
Distributed Batch Gaussian Process Optimization

A. Derivation of I[fD;yDt |yD1:t-1] Term in (2)

By the definition of conditional mutual information,

I[fD;yDt |yD1:t-1]

= H[yDt |yD1:t-1] � H[yDt |fD,yD1:t-1]

= H[yDt |yD1:t-1] � H[yDt |fDt]

= 0.5|Dt| log(2⇡e) + 0.5 log |�2
nI + ⌃DtDt | � 0.5|Dt| log(2⇡e) � 0.5 log |�2

nI|
= 0.5 log(|�2

nI + ⌃DtDt ||�2
nI|�1

)

= 0.5 log(|�2
nI + ⌃DtDt ||��2

n I|)
= 0.5 log |I + ��2

n ⌃DtDt |

where the third equality is due to the definition of Gaussian entropy, that is, H[yDt |yD1:t-1] , 0.5|Dt| log(2⇡e) +

0.5 log |�2
nI+⌃DtDt | and H[yDt |fDt] , 0.5|Dt| log(2⇡e)+0.5 log |�2

nI|, the latter of which follows from ✏ = y
x

�f(x) ⇠
N (0, �2

n) for all x 2 Dt and hence p(yDt |fDt) = N (0, �2
nI).

B. Proof of Proposition 1

log | DtDt |
= � log | �1

DtDt
|

= � log |U>U |
= � log |U>||U |
= � log |U |2

= �2 log

NY

n=1

|Unn|

= �2

NX

n=1

log |Unn|

= �
NX

n=1

log |Unn|2

= �
NX

n=1

log |U>
nn||Unn|

= �
NX

n=1

log |U>
nnUnn|

=

NX

n=1

log |U>
nnUnn|�1

=

NX

n=1

log |(U>
nnUnn)

�1|

where the first, third, fourth, eighth, ninth, and last equalities follow from the properties of the determinant, the second
equality is due to the Cholesky factorization of

�1
DtDt

, and the fifth equality follows from the property that the determinant
of an upper triangular block matrix is a product of determinants of its diagonal blocks (i.e., |U | =

QN
n=1 |Unn|).

Distributed Batch Gaussian Process Optimization

C. Proof of Proposition 4
From the definition of DKL(DtDt , DtDt),

DKL(DtDt , DtDt)

= 0.5
⇣

tr(DtDt
�1
DtDt

) � log | DtDt
�1
DtDt

| � |Dt|
⌘

= 0.5
⇣
� log | DtDt

�1
DtDt

|
⌘

= 0.5
�� log | DtDt | + log | DtDt |

�

= 0.5 log | DtDt | � 0.5 log | DtDt |
=

˜I[fD;yDt |yD1:t-1] � I[fD;yDt |yD1:t-1] .

The second equality is due to tr(DtDt
�1
DtDt

) = tr(DtDt
�1
DtDt

) = tr(I) = |Dt|, which follows from the observations
that the blocks within the B-block bands of DtDt and DtDt coincide and

�1
DtDt

is B-block-banded (Proposition 3). It
follows that

DKL(DtDt , DtDt)

=

˜I[fD;yDt |yD1:t-1] � I[fD;yDt |yD1:t-1]

= 0.5 log | DtDt | �
|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

 0.5 log

Y

x2Dt

�
1 + ��2

n ⌃{x}{x}
�
!

�
|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

=

|Dt|X

b=1

0.5 log

�
1 + ��2

n ⌃{xb}{xb}
��

|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘


|Dt|X

b=1

0.5 log

⇣
1 + ��2

n exp(2C)⌃

b�1
{xb}{xb}

⌘
�

|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

 exp(2C)

|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘
�

|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

= (exp(2C) � 1)

|Dt|X

b=1

0.5 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

= (exp(2C) � 1) I[fD;yDt |yD1:t-1] .

The second and last equalities are due to Lemma 4 in Appendix F and ⌃b�1
{xb}{xb} is defined in Definition 1 in Appendix F.

