
Consistency Analysis for Binary Classification Revisited

A. Proofs from Section 2
A.1. Proof of Proposition 1

For the sake of readability, throughout the proof we ab-
breviate Φ = Φ(u, v, p), Φ′ = Φ(u′, v′, p′), and denote
∆u = u− u′, ∆v = v − v′, ∆p = p− p′. In this notation,
proving p-Lipschitzness for metric Φ amounts to showing
that:

|Φ− Φ′| ≤ Up|∆u|+ Vp|∆v|+ Pp|∆p|,

for constants Up, Vp, Pp, which may only depend on p.

The following fact is going to be very useful in prov-
ing p-Lipschitzness. If the metric is of the rational form:
Φ(u, v, p) = A(u,v,p)

B(u,v,p) + C, where C is some constant,
B(u, v, p) ≥ Gp for some positive constant Gp (which
may depend on p), and |Φ(u, v, p)| ≤ Φmax for some con-
stant Φmax, it suffices to check p-Lipschitzness of numer-
ator and denominator separately. Indeed, using shorthand
notation A = A(u, v, p), A′ = A(u′, v′, p′), and similarly
for B,B′:

Φ− Φ′ =
A− A′

B′B

B
=
A−A′ + A′

B′B
′ − A′

B′B

B

=
A−A′

B
+
A′

B′
B −B′

B
,

hence:

|Φ− Φ′| ≤ |A−A
′|

Gp
+

Φmax

Gp
|B′ −B|.

a) Accuracy Φ(u, v, p) = 1− v − p+ 2u. We have:

Φ− Φ′ ≤ 2∆u−∆v −∆p,

so that by triangle inequality:

|Φ− Φ′| ≤ 2|∆u|+ |∆v|+ |∆p|.

Hence, the statement follows with Up = 2, Vp =
Pp = 1.

b) AM Φ(u, v, p) = 1 − vp−u
2p(1−p) . We can use the re-

sult on the rational metric by noting that A(u, v, p) =
u − vp, B(u, v, p) = B(p) = 2p(1 − p), C = 1,
Φmax = 1, Gp = 2p(1 − p). We can now check the
p-Lipschitzness of A and B separately:

A−A′ = u− vp− u′ + v′p′

= ∆u+ (vp′ − vp) + (v′p′ − vp′)
= ∆u− v∆p− p′∆v,

and since |v| ≤ 1, |p′| ≤ 1, p-Lipschitzness follows
from triangle inequality. For the denominator,

B −B′ = 2p(1− p)− 2p′(1− p′)
= 2(p− p′) + 2(p′2 − p2)

= 2(1− p′ − p)(p− p′),

so that |B −B′| ≤ 2|∆p|.

c) Jaccard similarity Φ(u, v, p) = u
p+v−u . Follows from

the rational form of the metric, since A(u, v, p) = u,
B(u, v, p) = p + v − u, C = 0, Φmax = 1, Gp = p,
and the p-Lipschitzness ofA(u, v, p) andB(u, v, p) is
trivial to show by the triangle inequality.

d) G-mean Φ(u, v, p) = u(1−v−p+u)
p(1−p) . Exploiting the

rational form of the metric, we have A(u, v, p) =
u(1 − v − p + u), B(u, v, p) = p(1 − p), C = 0,
Φmax = 1, Gp = p(1− p). The p-Lipschitzness of B
was shown above for AM measure. As for A:

A−A′ = (1− v − p+ u)(u− u′)
+ u′(u− p− v − u′ − p′ − v′)
= (1− v − p+ u)∆u+ u′(∆u−∆v −∆p),

and hence the p-Lipschitzness follows by triangle in-
equality and the fact that |1 − v − p + u| ≤ 2 and
|u′| ≤ 1.

e) AUC (v−u)(p−u)
p(1−p) . Exploiting the rational form of the

metric, we have A(u, v, p) = (v − u)(p − u) and
B(u, v, p) = p(1− p). The p-Lipschitzness of B was
shown above for AM measure; as for A:

A−A′ = (v − u)(p− u)− (v′ − u′)(p− u)

+ (v′ − u′)(p− u)− (v′ − u′)(p′ − u′)
= (∆v −∆u)(p− u) + (v′ − u′)(∆p−∆u),

and hence the p-Lipschitzness follows by triangle in-
equality and the fact that |p−u| ≤ 1 and |v′−u′| ≤ 1.

f) Linear-fractional metric of the form:

Φ(u, v, p) =
a1 + a2u+ a3v + a4p

b1 + b2u+ b3v + b4p
,

as long as the denominator is bounded from below by
some positive constant Gp. This follows immediately
from the rational form of the metric, as the numera-
tor A(u, v, p) and denominator B(u, v, p) are linear
functions of (u, v, p), so showing p-Lipschitzness of
A(u, v, p) and B(u, v, p) is straightforward.

