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Abstract
This paper presents a novel distributed batch
Gaussian process upper confidence bound
(DB-GP-UCB) algorithm for performing batch
Bayesian optimization (BO) of highly complex,
costly-to-evaluate black-box objective functions.
In contrast to existing batch BO algorithms, DB-
GP-UCB can jointly optimize a batch of inputs
(as opposed to selecting the inputs of a batch
one at a time) while still preserving scalability
in the batch size. To realize this, we generalize
GP-UCB to a new batch variant amenable to a
Markov approximation, which can then be natu-
rally formulated as a multi-agent distributed con-
straint optimization problem in order to fully ex-
ploit the efficiency of its state-of-the-art solvers
for achieving linear time in the batch size. Our
DB-GP-UCB algorithm offers practitioners the
flexibility to trade off between the approxima-
tion quality and time efficiency by varying the
Markov order. We provide a theoretical guar-
antee for the convergence rate of DB-GP-UCB
via bounds on its cumulative regret. Empiri-
cal evaluation on synthetic benchmark objective
functions and a real-world optimization problem
shows that DB-GP-UCB outperforms the state-
of-the-art batch BO algorithms.

1. Introduction
Bayesian optimization (BO) has recently gained consider-
able traction due to its capability of finding the global max-
imum of a highly complex (e.g., non-convex, no closed-
form expression nor derivative), noisy black-box objective
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function with a limited budget of (often costly) function
evaluations, consequently witnessing its use in an increas-
ing diversity of application domains such as robotics, en-
vironmental sensing/monitoring, automatic machine learn-
ing, among others (Brochu et al., 2010; Shahriari et al.,
2016). A number of acquisition functions (e.g., probabil-
ity of improvement or expected improvement (EI) over the
currently found maximum (Brochu et al., 2010), entropy-
based (Villemonteix et al., 2009; Hennig & Schuler, 2012;
Hernández-Lobato et al., 2014), and upper confidence
bound (UCB) (Srinivas et al., 2010)) have been devised
to perform BO: They repeatedly select an input for eval-
uating/querying the black-box function (i.e., until the bud-
get is depleted) that intuitively trades off between sampling
where the maximum is likely to be given the current, pos-
sibly imprecise belief of the function modeled by a Gaus-
sian process (GP) (i.e., exploitation) vs. improving the GP
belief of the function over the entire input domain (i.e., ex-
ploration) to guarantee finding the global maximum.

The rapidly growing affordability and availability of hard-
ware resources (e.g., computer clusters, sensor networks,
robot teams/swarms) have motivated the recent develop-
ment of BO algorithms that can repeatedly select a batch
of inputs for querying the black-box function in parallel in-
stead. Such batch/parallel BO algorithms can be classified
into two types: On one extreme, batch BO algorithms like
multi-points EI (q-EI) (Chevalier & Ginsbourger, 2013),
parallel predictive entropy search (PPES) (Shah & Ghahra-
mani, 2015), and the parallel knowledge gradient method
(q-KG) (Wu & Frazier, 2016) jointly optimize the batch of
inputs and hence scale poorly in the batch size. On the
other extreme, greedy batch BO algorithms (Azimi et al.,
2010; Contal et al., 2013; Desautels et al., 2014; González
et al., 2016) boost the scalability by selecting the inputs of
the batch one at a time. We argue that such a highly sub-
optimal approach to gain scalability is an overkill: In prac-
tice, each function evaluation is often much more compu-
tationally and/or economically costly (e.g., hyperparameter
tuning for deep learning, drug testing on human subjects),
which justifies dedicating more time to obtain better BO
performance. In this paper, we show that it is in fact possi-
ble to jointly optimize the batch of inputs and still preserve
scalability in the batch size by giving practitioners the flex-
ibility to trade off BO performance for time efficiency.
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To achieve this, we first observe that, interestingly, batch
BO can be perceived as a cooperative multi-agent decision
making problem whereby each agent optimizes a separate
input of the batch while coordinating with the other agents
doing likewise. To the best of our knowledge, this has not
been considered in the BO literature. In particular, if batch
BO can be framed as some known class of multi-agent de-
cision making problems, then it can be solved efficiently
and scalably by the latter’s state-of-the-art solvers. The key
technical challenge would therefore be to investigate how
batch BO can be cast as one of such to exploit its advan-
tage of scalability in the number of agents (hence, batch
size) while at the same time theoretically guaranteeing the
resulting BO performance.

To tackle the above challenge, this paper presents a novel
distributed batch BO algorithm (Section 3) that, in con-
trast to greedy batch BO algorithms (Azimi et al., 2010;
Contal et al., 2013; Desautels et al., 2014; González et al.,
2016), can jointly optimize a batch of inputs and, unlike
the batch BO algorithms (Chevalier & Ginsbourger, 2013;
Shah & Ghahramani, 2015; Wu & Frazier, 2016), still pre-
serve scalability in the batch size. To realize this, we gener-
alize GP-UCB (Srinivas et al., 2010) to a new batch variant
amenable to a Markov approximation, which can then be
naturally formulated as a multi-agent distributed constraint
optimization problem (DCOP) in order to fully exploit the
efficiency of its state-of-the-art solvers for achieving linear
time in the batch size. Our proposed distributed batch GP-
UCB (DB-GP-UCB) algorithm offers practitioners the flex-
ibility to trade off between the approximation quality and
time efficiency by varying the Markov order. We provide a
theoretical guarantee for the convergence rate of our DB-
GP-UCB algorithm via bounds on its cumulative regret.
We empirically evaluate the cumulative regret incurred by
our DB-GP-UCB algorithm and its scalability in the batch
size on synthetic benchmark objective functions and a real-
world optimization problem (Section 4).