The first inequality is due to Hadamard’s inequality and the observation that the blocks within the B-block bands of DtDt

and DtDt (and thus their diagonal elements) coincide. The second inequality is due to Lemma 2 in Appendix F. The third
inequality is due to Bernoulli’s inequality.

Remark. The first inequality can also be interpreted as bounding the approximated information gain for an arbitrary DtDt

by the approximated information gain for the DtDt with the highest possible degree of our proposed Markov approxi-
mation, i.e., for N = |Dt| and B = 0. In this case, all inputs of the batch are assumed to have conditionally independent
corresponding outputs such that the determinant of the approximated matrix reduces to the product of its diagonal ele-
ments which are equal to the diagonal elements of the original matrix. Thus, | DtDt | Q

x2Dt

�
1 + ��2

n ⌃{x}{x}
�

which
interestingly coincides with Hadamard’s inequality. Note that we only consider B � 1 for our proposed algorithm (Propo-
sition 2) since the case of B = 0 entails an issue similar to that discussed at the beginning of Section 3 of selecting the
same input |Dt| times within a batch.

D. Minimal KL Distance of Approximated Matrix
For the approximation quality of DtDt (4), the following result shows that the Kullback-Leibler (KL) distance of DtDt

from DtDt is the least among all |Dt| ⇥ |Dt| matrices with a B-block-banded inverse:

Proposition 5. Let KL distance DKL(, e) , 0.5(tr(e �1
) � log | e �1| � |Dt|) between two |Dt| ⇥ |Dt| symmet-

ric positive definite matrices and e measure the error of approximating with e . Then, DKL(DtDt , DtDt) 

Distributed Batch Gaussian Process Optimization

DKL(DtDt ,
e
) for any matrix e with a B-block-banded inverse.

Proof.

DKL(DtDt , DtDt) + DKL(DtDt ,
e
)

= 0.5
⇣

tr(DtDt
�1
DtDt

)�log | DtDt
�1
DtDt

|�|Dt|
⌘

+ 0.5
⇣

tr(DtDt
e

�1
)�log | DtDt

e

�1|�|Dt|
⌘

= 0.5
⇣

tr(DtDt
e

�1
) � log | DtDt | � log |e �1| � |Dt|

⌘

= 0.5
⇣

tr(DtDt
e

�1
) � log | DtDt

e

�1| � |Dt|
⌘

= DKL(DtDt ,
e
) .

The second equality is due to tr(DtDt
�1
DtDt

) = tr(DtDt
�1
DtDt

) = tr(I) = |Dt|, which follows from the observa-
tions that the blocks within the B-block bands of DtDt and DtDt coincide and

�1
DtDt

is B-block-banded (Proposi-
tion 3). The third equality follows from the first observation above and the definition that e �1 is B-block-banded. Since
DKL(DtDt ,

e
) � 0, DKL(DtDt , DtDt)  DKL(DtDt ,

e
).

E. Pseudocode for DB-GP-UCB

Algorithm 1 DB-GP-UCB
Input: Objective function f , input domain D, batch size |Dt|, time horizon T , prior mean m

x

and kernel k
xx

0 ,
approximation parameters B and N
for t = 1, . . . , T do

Select acquisition function a(Dt) ,

8
><

>:

1

>µDt +

q
↵t I[fD;yDt |yD1:t-1

] (2) if B = N � 1 ,

PN
n=1 1

>µDtn +

q
0.5↵t log | DtnDtn|DB

tn
| (5) otherwise

Select batch Dt , arg maxDt⇢D a(Dt)

Query batch Dt to obtain yDt
, (f(x) + ✏)>

x2Dt

end for
Output: Recommendation ex , arg max

x2D µ{x}

F. Proof of Theorem 1
We first define a different notion of posterior variance:
Definition 1 (Updated Posterior Variance). Let Dt , {x1, . . . ,x|Dt|} be the batch selected in iteration t. Assume an
arbitrary ordering of the inputs in Dt. Then, for 0  b � 1 < |Dt|, ⌃b�1

{xb}{xb} is defined as the updated posterior variance

at input xb that is obtained by applying (1) conditioned on the previous inputs in the batch Db�1
t , {x1, . . . ,xb�1}. Note

that performing this update is possible without querying Db�1
t since ⌃b�1

{xb}{xb} is independent of the outputs yDb�1
t

. For

b � 1 = 0, ⌃b�1
{xb}{xb} reduces to ⌃{xb}{xb}.