B. Proofs from Section 3.1
B.1. Proof of Lemma 1

We fix classifier h and use a shorthand notation u, v, û, v̂
to denote u(h), v(h), û(h), v̂(h). Due to the Lipschitz as-
sumption:

|Φ(u, v, p)−Φ(û, v̂, p̂)| ≤ Up|u−û|+Vp|v−v̂|+Pp|p−p̂|.
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Fixing x = (x1, . . . , xn) and taking expectation with re-
spect to y = (y1, . . . , yn) conditioned on x, we have:

Ey|x
[
|Φ(u, v, p)− Φ(û, v̂, p̂)|

]
≤ UpEy|x

[
|u− û|

]
+ Vp|v − v̂|+ PpEy|x

[
|p− p̂|

]
.

Denote:

p̃ = Ey|x [p̂] =
1

n

n∑
i=1

η(xi),

ũ = Ey|x [û] =
1

n

n∑
i=1

h(xi)η(xi)

We have:

Ey|x
[
|p− p̂|

]
= Ey|x

[
|p− p̃+ p̃− p̂|

]
≤ |p− p̃|+ Ey|x

[
|p̃− p̂|

]
= |p− p̃|+ Ey|x

[√
(p̃− p̂)2

]
≤ |p− p̃|+

√
Ey|x

[
(p̃− p̂)2

]
= |p− p̃|+

√
Vary|x(p̂) ≤ |p− p̃|+

√
1

4n
,

where the second inequality follows from Jensen’s inequal-
ity applied to a concave function x 7→

√
x. In an analogous

way, one can show that:

Ey|x
[
|u− û|

]
≤ |u− ũ|+

√
u

4n
≤ |u− ũ|+

√
1

4n
.

Furthermore, using the convexity of the absolute value
function, Jensen’s inequality implies:∣∣∣Φ(u, v, p)− Ey|x

[
Φ(û, v̂, p̂)

] ∣∣∣
≤ Ey|x

[
|Φ(u, v, p)− Φ(û, v̂, p̂)|

]
,

so that:∣∣∣Φ(u, v, p)− Ey|x
[
Φ(û, v̂, p̂)

]∣∣∣ ≤ Up|u− ũ|+ Vp|v − v̂|

+ Pp|p− p̃|+
Up + Vp

2
√
n

.

We will now show that under the class of thresholded func-
tions H specified in the statement of the theorem to which
h belongs, all the terms on the right-hand side are well con-
trolled. The rest of the proof follows in a straightforward
way from Hoeffding’s inequality and Vapnik-Chervonenkis
bounds, except for minor, technical details, which are in-
cluded for completeness.

We first apply Hoeffding’s inequality to say that with prob-
ability at least 1− δ/2,

|p− p̃| ≤

√
log 4

δ

2n
.

Similarly, using standard Rademacher complexity argu-
ments (see, e.g. Mohri et al., 2012), we have, uniformly
over all h ∈ H, with probability 1− δ/4,

|v − v̂| ≤ 2Ex

[
Rn(H)

]
+

√
log 4

δ

2n
,

and similarly, with probability 1− δ/4,

|u− ũ| ≤ 2Ex

[
Rn(Hη)

]
+

√
log 4

δ

2n
,

whereHη = {h · η : h ∈ H}, and:

Rn(H) = Eσ
[

sup
h∈H

1

n

∣∣∣ n∑
i=1

σih(xi)
∣∣∣]

is the Rademacher complexity6 of H. Furthermore, if we
let zi ∈ {−1, 1}, i = 1, . . . , n, with Pr(zi = 1) = 1+η(xi)

2 ,
so that E [zi] = η(xi), we have:

n∑
i=1

σih(xi)η(xi) = Ez

[ n∑
i=1

σih(xi)zi

]
,

so that:

Rn(Hη) = Eσ
[

sup
h∈H

1

n

∣∣∣Ez

[ n∑
i=1

σih(xi)zi

]∣∣∣]

≤ Eσ,z
[

sup
h∈H

1

n

∣∣∣ n∑
i=1

σih(xi)zi

∣∣∣]

= Eσ
[

sup
h∈H

1

n

∣∣∣ n∑
i=1

σih(xi)
∣∣∣] = Rn(H),

where the inequality is due to Jensen’s inequality applied to
convex functions | · | and sup{·}, and the second equality is
due to the fact that σizi and σi are distributed in the same
way.