2. Problem Statement, Background, and
Notations

Consider the problem of sequentially optimizing an un-
known objective function f : D → R where D ⊂ Rd
denotes a domain of d-dimensional input feature vectors.
We consider the domain to be discrete as it is known how
to generalize results to a continuous, compact domain via
suitable discretizations (Srinivas et al., 2010). In each it-
eration t = 1, . . . , T , a batch Dt ⊂ D of inputs is se-
lected for evaluating/querying f to yield a corresponding
column vector yDt

, (yx)>x∈Dt
of noisy observed outputs

yx , f(x)+ε with i.i.d. Gaussian noise ε ∼ N (0, σ2
n) and

noise variance σ2
n.

Regret. Supposing our goal is to get close to the global
maximum f(x∗) as rapidly as possible where x∗ ,
arg maxx∈D f(x), this can be achieved by minimizing a
standard batch BO objective such as the batch or full cu-
mulative regret (Contal et al., 2013; Desautels et al., 2014):
The notion of regret intuitively refers to a loss in reward
from not knowing x∗ beforehand. Formally, the instanta-
neous regret incurred by selecting a single input x to eval-
uate its corresponding f is defined as rx , f(x∗)− f(x).
Assuming a fixed cost of evaluating f for every possi-
ble batch Dt of the same size, the batch and full cumu-
lative regrets are, respectively, defined as sums (over it-
eration t = 1, . . . , T ) of the smallest instantaneous re-
gret incurred by any input within every batch Dt, i.e.,
RT ,

∑T
t=1 minx∈Dt

rx, and of the instantaneous re-
grets incurred by all inputs of every batch Dt, i.e., R′T ,∑T
t=1

∑
x∈Dt

rx. The convergence rate of a batch BO al-
gorithm can then be assessed based on some upper bound
on the average regret RT /T or R′T /T (Section 3) since the
currently found maximum after T iterations is no further
away from f(x∗) than RT /T or R′T /T . It is desirable for
a batch BO algorithm to asymptotically achieve no regret,
i.e., limT→∞RT /T = 0 or limT→∞R′T /T = 0, implying
that it will eventually converge to the global maximum.

Gaussian Processes (GPs). To guarantee no regret (Sec-
tion 3), the unknown objective function f is modeled as a
sample of a GP. Let {f(x)}x∈D denote a GP, that is, every
finite subset of {f(x)}x∈D follows a multivariate Gaus-
sian distribution (Rasmussen & Williams, 2006). Then,
the GP is fully specified by its prior mean mx , E[f(x)]
and covariance kxx′ , cov[f(x), f(x′)] for all x,x′ ∈ D,
which, for notational simplicity (and w.l.o.g.), are assumed
to be zero, i.e., mx = 0, and bounded, i.e., kxx′ ≤ 1, re-
spectively. Given a column vector yD1:t-1 , (yx)>x∈D1:t-1

of noisy observed outputs for some set D1:t−1 , D1 ∪
. . . ∪ Dt−1 of inputs after t− 1 iterations, a GP model can
perform probabilistic regression by providing a predictive
distribution p(fDt |yD1:t-1) = N (µDt ,ΣDtDt) of the latent
outputs fDt , (f(x))>x∈Dt

for any set Dt ⊆ D of inputs
selected in iteration t with the following posterior mean
vector and covariance matrix:

µDt
,KDtD1:t-1(KD1:t-1D1:t-1+σ

2
nI)−1yD1:t-1 ,

ΣDtDt
,KDtDt

−KDtD1:t-1(KD1:t-1D1:t-1+σ
2
nI)−1KD1:t-1Dt

(1)
where KBB′ , (kxx′)x∈B,x′∈B′ for all B,B′ ⊂ D.

GP-UCB and its Greedy Batch Variants. Inspired by the
UCB algorithm for the multi-armed bandit problem, the
GP-UCB algorithm (Srinivas et al., 2010) selects, in each
iteration, an input x ∈ D for evaluating/querying f that
trades off between sampling close to an expected maximum
(i.e., with large posterior mean µ{x}) given the current GP
belief of f (i.e., exploitation) vs. that of high predictive un-
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certainty (i.e., with large posterior variance Σ{x}{x}) to im-
prove the GP belief of f over D (i.e., exploration), that is,
maxx∈D µ{x} + β1/2

t Σ1/2

{x}{x} where the parameter βt > 0
is set to trade off between exploitation vs. exploration for
bounding its cumulative regret.