The following lemmas are necessary for proving our main result here:
Lemma 1. Let � 2 (0, 1) be given and �t , 2 log(|D|⇡t/�) where

P1
t=1 ⇡�1

t = 1 and ⇡t > 0. Then,

Pr

⇣
8x 2 D 8t 2 N |f(x) � µ{x}|  �1/2

t ⌃

1/2

{x}{x}

⌘
� 1 � � .

Lemma 1 above corresponds to Lemma 5.1 in (Srinivas et al., 2010); see its proof therein. For example, ⇡t = t2⇡2/6 > 0

satisfies
P1

t=1 ⇡�1
t = 1.

Lemma 2. For f sampled from a known GP prior with known noise variance �2
n, the ratio of ⌃{xb}{xb} to ⌃b�1

{xb}{xb} for
all xb 2 Dt is bounded by

⌃{xb}{xb}

⌃

b�1
{xb}{xb}

= exp

⇣
2 I[f{xb};yDb�1

t
|yD1:t-1]

⌘
 exp(2C)

Distributed Batch Gaussian Process Optimization

where ⌃b�1
{xb}{xb} and Db�1

t are previously defined in Definition 1, and for all x 2 D and t 2 N,

C � I[f{x};yDb�1
t

|yD1:t-1]

is a suitable constant.

Lemma 2 above is a combination of Proposition 1 and equation 9 in (Desautels et al., 2014); see their proofs therein. The
only difference is that we equivalently bound the ratio of variances instead of the ratio of standard deviations, thus leading
to an additional factor of 2 in the argument of exp.

Remark. Since the upper bound exp(2C) will appear in our regret bounds, we need to choose C suitably. A straightforward
choice C , �|Dt|�1 = maxA⇢D,|A||Dt|�1 I[fD;yA] � maxA⇢D,|A||Dt|�1 I[fD;yA|yD1:t-1] � I[fD;yDb�1

t
|yD1:t-1] �

I[f{x};yDb�1
t

|yD1:t-1] (see equations 11, 12, and 13 in (Desautels et al., 2014)) is unfortunately unsatisfying from the
perspective of asymptotic scaling since it grows at least as ⌦(log |Dt|), thus implying that exp(2C) grows at least linearly
in |Dt| and yielding a regret bound that is also at least linear in |Dt|. The work of Desautels et al. (2014) shows that when
initializing an algorithm suitably, one can obtain a constant C independent of the batch size |Dt|. Refer to Section 4 in
(Desautels et al., 2014) for a more detailed discussion.

Lemma 3. For all t 2 N and xb 2 Dt,

⌃

b�1
{xb}{xb}  0.5C0 log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

where C0 , 2/ log(1 + ��2
n).

Lemma 3 above corresponds to an intermediate step of Lemma 5.4 in (Srinivas et al., 2010); see its proof therein.

Lemma 4. The information gain for a batch Dt chosen in any iteration t can be expressed in terms of the updated posterior
variances of the individual inputs xb 2 Dt, b 2 {1, . . . , |Dt|} of the batch Dt. That is, for all t 2 N,

I[fD;yDt |yD1:t-1] = 0.5

|Dt|X

b=1

log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘
.

Lemma 4 above corresponds to Lemma 5.3 in (Srinivas et al., 2010) (the only difference being that we equivalently sum
over 1, . . . , |Dt| instead of 1, . . . , T); see its proof therein.