Thus choosing Lp = max{Up, Vp, Pp}, with probability
1− δ, uniformly over all h ∈ H,∣∣∣Φ(u, v, p)− Ey|x

[
Φ(û, v̂, p̂)

]∣∣∣ ≤ 4LpEx

[
Rn(H)

]
+ 3Lp

√
log 4

δ

2n
+
Lp√
n
.

Now, if H is the class of threshold functions on η, its
growth function (Mohri et al., 2012) is equal to m+ 1, and
thus we have7:

Rn(H) ≤
√

2 log(n+ 1)

n
,

6Variables σi, i = 1, . . . , n, are i.i.d. Rademacher variables
distributed according to P(σi = 1) = P(σi = −1) = 1

2
.

7We could alternatively use the fact that VC-dimension of H
is 1, which would give a bound with log(n+ 1) replaced by 1 +
log(n).
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so that with probability 1−δ, uniformly over all h ∈ H, we
get the bound in the statement of the theorem. The proof is
complete.

Lower bound. The dependence Õ(1/
√
n) on the sam-

ple size stated in Lemma 1 cannot be improved in general.
To see this, take a metric Φ(u, v, p) = u, p-Lipschitzness
of which is trivial to show. Choose h(x) = 1 for all
x. Then, u(h) = p, while û(h) = 1

n

∑n
i=1 yi. Hence,∣∣∣Φ(u, v, p)− Ey|x

[
Φ(û, v̂, p̂)

]∣∣∣ =
∣∣p − p̃

∣∣, where p̃ =
1
n

∑n
i=1 η(xi) and Ex [p̃] = p. Assume that η(x) follows

a binomial distribution with P(η(x) = 1) = P(η(x) =
0) = 1

2 . Denote |p − p̃| by Z. By Khinchine in-
equality, E [Z] ≥ 2c

√
E [Z2] = c/

√
n for some con-

stant c > 0. Furthermore, by Paley-Zygmund inequality
P(Z > E [Z] /2) ≥ (E[Z])2

4E[Z2] ≥ c2. Hence, with constant
probability,∣∣∣Φ(u, v, p)− Ey|x

[
Φ(û, v̂, p̂)

]∣∣∣ ≥ c

2
√
n
,

for some c > 0, which shows that the rate Õ(1/
√
n) cannot

be improved.

B.2. Proof of Theorem 1

First, note that for a given P, p-Lipschitzness implies
that Φ(u, v, p) is continuous as a function of (u, v). Let
H = {hη | hη = 1η(x)≥η, η ∈ [0, 1]} be the set of bi-
nary threshold functions on η(x). By Assumption 1, u(hη)
and v(hη) are continuous in the threshold η, and hence the
maximizer of Φ(u, v, p) over H exists due to compactness
of the domain of η. The existence of the maximizer, to-
gether with Assumption 1 and TP monotonicity implies by
(Narasimhan et al., 2014a, Lemma 11) that h∗PU ∈ H, i.e.
the optimal PU classifier is a threshold function.8.

For any given x = (x1, . . . , xn), let h∗ETU(x) be the opti-
mal ETU classifier. By TP monotonicity of Ψ, (Natarajan
et al., 2016, Theorem 1) implies that h∗ETU(x) satisfies:

max
i=1,...,n

{η(xi) : h∗ETU(xi) = 0}

≤ min
i=1,...,n

{η(xi) : h∗ETU(xi) = 1}.

However, by Assumption 1, η(xi) 6= η(xj) for all
i 6= j with probability one, so that the condition above
is satisfied with strict inequality, and hence there exists
τ∗, which is between max{η(xi) : h∗ETU(xi) = 0} and
min{η(xi) : h∗ETU(xi) = 1}. This means that h∗ETU(x)

8Lemma 11 of Narasimhan et al. (2014a) requires that the PU
maximizer within H is hη for some η ∈ (0, 1). However, we do
not impose this constraint here because the lemma can easily be
extended to the case η ∈ [0, 1] under our assumption that η(x)
has a density over [0, 1].

is a threshold function on η(x) with threshold τ∗, i.e.
h∗ETU ∈ H.