Existing generalizations of GP-UCB such as GP batch
UCB (GP-BUCB) (Desautels et al., 2014) and GP-UCB
with pure exploration (GP-UCB-PE) (Contal et al., 2013)
are greedy batch BO algorithms that select the inputs of the
batch one at a time (Section 1). Specifically, to avoid se-
lecting the same input multiple times within a batch (hence
reducing to GP-UCB), they update the posterior variance
(but not the posterior mean) after adding each input to
the batch, which can be performed prior to evaluating its
corresponding f since the posterior variance is indepen-
dent of the observed outputs (1). They differ in that GP-
BUCB greedily adds each input to the batch using GP-UCB
(without updating the posterior mean) while GP-UCB-PE
selects the first input using GP-UCB and each remaining
input of the batch by maximizing only the posterior vari-
ance (i.e., pure exploration). Similarly, a recently proposed
UCB-DPP-SAMPLE algorithm (Kathuria et al., 2016) se-
lects the first input using GP-UCB and the remaining inputs
by sampling from a determinantal point process (DPP).
Like GP-BUCB, GP-UCB-PE, and UCB-DPP-SAMPLE,
we can theoretically guarantee the convergence rate of our
DB-GP-UCB algorithm, which, from a theoretical point
of view, signifies an advantage of GP-UCB-based batch
BO algorithms over those (e.g., q-EI and PPES) inspired
by other acquisition functions such as EI and PES. Unlike
these greedy batch BO algorithms (Contal et al., 2013; De-
sautels et al., 2014), our DB-GP-UCB algorithm can jointly
optimize the batch of inputs while still preserving scalabil-
ity in batch size by casting as a DCOP to be described next.

Distributed Constraint Optimization Problem (DCOP).
A DCOP can be defined as a tuple (X ,V,A, h,W) that
comprises a set X of input random vectors, a set V of
|X | corresponding finite domains (i.e., a separate domain
for each random vector), a set A of agents, a function
h : X → A assigning each input random vector to an agent
responsible for optimizing it, and a setW , {wn}n=1,...,N

of non-negative payoff functions such that each function
wn defines a constraint over only a subset Xn ⊆ X of in-
put random vectors and represents the joint payoff that the
corresponding agents An , {h(x)|x ∈ Xn} ⊆ A achieve.
Solving a DCOP involves finding the input values ofX that
maximize the sum of all functions w1, . . . , wn (i.e., social
welfare maximization), that is, maxX

∑N
n=1 wn(Xn). To

achieve a truly decentralized solution, each agent can only
optimize its local input random vector(s) based on the as-
signment function h but communicate with its neighbor-
ing agents: Two agents are considered neighbors if there
is a function/constraint involving input random vectors that

the agents have been assigned to optimize. Complete and
approximation algorithms exist for solving a DCOP; see
(Chapman et al., 2011; Leite et al., 2014) for reviews of
such algorithms.

3. Distributed Batch GP-UCB (DB-GP-UCB)
A straightforward generalization of GP-UCB (Srinivas
et al., 2010) to jointly optimize a batch of inputs is to sim-
ply consider summing the GP-UCB acquisition function
over all inputs of the batch. This, however, results in se-
lecting the same input |Dt| times within a batch, hence re-
ducing to GP-UCB, as explained earlier in Section 2. To re-
solve this issue but not suffer from the suboptimal behavior
of greedy batch BO algorithms such as GP-BUCB (Desau-
tels et al., 2014) and GP-UCB-PE (Contal et al., 2013), we
propose a batch variant of GP-UCB that jointly optimizes a
batch of inputs in each iteration t = 1, . . . , T according to

maxDt⊂D 1>µDt
+ α1/2

t I[fD;yDt
|yD1:t-1 ]1/2 (2)

where the parameter αt > 0, which performs a similar role
to that of βt in GP-UCB, is set to trade off between ex-
ploitation vs. exploration for bounding its cumulative re-
gret (Theorem 1) and the conditional mutual information1

I[fD;yDt
|yD1:t-1 ] can be interpreted as the information gain

on f over D (i.e., equivalent to fD , (f(x))>x∈D) by se-
lecting the batch Dt of inputs for evaluating/querying f
given the noisy observed outputs yD1:t-1 from the previ-
ous t − 1 iterations. So, in each iteration t, our proposed
batch GP-UCB algorithm (2) selects a batch Dt ⊂ D of in-
puts for evaluating/querying f that trades off between sam-
pling close to expected maxima (i.e., with a large sum of
posterior means 1>µDt

=
∑

x∈Dt
µ{x}) given the cur-

rent GP belief of f (i.e., exploitation) vs. that yielding
a large information gain I[fD;yDt |yD1:t-1 ] on f over D
to improve its GP belief (i.e., exploration). It can be de-
rived that I[fD;yDt

|yD1:t-1 ] = 0.5 log |I+σ−2n ΣDtDt
| (Ap-

pendix A), which implies that the exploration term in (2)
can be maximized by spreading the batch Dt of inputs far
apart to achieve large posterior variance individually and
small magnitude of posterior covariance between them to
encourage diversity.

Unfortunately, our proposed batch variant of GP-UCB (2)
involves evaluating prohibitively many batches of inputs
(i.e., exponential in the batch size), hence scaling poorly in
the batch size. However, we will show in this section that
our batch variant of GP-UCB is, interestingly, amenable to
a Markov approximation, which can then be naturally for-
mulated as a multi-agent DCOP in order to fully exploit the

1In contrast to the BO algorithm of Contal et al. (2014) that
also uses mutual information, our work here considers batch BO
by exploiting the correlation information between inputs of a
batch in our acquisition function in (2) to encourage diversity.
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efficiency of its state-of-the-art solvers for achieving linear
time in the batch size.

Markov Approximation. The key idea is to design the
structure of a matrix ΨDtDt

whose log-determinant can
closely approximate that of ΨDtDt , I + σ−2n ΣDtDt re-
siding in the I[fD;yDt |yD1:t-1 ] term in (2) and at the same
time be decomposed into a sum of log-determinant terms,
each of which is defined by submatrices of ΨDtDt

that all
depend on only a subset of the batch. Such a decomposition
enables our resulting approximation of (2) to be formulated
as a DCOP (Section 2).