Lemma 5. Let � 2 (0, 1) be given, C0 , 2/ log(1 + ��2
n), and ↵t , C0|Dt| exp(2C)�t where �t and exp(2C) are

previously defined in Lemmas 1 and 2, respectively. Then,

Pr

8Dt ⇢ D 8t 2 N

X

x2Dt

|f(x) � µ{x}| 
p

↵t I[fD;yDt |yD1:t-1]

!
� 1 � � .

Proof. For all Dt ⇢ D and t 2 N,
X

x2Dt

�t ⌃{x}{x}

= �t

|Dt|X

b=1

⌃{xb}{xb}

 �t

|Dt|X

b=1

exp(2C) ⌃

b�1
{xb}{xb}

 0.5C0 exp(2C)�t

|Dt|X

b=1

log

⇣
1 + ��2

n ⌃

b�1
{xb}{xb}

⌘

= C0 exp(2C)�t I[fD;yDt |yD1:t-1]

= |Dt|�1↵t I[fD;yDt |yD1:t-1]

Distributed Batch Gaussian Process Optimization

where the first inequality is due to Lemma 2, the second inequality is due to Lemma 3, and the second equality is due to
Lemma 4. Thus,

X

x2Dt

�1/2
t ⌃

1/2

{x}{x} 
s

|Dt|
X

x2Dt

�t⌃{x}{x} 
p

↵t I[fD;yDt |yD1:t-1]

where the first inequality is due to the Cauchy-Schwarz inequality. It follows that

Pr

8Dt ⇢ D 8t 2 N

X

x2Dt

|f(x) � µ{x}| 
p

↵t I[fD;yDt |yD1:t-1]

!

� Pr

8Dt ⇢ D 8t 2 N

X

x2Dt

|f(x) � µ{x}| 
X

x2Dt

�1/2
t ⌃

1/2

{x}{x}

!

� Pr

⇣
8x 2 D 8t 2 N |f(x) � µ{x}|  �1/2

t ⌃

1/2

{x}{x}

⌘

�1 � �

where the first two inequalities are due to the property that for logical propositions A and B, [A =) B] =) [Pr(A) 
Pr(B)], and the last inequality is due to Lemma 1.

Lemma 6. Let ⌫t � ˜I[fD;yDt |yD1:t-1]�I[fD;yDt |yD1:t-1] be an upper bound on the approximation error of DtDt . Then,
for all t 2 N,

NX

n=1

q
0.5 log | DtnDtn|DB

tn
| 

p
N(I[fD;yDt |yD1:t-1] + ⌫t) .

Proof.

NX

n=1

q
0.5 log | DtnDtn|DB

tn
|


vuutN

NX

n=1

0.5 log | DtnDtn|DB
tn

|

=

q
N˜I[fD;yDt |yD1:t-1]

=

q
N(I[fD;yDt |yD1:t-1] +

˜I[fD;yDt |yD1:t-1] � I[fD;yDt |yD1:t-1])


p

N(I[fD;yDt |yD1:t-1] + ⌫t)

where the first inequality is due to the Cauchy-Schwarz inequality.

Lemma 7. Let t 2 N be given. If

X

x2Dt

|f(x) � µ{x}| 
p

↵t I[fD;yDt |yD1:t-1] (6)

for all Dt ⇢ D, then
P

x2Dt
r
x

 2

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t) and min

x2Dt
r
x


2

q
|Dt|�2↵t N(I[fD;yDt

|yD1:t-1] + ⌫t).

Distributed Batch Gaussian Process Optimization

Proof.
X

x2Dt

r
x

=

X

x2Dt

(f(x

⇤
) � f(x))

=

X

x2Dt

f(x

⇤
) �

X

x2Dt

f(x)


0

@
X

x2Dt

µ{x} +

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t)

1

A�
X

x2Dt

f(x)

=

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t) +

0

@
X

x2Dt

µ{x} �
X

x2Dt

f(x)

1

A

=

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t) +

X

x2Dt

�
µ{x} � f(x)

�


q

↵t N(I[fD;yDt
|yD1:t-1] + ⌫t) +

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t)

= 2

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t) .