To conclude, with probability one, h∗ETU(x), h∗PU ∈ H.

Now, define ε/2 = 4Lp

√
2 log(n+1)

n + 3Lp

√
log 4

δ

2n +
Lp√
n

.
Then, with probability 1−δ (over the random choice of x),

Φ(u(h∗ETU(x)), v(h∗ETU(x)), p)

≤ Φ(u(h∗PU), v(h∗PU), p)

≤ Ey|x
[
Φ(û(h∗PU), v̂(h∗PU), p̂)

]
+ ε/2

≤ Ey|x
[
Φ(û(h∗ETU(x)), v̂(h∗ETU(x)), p̂)

]
+ ε/2,

≤ Φ(u(h∗ETU(x)), v(h∗ETU(x)), p) + ε,

where we used Lemma 1 twice in the second and fourth
inequality. Hence, with probability 1− η,∣∣∣Φ(u(h∗ETU(x)), v(h∗ETU(x)), p)

− Φ(u(h∗PU), v(h∗PU), p)
∣∣∣ ≤ ε.

Using analogous argument, one can show that with proba-
bility 1− δ,∣∣∣Ey|x

[
Φ(û(h∗ETU(x)), v̂(h∗ETU(x)), p̂)

]
− Ey|x

[
Φ(û(h∗PU), v̂(h∗PU), p̂)

] ∣∣∣ ≤ ε,
which finishes the proof.

B.3. Finite Sample Regime: Proof of Theorem 2

The PU-optimal classifier is:

h∗PU = argmax
h

ΦPrec(u(h), v(h), p) = argmax
h

u(h)

v(h) + α
.

Proposition 2.

h∗PU(x) =

{
1, if x ∈ X1,

0, else .

Proof. Note that for the defined h∗PU classifier, we have
u(h∗PU) = v(h∗PU) = P(X1), and

ΦPrec(u(h∗PU), v(h∗PU), p) =
P(X1)

P(X1) + α
.

Firstly, observe that for any candidate optimal classifier
h′, it must hold that h′(x) = 0 for all x ∈ X3 (other-
wise the metric strictly decreases). Now, suppose there ex-
ists a classifier h′ 6= h∗PU which has strictly higher util-
ity than h∗PU. Then, it must be that h′(x) = 1 for all
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x ∈ X2. We have, u(h′) = P(X1) + P(X2)(1 −
√
α)

and v(h′) = P(X1) + P(X2). So:

ΦPrec(u(h′), v(h′), p) =
P(X1) + P(X2)(1−

√
α)

P(X1) + P(X2) + α
.

But for the chosen small value of α, we can show the con-
tradiction that:

ΦPrec(u(h′), v(h′), p) < ΦPrec(u(h∗PU), v(h∗PU), p).

Therefore, h∗PU as stated is indeed optimal.

We see from the above constructed example that the PU
optimal classifier assigns negative labels to 50% of the data
which are highly likely to belong to the positive class. PU
is sensitive to label noise if the metric is less stable as im-
plied by the high p-Lipschitz constant. Next, we show that
ETU is relatively more robust.

Given a set of instances x = {x1, x2, . . . , xn}, recall that
the ETU-optimal assignments can be computed as:

h∗ETU(x) = s∗ := argmax
s∈{0,1}n

Ey∼P(.|x)ΦPrec(s,y) .

Proposition 3. On the subset of instances in x that have
deterministic labels, the ETU-optimal predictions satisfy:

h∗ETU(xj) = s∗j =

{
1, if x ∈ X1,

0, if x ∈ X3 .

Note that the predictions coincide with that of h∗PU on these
indices.