At first glance, our proposed idea may be naively imple-
mented by constructing a sparse block-diagonal matrix
ΨDtDt using, say, the N > 1 diagonal blocks of ΨDtDt .
Then, log |ΨDtDt

| can be decomposed into a sum of log-
determinants of its diagonal blocks2, each of which de-
pends on only a disjoint subset of the batch. This, however,
entails an issue similar to that discussed at the beginning of
this section of selecting the same |Dt|/N inputs N times
within a batch due to the assumption of independence of
outputs between different diagonal blocks of ΨDtDt

. To
address this issue, we significantly relax this assumption
and show that it is in fact possible to construct a more
refined, dense matrix approximation ΨDtDt

by exploiting
a Markov assumption, which consequently correlates the
outputs between all its constituent blocks and is, perhaps
surprisingly, still amenable to the decomposition to achieve
scalability in the batch size.

Specifically, evenly partition the batch Dt of inputs into
N ∈ {1, . . . , |Dt|} disjoint subsets Dt1, . . . ,DtN and
ΨDtDt

(ΨDtDt
) into N ×N square blocks, i.e., ΨDtDt

,
[ΨDtnDtn′ ]n,n′=1,...,N (ΨDtDt

, [ΨDtnDtn′ ]n,n′=1,...,N ).
Our first result below derives a decomposition of the log-
determinant of any symmetric positive definite block ma-
trix ΨDtDt into a sum of log-determinant terms, each
of which is defined by a separate diagonal block of the
Cholesky factor of Ψ

−1
DtDt

:

Proposition 1. Consider the Cholesky factorization of
a symmetric positive definite Ψ

−1
DtDt

, U>U where
Cholesky factor U , [Unn′ ]n,n′=1,...,N (i.e., partitioned
into N × N square blocks) is an upper triangular block
matrix (i.e., Unn′ = 0 for n > n′). Then, log |ΨDtDt

| =∑N
n=1 log |(U>nnUnn)−1|.

Its proof (Appendix B) utilizes properties of the determi-
nant and that the determinant of an upper triangular block
matrix is a product of determinants of its diagonal blocks
(i.e., |U | =

∏N
n=1 |Unn|). Proposition 1 reveals a subtle

possibility of imposing some structure on the inverse of

2The determinant of a block-diagonal matrix is a product of
determinants of its diagonal blocks.

ΨDtDt
such that each diagonal block Unn of its Cholesky

factor (and hence each log |(U>nnUnn)−1| term) will de-
pend on only a subset of the batch. The following result
presents one such possibility:

Proposition 2. LetB ∈ {1, . . . , N−1} be given. If Ψ
−1
DtDt

is B-block-banded3, then

(U>nnUnn)−1 = ΨDtnDtn
−ΨDtnDB

tn
Ψ
−1
DB

tnDB
tn

ΨDB
tnDtn

(3)
for n = 1, . . . , N where η , min(n + B,N),
DBtn ,

⋃η
n′=n+1Dtn′ , ΨDtnDB

tn
, [ΨDtnDtn′ ]n′=n+1,...,η ,

ΨDB
tnDB

tn
, [ΨDtn′Dtn′′ ]n′,n′′=n+1,...,η, and ΨDB

tnDtn
,

Ψ
>
DtnDB

tn
.

Its proof follows directly from a block-banded matrix result
of (Asif & Moura, 2005) (i.e., Theorem 1). Proposition 2
indicates that if Ψ

−1
DtDt

is B-block-banded (Fig. 1b), then
each log |(U>nnUnn)−1| term depends on only the subset
Dtn ∪ DBtn =

⋃η
n′=nDtn′ of the batch Dt (Fig. 1c).

Our next result defines a structure of ΨDtDt
in terms of

the blocks within the B-block band of ΨDtDt to induce a
B-block-banded inverse of ΨDtDt :

Proposition 3. Let

ΨDtnDtn′,


ΨDtnDtn′ if |∆| ≤ B,
ΨDtnDB

tn
Ψ−1DB

tnDB
tn

ΨDB
tnDtn′ if ∆ < −B,

ΨDtnDB
tn′

Ψ−1DB
tn′DB

tn′
ΨDB

tn′Dtn′ if ∆ > B;

(4)
where ∆ , n−n′ for n, n′ = 1, . . . , N (see Fig. 1a). Then,
Ψ
−1
DtDt

is B-block-banded (see Fig. 1b).

Its proof follows directly from a block-banded matrix result
of (Asif & Moura, 2005) (i.e., Theorem 3). It can be ob-
served from (4) and Fig. 1 that (a) though Ψ

−1
DtDt

is a sparse
B-block-banded matrix, ΨDtDt is a dense matrix approx-
imation for B = 1, . . . , N − 1; (b) when B = N − 1
or N = 1, ΨDtDt

= ΨDtDt
; and (c) the blocks within

the B-block band of ΨDtDt
(i.e., |n − n′| ≤ B) coin-

cide with that of ΨDtDt while each block outside the B-
block band of ΨDtDt (i.e., |n − n′| > B) is fully speci-
fied by the blocks within the B-block band of ΨDtDt (i.e.,
|n − n′| ≤ B) due to its recursive series of |n − n′| − B
reduced-rank approximations (Fig. 1a). Note, however, that
the log |(U>nnUnn)−1| terms (3) for n = 1, . . . , N depend
on only the blocks within (and not outside) the B-block
band of ΨDtDt (Fig. 1c).