(7)

The first equality in (7) is by definition (Section 2). The first inequality in (7) is due to

X

x2Dt

f(x

⇤
)

=

X

x2D⇤
t

f(x)


X

x2D⇤
t

µ{x} +

q
↵t I[fD;yD⇤

t
|yD1:t-1]


X

x2D⇤
t

µ{x} +

q
↵t

˜I[fD;yD⇤
t
|yD1:t-1]

=

X

x2D⇤
t

µ{x} +

vuut↵t

NX

n=1

0.5 log | D⇤
tnD⇤

tn|D⇤B
tn

|


X

x2D⇤
t

µ{x} +

p
↵t

NX

n=1

q
0.5 log | D⇤

tnD⇤
tn|D⇤B

tn
|


X

x2Dt

µ{x} +

p
↵t

NX

n=1

q
0.5 log | DtnDtn|DB

tn
|


X

x2Dt

µ{x} +

q
↵t N(I[fD;yDt

|yD1:t-1] + ⌫t)

(8)

where, in (8), the first inequality is due to (6), the second inequality is due to Proposition 4 (see the paragraph after this

proposition in particular), the third inequality is due to the simple observation that
PN

n=1

p
an �

qPN
n=1 an, the fourth

inequality follows from the definition of Dt in (5) and, with a slight abuse of notation, D⇤
t is defined as a batch of |Dt|

inputs x

⇤, and the last inequality is due to Lemma 6. The last inequality in (7) follows from (6) and an argument equivalent
to the one in (8) (i.e., by substituting D⇤

t by Dt).

From (7),

min

x2Dt

r
x

 1

|Dt|
X

x2Dt

r
x

 2

q
|Dt|�2↵t N(I[fD;yDt

|yD1:t-1] + ⌫t) .

Distributed Batch Gaussian Process Optimization

Main Proof.

R0
T

=

TX

t=1

X

x2Dt

r
x


TX

t=1

2

q
↵t N(I[fD;yDt

|yD1:t-1
] + ⌫t)

 2

vuutT

TX

t=1

↵t N(I[fD;yDt
|yD1:t-1

] + ⌫t)

 2

vuutT↵T N

TX

t=1

I[fD;yDt
|yD1:t-1

] +

TX

t=1

⌫t

!

= 2

q
T↵T N

�
I[fD;yD1:T

] + ⌫̄T

�

 2

p
T↵T N (�T + ⌫̄T)

=

q
C2T |DT | exp(2C)�T N (�T + ⌫̄T)

holds with probability 1� � where the first equality is by definition (Section 2), the first inequality follows from Lemmas 5
and 7, the second inequality is due to the Cauchy-Schwarz inequality, the third inequality is due to the non-decreasing
↵t with increasing t, the second equality follows from the chain rule for mutual information and the definition of ⌫̄T ,PT

t=1 ⌫t, the fourth inequality is by definition (Theorem 1), and the third equality is due to the definition of ↵t in Lemma 5,
|D1| = . . . = |DT | and the definition that C2 , 4C0 = 8/ log(1 + ��2

n).

Analogous reasoning leads to the result that

RT =

TX

t=1

min

x2Dt

r
x

 2

q
T |DT |�2↵T N(�T + ⌫̄T) =

q
C2T |DT |�1

exp(2C)�T N(�T + ⌫̄T)

holds with probability 1 � �, where the first equality is by definition (Section 2).

G. Comparison of Regret Bounds

Table 1. Bounds on RT (�T , 2 log(|D|T 2⇡2/(6�)), C1 , 4/ log(1 + ��2
n), C2 , 2C1, C3 , 9C1). Note that |DT | = 1 in �T

for GP-UCB and HDPP , PT
t=1 H(DPP (Kt)) with H(DPP (K)) denoting the entropy of a (|Dt| � 1)-DPP with kernel K (see

(Kathuria et al., 2016) for details on their proposed kernels). Also, note that for DB-GP-UCB and GB-BUCB, we assume the use of the
initialization strategy proposed by Desautels et al. (2014); otherwise, the factor C0 is replaced by

p
exp(2C).