Proof. Let Ii = {j : xj ∈ Xi}, for i = 1, 2, 3. Note that
the optimal value at the solution s∗ is given by:

Ey∼P(.|x)ΦPrec(s
∗,y) =

∑
j∈I1 s

∗
j + ∆(s∗I2 ,yI2)∑

j∈I1∪I3 s
∗
j +

∑
j∈I2 s

∗
j + αn

,

(2)
where s∗I2 indicates the optimal assignments corresponding
to indices in I2 and ∆(s∗I2 ,yI2) is a quantity that depends
only on indices in I2, and is given by:

∆(s∗I2 ,yI2) =
∑

yI2∈{0,1}|I2|
P(yI2)〈yI2 , s∗I2〉 (3)

Fixing the optimal predictions for indices corresponding to
I2, the value (2) is maximized by maximizing the numer-
ator term

∑
j∈I1 s

∗
j and minimizing the denominator term∑

j∈I1∪I3 s
∗
j . This is achieved precisely when the opti-

mal solution satisfies the statement in the proposition. The
proof is complete.

We know from Proposition 2 that h∗PU sets the labels corre-
sponding to indices in the set I2 to 0. Now let us examine
what happens in the case of ETU, when labels have mild
noise (i.e. with some small probability

√
ε, the label of an

instance from X2 can be 0), at optimality. Consider a can-
didate optimal solution s′ that behaves exactly like h∗PU, i.e.
s′j = 0 for all j ∈ I2, for some 1 ≤ k ≤ |I2|.

Then, ∆(s′I2 ,yI2) = 0, so:

Ey∼P(.|x)ΦPrec(s
′,y) =

|I1|
|I1|+ αn

. (4)

Now, consider another candidate solution s′′ that is equal
to s′, but has a value of 1 corresponding to a subset of in-
dices j1, j2, . . . , jk ∈ I2. The value of this solution can be
shown to be:

Ey∼P(.|x)ΦPrec(s
′′,y) =

|I1|+ k(1− ε)
|I1|+ k + αn

. (5)

Comparing equations (4) and (5), we have that if:

ε <
αn

|I1|+ αn
, (6)

then s′′ is a strictly better solution than s′. In particular, as
(5) is mononotic in k, the optimal choice is k = |I2|. This
immediately leads to the following corollary.

Corollary 1. 1. If |I2| = 0, then

h∗ETU(x) := s∗ = h∗PU(x) .

2. Otherwise, if ε < α
1+α , then

h∗ETU(x) := s∗ 6= h∗PU(x) .

In particular, h∗ETU assigns label 1 to all instances that
are overwhelmingly positive under P, corresponding
to indices I2, whereas h∗PU assigns label 0.

3. If |I1| = 0, but |I2| > 0 then for any 0 < ε < 1,

h∗ETU(x) := s∗ 6= h∗PU(x) := 0 .

Note that ε < α/(1 + α) does not hold for our choice of
ε =
√
α. However, case 3 in Corollary 1 is sufficient to es-

tablish the bound in Theorem 2, when P(X2) is very large.

C. Proofs for Section 4.1
Fix a binary classifier h : X → {0, 1} and let the input
sample x = (x1, . . . , xn) be generated i.i.d. from P. For
the sake of clarity, abbreviate η(xi) = ηi and h(xi) = hi,
i = 1, . . . , n. In the proofs of Lemma 2 and Lemma 3 we
will use the following:
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• Empirical quantities:

û(h) =
1

n

n∑
i=1

hiyi, v̂(h) =
1

n

n∑
i=1

hi, p̂ =
1

n

n∑
i=1

yi,

• Semi-empirical quantities:

ũ(h) =
1

n

n∑
i=1

hiηi, and p̃ =
1

n

n∑
i=1

ηi

(we do not define ṽ(h), as it would the same as v̂(h)).

Note that:

ũ(h) = Ey|x
[
û(h)

]
, and p̃ = Ey|x [p̂] .

We will jointly denote ẑ = (û(h), p̂), and similarly
z̃ = (ũ(h), p̃). We will also abbreviate Φ(ẑ) =
Φ(û(h), v̂(h), p̂) and similarly for Φ(z̃).

C.1. Proof of Lemma 2

Assume Φ is two-times differentiable, with all partial
second-order derivatives bounded by A. Taylor expanding
Φ(ẑ) around point z̃ up to the second order gives:

Φ(ẑ) = Φ(z̃) +∇Φ(z̃)>(ẑ − z̃)

+
1

2
(ẑ − z̃)>∇2Φ(z)(ẑ − z̃)

for some z between ẑ and z̃. Note that Ey|x [ẑ] = z̃, so
that:

Ey|x

[
∇Φ(z̃)>(ẑ − z̃)

]
= 0.

