. From Figure 4, we
see that IGP-UCB and GP-UCB performs the same, while
GP-TS outperforms all its competitors.

Light Sensor Data. We take light sensor data collected
in the CMU Intelligent Workplace in Nov 2005, which is
available online as Matlab structure'® and contains loca-
tions of 41 sensors, 601 train samples and 192 test samples.

Phttp://db.csail.mit.edu/labdata/labdata.
html

Bhttp://www.cs.cmu.edu/~guestrin/Class/
10708-F08/projects/lightsensor.zip

GP-PI
GP-EI
of - GP-TS
B soll "o~ GP-UCB
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Figure 4. Cumulative regret plots for (a) temperature data and (b)
light sensor data.

We compute the kernel matrix, estimate the noise and set
other algorithm parameters exactly as in the previous ex-
periment. Here also GP-TS is found to perform better than
the others, with IGP-UCB performing better than GP-EI/PI
(Figure 4).

Related work. An alternative line of work pertaining to
X-armed bandits (Kleinberg et al., 2008; Bubeck et al.,
2011; Carpentier & Valko, 2015; Azar et al., 2014) stud-
ies continuum-armed bandits with smoothness structure.
For instance, Bubeck et al. (2011) show that with a Lip-
schitzness assumption on the reward function, algorithms
based on discretizing the domain yield nontrivial regret

guarantees, of order Q(T S'%) in R?.  Other Bayesian
approaches to function optimization are GP-EI (Mockus,
1975), GP-PI (Kushner, 1964), GP-EST (Wang et al.,
2016) and GP-UCB, including the contextual (Krause &
Ong, 2011), high-dimensional (Djolonga et al., 2013; Wang
et al., 2013), time-varying (Bogunovic et al., 2016) safety-
aware (Gotovos et al., 2015), budget-constraint (Hoffman
et al., 2013) and noise-free (De Freitas et al., 2012) set-
tings. Other relevant work focuses on best arm identifica-
tion problem in the Bayesian setup considering pure explo-
ration (Griinewdlder et al., 2010). For Thompson sampling
(TS), Russo & Van Roy (2014) analyze the Bayesian regret
of TS, which includes the case where the target function is
sampled from a GP prior. Our work obtains the first fre-
quentist regret of TS for unknown, fixed functions from an
RKHS.

7. Conclusion

For bandit optimization, we have improved upon the exist-
ing GP-UCB algorithm, and introduced a new GP-TS al-
gorithm. The proposed algorithms perform well in practice
both on synthetic and real-world data. An interesting case
is when the kernel function is also not known to the algo-
rithms a priori and needs to be learnt adaptively. Moreover,
one can consider classes of time varying functions from the
RKHS, and general reinforcement learning with GP tech-
niques. There are also important questions on computa-
tional aspects of optimizing functions drawn from GPs.
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