BO Algorithm Bound on RT

DB-GP-UCB (5) C 0
p

C2T |DT |�1�T N(�T + ⌫̄T)

GP-UCB-PE (Contal et al., 2013)
p

C1T |DT |�1�T �T

GP-BUCB (Desautels et al., 2014) C 0pC2T |DT |�1�T |DT |�T

GP-UCB (Srinivas et al., 2010)
p

C2T�T �T

UCB-DPP-SAMPLE (Kathuria et al., 2016)
p

2C3T |DT |�T [�T � HDPP + |DT | log(|D|)]

Distributed Batch Gaussian Process Optimization

Table 2. Bounds on maximum mutual information �T (Srinivas et al., 2010; Kathuria et al., 2016) and values of C0 (Desautels et al.,
2014) for different commonly-used kernels (↵ , d(d+ 1)/(2⌫ + d(d+ 1))  1 with ⌫ being the Matérn parameter).

Kernel �T C 0

Linear d log(T |DT |) exp(2/e)

RBF (log(T |DT |))d
exp((2d/e)d

)

Matérn (T |DT |)↵
log(T |DT |) e

H. Synthetic Benchmark Objective Functions and Real-World pH Field

Table 3. Synthetic benchmark objective functions.

Name Function D
Branin-Hoo f(x) = a(x2 � bx2

1 + cx1 � r)2 + s(1 � t) cos(x1) + s [�5, 15]

2

where a = 1, b = 5.1/(4⇡2
), c = 5/⇡, r = 6, s = 10, and t = 1/(8⇡).

gSobol f(x) =

dY

i=1

|4xi � 2| + ai

1 + ai
[�5, 5]

2

where d = 2 and ai = 1 for i = 1, . . . , d.

Mixture of cosines f(x) = 1 �P2
i=1(g(xi) � r(xi)) [�1, 1]

2

where g(xi) = (1.6xi � 0.5)

2 and r(xi) = 0.3 cos(3⇡(1.6xi � 0.5)).

5 10 15 20 25 30

2

4

6

8

10

12

14

16

18

5.5

6

6.5

7

7.5

8

8.5

Figure 3. Real-world pH field of Broom’s Barn farm (Webster & Oliver, 2007).

Distributed Batch Gaussian Process Optimization

I. Details on the Implementations of Batch BO Algorithms

Table 4. Details on the available implementations of the batch BO algorithms for comparison with DB-GP-UCB in our experiments.

BO Algorithm Language URL of Source Code

GP-BUCB MATLAB http://www.gatsby.ucl.ac.uk/˜tdesautels/
SM-UCB MATLAB http://www.gatsby.ucl.ac.uk/˜tdesautels/
GP-UCB-PE MATLAB http://econtal.perso.math.cnrs.fr/software/
q-EI R http://cran.r-project.org/web/packages/DiceOptim/
BBO-LP Python http://sheffieldml.github.io/GPyOpt/

J. Analysis of the Trade-Off between the Approximation Quality vs. Time Efficiency of
DB-GP-UCB

We now analyze the trade-off between the approximation quality vs. time efficiency of DB-GP-UCB by varying the Markov
order B and number N of functions in DCOP. The mixture of cosines function (Anderson et al., 2000) is used as the objec-
tive function f and modeled as a sample of a GP. A large batch size |DT | = 16 is used as it allows us to compare a multitude
of different configurations of [N, B] 2 {[16, 14], [16, 12], . . . , [16, 0], [8, 6], [8, 4], [8, 2], [8, 0], [4, 2], [4, 0], [2, 0]}. The ac-
quisition function in our batch variant of GP-UCB (2) is used as the performance metric to evaluate the approximation
quality of the batch DT (i.e., by plugging DT into (2) to compute the value of the acquisition function) produced by our
DB-GP-UCB algorithm (5) for each configuration of [N, B].