Remark 1. Proposition 3 provides an attractive principled
interpretation: Let εx , σ−1n (yx − µ{x}) denote a scaled

3A block matrix P , [Pnn′ ]n,n′=1,...,N (i.e., partitioned into
N ×N square blocks) is B-block-banded if any block Pnn′ out-
side its B-block band (i.e., |n− n′| > B) is 0.
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(a) ΨDtDt
(b) Ψ

−1
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(c) U = cholesky(Ψ
−1
DtDt

)

Figure 1. ΨDtDt , Ψ
−1
DtDt

, and U with B = 1 and N = 4. (a) Shaded blocks (i.e., |n−n′| ≤ B) form the B-block band while unshaded
blocks (i.e., |n − n′| > B) fall outside the band. Each arrow denotes a recursive call. (b) Unshaded blocks outside the B-block band
of Ψ

−1
DtDt

(i.e., |n − n′| > B) are 0, which result in the (c) unshaded blocks of its Cholesky factor U being 0 (i.e., n − n′ > 0 or
n′ − n > B). Using (3) and (4), U11, U22, U33, and U44 depend on only the shaded blocks of ΨDtDt enclosed in red, green, blue, and
purple, respectively.

residual incurred by the GP predictive mean (1). Its covari-
ance is then cov[εx, εx′ ] = Ψ{x}{x′}. In the same spirit as
a Gaussian Markov random process, imposing a B-th or-
der Markov property on the residual process {εx}x∈Dt

is
equivalent to approximating ΨDtDt

with ΨDtDt
(4) whose

inverse isB-block-banded. In other words, if |n−n′| > B,
then {εx}x∈Dtn and {εx}x∈Dtn′ are conditionally indepen-
dent given {εx}x∈Dt\(Dtn∪Dtn′ ). This conditional inde-
pendence assumption therefore becomes more relaxed with
a larger batch Dt. Proposition 2 demonstrates the impor-
tance of such a B-th order Markov assumption (or, equiva-
lently, the sparsity ofB-block-banded Ψ

−1
DtDt

) to achieving
scalability in the batch size.

Remark 2. Regarding the approximation quality of ΨDtDt

(4), the following result (see Appendix C for its proof)
shows that the Kullback-Leibler (KL) distance of ΨDtDt

from ΨDtDt
measures an intuitive notion of the approxi-

mation error of ΨDtDt being the difference in information
gain when relying on our Markov approximation, which
can be bounded by some quantity νt:

Proposition 4. Let the KL distance DKL(Ψ, Ψ̃) ,
0.5(tr(ΨΨ̃−1) − log |ΨΨ̃−1| − |Dt|) between two sym-
metric positive definite |Dt| × |Dt| matrices Ψ and Ψ̃

measure the error of approximating Ψ with Ψ̃. Also, let
Ĩ[fD;yDt |yD1:t-1 ] , 0.5 log |ΨDtDt | denote the approxi-
mated information gain, and C ≥ I[f{x};yDt

|yD1:t-1 ] for
all x ∈ D and t ∈ N. Then, for all t ∈ N,

DKL(ΨDtDt
,ΨDtDt

)

= Ĩ[fD;yDt |yD1:t-1 ]− I[fD;yDt |yD1:t-1 ]

≤ (exp(2C)− 1) I[fD;yDt
|yD1:t-1 ] , νt .

Proposition 4 implies that the approximated infor-
mation gain Ĩ[fD;yDt

|yD1:t-1 ] is never smaller than
the exact information gain I[fD;yDt

|yD1:t-1 ] since
DKL(ΨDtDt

,ΨDtDt
) ≥ 0 with equality when N = 1, in

which case ΨDtDt
= ΨDtDt

(4). Thus, intuitively, our pro-
posed Markov approximation hallucinates information into
ΨDtDt to yield an optimistic estimate of the information
gain (by selecting a particular batch), ultimately making
our resulting algorithm overconfident in selecting a batch.
This overconfidence is information-theoretically quantified
by the approximation error DKL(ΨDtDt

,ΨDtDt
) ≤ νt.

Remark 3. The KL distanceDKL(ΨDtDt
,ΨDtDt

) of ΨDtDt

from ΨDtDt
is also the least among all |Dt|×|Dt|matrices

with a B-block-banded inverse, as proven in Appendix D.

DCOP Formulation. By exploiting the approximated in-
formation gain Ĩ[fD;yDt

|yD1:t-1 ] (Proposition 4), Proposi-
tion 1, (3), and (4), our batch variant of GP-UCB (2) can
be reformulated in an approximate sense4 to a distributed
batch GP-UCB (DB-GP-UCB) algorithm5 that jointly op-
timizes a batch of inputs in each iteration t = 1, . . . , T
according to

Dt , arg max
Dt⊂D

N∑
n=1

wn(Dtn ∪ DBtn)

wn(Dtn ∪ DBtn) , 1>µDtn+(0.5αt log |ΨDtnDtn|DB
tn
|)1/2
(5)

with ΨDtnDtn|DB
tn
,ΨDtnDtn−ΨDtnDB

tn
Ψ−1DB

tnDB
tn

ΨDB
tnDtn

.

4Note that our acquisition function (5) uses
∑N

n=1(log | · |)1/2

instead of (
∑N

n=1 log | · |)1/2 to enable the decomposition.
5Pseudocode for DB-GP-UCB is provided in Appendix E.
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Note that (5) is equivalent to our batch variant of GP-UCB
(2) when N = 1. It can also be observed that (5) is
naturally formulated as a multi-agent DCOP (Section 2)
whereby every agent an ∈ A is responsible for optimiz-
ing a disjoint subset Dtn of the batch Dt for n = 1, . . . , N
and each function wn defines a constraint over only the
subset Dtn ∪ DBtn =

⋃η
n′=nDtn′ of the batch Dt and

represents the joint payoff that the corresponding agents
An , {an′}ηn′=n ⊆ A achieve. As a result, (5) can be effi-
ciently and scalably solved by the state-of-the-art DCOP al-
gorithms (Chapman et al., 2011; Leite et al., 2014). For ex-
ample, the time complexity of an iterative message-passing
algorithm called max-sum (Farinelli et al., 2008) scales ex-
ponentially in only the largest arity maxn∈{1,...,N} |Dtn ∪
DBtn| = (B+1)|Dt|/N of the functionsw1, . . . , wN . Given
a limited time budget, a practitioner can set a maximum
arity of ω for any function wn, after which the number
N of functions is adjusted to d(B + 1)|Dt|/ωe so that
the time incurred by max-sum to solve the DCOP in (5)
is O(|D|ωω3B|Dt|)6 per iteration (i.e., linear in the batch
size |Dt| by assuming ω and the Markov orderB to be con-
stants). In contrast, our batch variant of GP-UCB (2) incurs
exponential time in the batch size |Dt|. The max-sum algo-
rithm is also amenable to a distributed implementation on a
cluster of parallel machines to boost scalability further. If a
solution quality guarantee is desired, then a variant of max-
sum called bounded max-sum (Rogers et al., 2011) can be
used7. Finally, the Markov order B can be varied to trade
off between the approximation quality of ΨDtDt

(4) and
the time efficiency of max-sum in solving the DCOP in (5).

Regret Bounds. Our main result to follow derives proba-
bilistic bounds on the cumulative regret of DB-GP-UCB:

Theorem 1. Let δ ∈ (0, 1) be given, C1 ,
4/ log(1 + σ−2n ), γT , maxD1:T⊂D I[fD;yD1:T

], αt ,
C1|Dt| exp(2C) log(|D|t2π2/(6δ)), and ν̄T ,

∑T
t=1 νt.

Then, for the batch and full cumulative regrets incurred by
our DB-GP-UCB algorithm (5),

RT ≤ 2
(
T |DT |−2αTN(γT + ν̄T )

)1/2
and

R′T ≤ 2 (TαTN(γT + ν̄T ))
1/2

hold with probability of at least 1− δ.

6We assume the use of online sparse GP models (Csató &
Opper, 2002; Hensman et al., 2013; Hoang et al., 2015; 2017;
Low et al., 2014b; Xu et al., 2014) that can update the GP predic-
tive/posterior distribution (1) in constant time in each iteration.

7Bounded max-sum is previously used in (Rogers et al., 2011)
to solve a related maximum entropy sampling problem (Shewry &
Wynn, 1987) formulated as a DCOP. But, the largest arity of any
function wn in this DCOP is still the batch size |Dt| and, unlike
the focus of our work here, no attempt is made in (Rogers et al.,
2011) to reduce it, thus causing max-sum and bounded max-sum
to incur exponential time in |Dt|. In fact, our proposed Markov
approximation can be applied to this problem to reduce the largest
arity of any function wn in this DCOP to again (B + 1)|Dt|/N .

Its proof (Appendix F), when compared to that of GP-UCB
(Srinivas et al., 2010) and its greedy batch variants (Con-
tal et al., 2013; Desautels et al., 2014), requires tackling
the additional technical challenges associated with jointly
optimizing a batch Dt of inputs in each iteration t. Note
that the uncertainty sampling based initialization strategy
proposed by Desautels et al. (2014) can be employed to re-
place the

√
exp(2C) term (i.e., growing linearly in |Dt|)

appearing in our regret bounds by a kernel-dependent con-
stant factor of C ′ that is independent of |Dt|; values of C ′

for the most commonly-used kernels are replicated in Ta-
ble 2 in Appendix G (see section 4.5 in (Desautels et al.,
2014) for a more detailed discussion on this issue).

Table 1 in Appendix G compares the bounds on RT of
DB-GP-UCB (5), GP-UCB-PE, GP-BUCB, GP-UCB, and
UCB-DPP-SAMPLE. Compared to the bounds on RT of
GP-UCB-PE and UCB-DPP-SAMPLE, our bound includes
the additional kernel-dependent factor of C ′, which is sim-
ilar to GP-BUCB. In fact, our regret bound is of the same
form as that of GP-BUCB except that our bound incor-
porates a parameter N of our Markov approximation and
an upper bound ν̄T on the cumulative approximation error,
both of which vanish for our batch variant of GP-UCB (2):
Corollary 1. For our batch variant of GP-UCB (2), the
cumulative regrets reduce to RT ≤ 2

(
T |DT |−2αT γT

)1/2
and R′T ≤ 2 (TαT γT )

1/2.

Corollary 1 follows directly from Theorem 1 and by noting
that for our batch variant (2), N = 1 (since ΨDtDt

then
trivially reduces to ΨDtDt

) and νt = 0 for t = 1, . . . , T .