Fig. 4 (top) shows results of the normalized values of the acquisition function in (2) achieved by plugging in the batch DT

produced by DP-GP-UCB (5) for different configurations of [N, B] such that the optimal value of (2) (i.e., achieved in the
case of N = 1) is normalized to 1. Fig. 4 (bottom) shows the corresponding time complexity of DP-GP-UCB plotted in
log|D|-scale, thus displaying the values of (B + 1)|DT |/N . It can be observed that the approximation quality improves
near-linearly with an increasing Markov order B at the expense of higher computational cost (i.e., exponential in B).

B=N-1 [16,14] [16,12] [16,10] [16,8] [16,6] [16,4] [16,2] [16,0] [8,6] [8,4] [8,2] [8,0] [4,2] [4,0] [2,0]

0.92

0.94

0.96

0.98

1

1.02

V
a

lu
e

 o
f

a
cq

.
fu

n
ct

io
n

B=N-1 [16,14] [16,12] [16,10] [16,8] [16,6] [16,4] [16,2] [16,0] [8,6] [8,4] [8,2] [8,0] [4,2] [4,0] [2,0]

Configuration of [N,B]

0

5

10

15

20

T
im

e
 c

o
m

p
le

xi
ty

N=1

N=1

Figure 4. (Top) Mean of the normalized value of the acquisition function in (2) (over 64 experiments of randomly selected noisy observa-
tions of size 5) achieved by plugging in the batch DT (of size 16) produced by our DP-GP-UCB algorithm (5) for different configurations
of [N,B] (including the case of N = 1 yielding the optimal value of (2)); note that the horizontal line is set at the optimal baseline of
y = 1 for easy comparison and the y-axis starts at y = 0.915. (Bottom) Time complexity of DP-GP-UCB for different configurations
of [N,B] plotted in log|D|-scale.

http://www.gatsby.ucl.ac.uk/~tdesautels/
http://www.gatsby.ucl.ac.uk/~tdesautels/
http://econtal.perso.math.cnrs.fr/software/
http://cran.r-project.org/web/packages/DiceOptim/
http://sheffieldml.github.io/GPyOpt/

Distributed Batch Gaussian Process Optimization

K. Replication of Regret Graphs including Error Bars

5 10 15 20 25 30

T

0

1

2

3

4

5

6

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP
qEI

5 10 15 20 25 30

T

0

1

2

3

4

5

6

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP
qEI

5 10 15 20 25 30

T

0

2

4

6

8

10

12

14

16

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP
qEI

2 4 6 8 10 12 14 16

T

0

0.5

1

1.5

2

2.5

3

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

2 4 6 8 10 12 14 16

T

0

0.5

1

1.5

2

2.5

3

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

2 4 6 8 10 12 14 16

T

0

1

2

3

4

5

6

7

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 2 3 4 5 6 7 8

T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 2 3 4 5 6 7 8

T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 2 3 4 5 6 7 8

T

0

0.5

1

1.5

2

2.5

3

3.5

4
R

e
g

re
t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 1.5 2 2.5 3 3.5 4

T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 1.5 2 2.5 3 3.5 4

T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

1 1.5 2 2.5 3 3.5 4

T

0

0.5

1

1.5

2

R
e

g
re

t

DB-GP-UCB
GP-UCB-PE
GP-BUCB
SM-UCB
BBO-LP

Branin-Hoo gSobol pH field

Figure 5. Cumulative regret incurred by tested algorithms with varying batch sizes |DT | = 2, 4, 8, 16 (rows from top to bottom) using a
fixed budget of T |DT | = 64 function evaluations for the Branin-Hoo function, gSobol function, and real-world pH field. The error bars
denote the standard error.