Finally, the convergence rate of our DB-GP-UCB algo-
rithm is dominated by the growth behavior of γT + ν̄T .
While it is well-known that the bounds on the maximum
mutual information γT established for the commonly-used
linear, squared exponential, and Matérn kernels in (Srinivas
et al., 2010; Kathuria et al., 2016) (i.e., replicated in Table 2
in Appendix G) only grow sublinearly in T , it is not imme-
diately clear how the upper bound ν̄T on the cumulative
approximation error behaves. Our next result reveals that
ν̄T in fact only grows sublinearly in T as well:
Corollary 2. ν̄T ≤ (exp(2C)− 1)γT .

Corollary 2 follows directly from the definitions of νt in
Proposition 4 and ν̄T and γT in Theorem 1 and applying
the chain rule for mutual information. Since γT grows
sublinearly in T for the above-mentioned kernels (Srini-
vas et al., 2010) and C can be chosen to be independent of
T (e.g., C , γ|Dt|−1) (Desautels et al., 2014), it follows
from Corollary 2 that ν̄T grows sublinearly in T . As a re-
sult, Theorem 1 guarantees sublinear cumulative regrets for
the above-mentioned kernels, which implies that our DB-
GP-UCB algorithm (5) asymptotically achieves no regret,
regardless of the degree of our proposed Markov approxi-
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mation (i.e., configuration of [N,B]). Thus, our batch vari-
ant of GP-UCB (2) achieves no regret as well.

4. Experiments and Discussion
This section evaluates the cumulative regret incurred by
our DB-GP-UCB algorithm (5) and its scalability in the
batch size empirically on two synthetic benchmark ob-
jective functions such as Branin-Hoo (Lizotte, 2008) and
gSobol (González et al., 2016) (Table 3 in Appendix H)
and a real-world pH field of Broom’s Barn farm (Webster
& Oliver, 2007) (Fig. 3 in Appendix H) spatially distributed
over a 1200 m by 680 m region discretized into a 31 × 18
grid of sampling locations. These objective functions and
the real-world pH field are each modeled as a sample of
a GP whose prior covariance is defined by the widely-
used squared exponential kernel kxx′ , σ2

s exp(−0.5(x−
x′)>Λ−2(x− x′)) where Λ , diag[`1, . . . , `d] and σ2

s are
its length-scale and signal variance hyperparameters, re-
spectively. These hyperparameters together with the noise
variance σ2

n are learned using maximum likelihood estima-
tion (Rasmussen & Williams, 2006).

The performance of our DB-GP-UCB algorithm (5) is
compared with the state-of-the-art batch BO algorithms
such as GP-BUCB (Desautels et al., 2014), GP-UCB-PE
(Contal et al., 2013), SM-UCB (Azimi et al., 2010), q-EI
(Chevalier & Ginsbourger, 2013), and BBO-LP by plug-
ging in GP-UCB (González et al., 2016), whose imple-
mentations8 are publicly available. These batch BO algo-
rithms are evaluated using a performance metric that mea-
sures the cumulative regret incurred by a tested algorithm:∑T
t=1 f(x∗) − f(x̃t) where x̃t , arg maxxt∈D µ{xt} (1)

is the recommendation of the tested algorithm after t batch
evaluations. For each experiment, 5 noisy observations are
randomly selected and used for initialization. This is in-
dependently repeated 64 times and we report the resulting
mean cumulative regret incurred by a tested algorithm. All
experiments are run on a Linux system with Intelr Xeonr
E5-2670 at 2.6GHz with 96 GB memory.

For our experiments, we use a fixed budget of T |DT | =
64 function evaluations and analyze the trade-off between
batch size |DT | (i.e., 2, 4, 8, 16) vs. time horizon T (re-
spectively, 32, 16, 8, 4) on the performance of the tested
algorithms. This experimental setup represents a practi-
cal scenario of costly function evaluations: On one hand,
when a function evaluation is computationally costly (i.e.,
time-consuming), it is more desirable to evaluate f for a
larger batch (e.g., |DT | = 16) of inputs in parallel in each
iteration t (i.e., if hardware resources permit) to reduce the
total time needed (hence smaller T ). On the other hand,

8Details on the used implementations are given in Table 4 in
Appendix I. We implemented DB-GP-UCB in MATLAB to ex-
ploit the GPML toolbox (Rasmussen & Williams, 2006).

when a function evaluation is economically costly, one may
be willing to instead invest more time (hence larger T ) to
evaluate f for a smaller batch (e.g., |DT | = 2) of inputs
in each iteration t in return for a higher frequency of in-
formation and consequently a more adaptive BO to achieve
potentially better performance. In some settings, both fac-
tors may be equally important, that is, moderate values of
|DT | and T are desired. To the best of our knowledge, such
a form of empirical analysis does not seem to be available
in the batch BO literature.

Fig. 2 shows results9 of the cumulative regret incurred by
the tested algorithms to analyze their trade-off between
batch size |DT | (i.e., 2, 4, 8, 16) vs. time horizon T (re-
spectively, 32, 16, 8, 4) using a fixed budget of T |DT | = 64
function evaluations for the Branin-Hoo function (left col-
umn), gSobol function (middle column), and real-world pH
field (right column). Our DB-GP-UCB algorithm uses the
configurations of [N,B] = [4, 2], [8, 5], [16, 10] in the ex-
periments with batch size |DT | = 4, 8, 16, respectively;
in the case of |DT | = 2, we use our batch variant of GP-
UCB (2) which is equivalent to DB-GP-UCB whenN = 1.
It can be observed that DB-GP-UCB achieves lower cumu-
lative regret than GP-BUCB, GP-UCB-PE, SM-UCB, and
BBO-LP in all experiments (with the only exception being
the gSobol function for the smallest batch size of |DT | = 2
where BBO-LP performs slightly better) since DB-GP-
UCB can jointly optimize a batch of inputs while GP-
BUCB, GP-UCB-PE, SM-UCB, and BBO-LP are greedy
batch algorithms that select the inputs of a batch one at
time. Note that as the real-world pH field is not as well-
behaved as the synthetic benchmark functions (see Fig. 3
in Appendix H), the estimate of the Lipschitz constant by
BBO-LP is potentially worse, hence likely degrading its
performance. Furthermore, DB-GP-UCB can scale to a
much larger batch size of 16 than the other batch BO algo-
rithms that also jointly optimize the batch of inputs, which
include q-EI, PPES (Shah & Ghahramani, 2015) and q-KG
(Wu & Frazier, 2016): Results of q-EI are not available for
|DT | ≥ 4 as they require a prohibitively huge computa-
tional effort to be obtained10 while PPES can only operate
with a small batch size of up to 3 for the Branin-Hoo func-
tion and up to 4 for other functions, as reported in (Shah
& Ghahramani, 2015), and q-KG can only operate with
a small batch size of 4 for all tested functions (including
the Branin-Hoo function and four others), as reported in
(Wu & Frazier, 2016). The scalability of DB-GP-UCB is
attributed to our proposed Markov approximation of our

9Error bars are omitted in Fig. 2 to preserve the readability of
the graphs. A replication of the graphs in Fig. 2 including standard
error bars is provided in Appendix K.

10In the experiments of González et al. (2016), q-EI can reach a
batch size of up to 10 but performs much worse than GP-BUCB,
which is likely due to a considerable downsampling of possible
batches available for selection in each iteration.
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Figure 2. Cumulative regret incurred by tested algorithms with
varying batch sizes |DT | = 2, 4, 8, 16 (rows from top to bottom)
using a fixed budget of T |DT | = 64 function evaluations for the
Branin-Hoo function, gSobol function, and real-world pH field.

batch variant of GP-UCB (2) (Section 3), which can then
be naturally formulated as a multi-agent DCOP (5) in order
to fully exploit the efficiency of one of its state-of-the-art
solvers called max-sum (Farinelli et al., 2008). In the ex-
periments with the largest batch size of |DT | = 16, we have
reduced the number of iterations in max-sum to less than 5
without waiting for convergence to preserve the efficiency
of DB-GP-UCB, thus sacrificing its BO performance. Nev-
ertheless, DB-GP-UCB can still outperform the other tested

batch BO algorithms.

We have also investigated and analyzed the trade-off be-
tween approximation quality and time efficiency of our DP-
GP-UCB algorithm and reported the results in Appendix J
due to lack of space. To summarize, it can be observed
from our results that the approximation quality improves
near-linearly with an increasing Markov order B at the ex-
pense of higher computational cost (i.e., exponential in B).

5. Conclusion
This paper develops a novel distributed batch GP-UCB
(DB-GP-UCB) algorithm for performing batch BO of
highly complex, costly-to-evaluate, noisy black-box objec-
tive functions. In contrast to greedy batch BO algorithms
(Azimi et al., 2010; Contal et al., 2013; Desautels et al.,
2014; González et al., 2016), our DB-GP-UCB algorithm
can jointly optimize a batch of inputs and, unlike (Cheva-
lier & Ginsbourger, 2013; Shah & Ghahramani, 2015; Wu
& Frazier, 2016), still preserve scalability in the batch size.
To realize this, we generalize GP-UCB (Srinivas et al.,
2010) to a new batch variant amenable to a Markov ap-
proximation, which can then be naturally formulated as a
multi-agent DCOP in order to fully exploit the efficiency
of its state-of-the-art solvers such as max-sum (Farinelli
et al., 2008; Rogers et al., 2011) for achieving linear time
in the batch size. Our proposed DB-GP-UCB algorithm
offers practitioners the flexibility to trade off between the
approximation quality and time efficiency by varying the
Markov order. We provide a theoretical guarantee for the
convergence rate of our DB-GP-UCB algorithm via bounds
on its cumulative regret. Empirical evaluation on synthetic
benchmark objective functions and a real-world pH field
shows that our DB-GP-UCB algorithm can achieve lower
cumulative regret than the greedy batch BO algorithms
such as GP-BUCB, GP-UCB-PE, SM-UCB, and BBO-LP,
and scale to larger batch sizes than the other batch BO
algorithms that also jointly optimize the batch of inputs,
which include q-EI, PPES, and q-KG. For future work,
we plan to generalize DB-GP-UCB (a) to the nonmyopic
context by appealing to existing literature on nonmyopic
BO (Ling et al., 2016) and active learning (Cao et al., 2013;
Hoang et al., 2014a;b; Low et al., 2008; 2009; 2011; 2014a)
as well as (b) to be performed by a multi-robot team to
find hotspots in environmental sensing/monitoring by seek-
ing inspiration from existing literature on multi-robot ac-
tive sensing/learning (Chen et al., 2012; 2013b; 2015; Low
et al., 2012; Ouyang et al., 2014). For applications with
a huge budget of function evaluations, we like to couple
DB-GP-UCB with the use of parallel/distributed sparse GP
models (Chen et al., 2013a; Hoang et al., 2016; Low et al.,
2015) to represent the belief of the unknown objective func-
tion efficiently.
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