Furthermore, note that:

(ẑ − z̃)>∇2Φ(z)(ẑ − z̃)

= ∇2
uu(û− ũ)2 + 2∇2

up(û− ũ)(p̂− p̃) +∇2
pp(p̂− p̃)2

≤ A
(
(û− ũ)2 + 2|(û− ũ)(p̂− p̃)|+ (p̂− p̃)2

)
≤ 2A

(
(û− ũ)2 + (p̂− p̃)2

)
,

where we used elementary inequality ab ≤ a2 + b2, and
∇2
uu,∇2

up,∇2
pp denote the second-order derivatives evalu-

ated at some z = (u, p). Hence:

Ey|x

[
(ẑ − z̃)>∇2Φ(z̃)(ẑ − z̃)

]
≤ 2A

(
Ey|x

[
(û− ũ)2

]
+ Ey|x

[
(p̂− p̃)2

])
.

Since û is the empirical average over n labels and ũ is its
expectation (over the labels), Ey|x

[
(û− ũ)2

]
is the vari-

ance of û, which is at most 1
4n , because û ∈ [0, 1]:

var(û) =
1

n2

n∑
i=1

var(hiyi) ≤
1

n

n∑
i=1

hiηi(1− ηi) ≤
1

4n
,

where we used the independence of labels yi, i = 1, . . . , n.
Similarly, Ey|x

[
(p̂− p̃)2

]
is at most 1

4n , which in total
gives:

Ey|x

[
(ẑ − z̃)>∇2Φ(z̃)(ẑ − z̃)

]
≤ A

n
.

Using a lower bound −A on the second-order derivatives
and performing a similar chain of reasoning, one also gets:

Ey|x

[
(ẑ − z̃)>∇2Φ(z̃)(ẑ − z̃)

]
≥ −A

n
.

From that we have:

‖Ey|x
[
Φ(ẑ)

]
− Φ(z̃)‖ ≤ A

2n
,

which is exactly what was to be shown.

C.2. Proof of Lemma 3

Assume Φ is three-times differentiable, with all partial
third-order derivatives bounded by B. Taylor expanding
Φ(ẑ) around point z̃ up to the third order gives:

Φ(ẑ) = Φ(z̃) +∇Φ(z̃)>(ẑ − z̃)

+
1

2
(ẑ − z̃)>∇2Φ(z̃)(ẑ − z̃)

+
1

6

2∑
α,β,γ=1

∂3Φ(z)

∂zα∂zβ∂zγ
(ẑα − z̃α)(ẑβ − z̃β)(ẑγ − z̃γ),

for some z between ẑ and z̃. First note that Ey|x [ẑ] = z̃,
so that:

Ey|x

[
∇Φ(z̃)>(ẑ − z̃)

]
= 0.

Furthermore,

Ey|x

[
∇2(ẑ − z̃)>Φ(z̃)(ẑ − z̃)

]
= Ey|x

[
tr
(
∇2Φ(z̃)(ẑ − z̃)(ẑ − z̃)>

)]
= tr

(
∇2Φ(z̃)Σ

)
,

where Σ = Ey|x
[
(ẑ − z̃)(ẑ − z̃)>

]
is the covariance ma-

trix of ẑ − z̃. By independence of examples,

Σ =
1

n2

n∑
i=1

Eyi|xi

[(
hi(yi − ηi)2 hi(yi − ηi)2

hi(yi − ηi)2 (yi − ηi)2

)]

=
1

n2

n∑
i=1

ηi(1− ηi)
(
hi hi
hi 1

)
,

so that:

tr
(
∇2Φ(z̃)Σ

)
= (∇2

uu + 2∇2
up)su +∇2

ppsp,
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where:

sp :=
1

n2

n∑
i=1

ηi(1− ηi),

su :=
1

n2

n∑
i=1

hiηi(1− ηi),

and ∇2
uu,∇2

up,∇2
pp denote be the second-order derivative

terms evaluated at (ũ, p̃). Thus, to finish the proof, we
only need to show that the first order term is bounded by
B
3 n
−3/2. To this end, note that for any numbers ai, bijk,

such that |bijk| ≤ B, i, j, k = 1, . . . , 2:∑
ijk

bijkaiajak ≤ B
∑
ijk

|ai||aj ||ak| = B(|a1|+ |a2|)3.

By Hölder’s inequality,

2∑
i=1

|ai| ≤
( 2∑
i=1

|ai|3
)1/3

22/3,

so that:

B(|a1|+ |a2|+ |a3|)3 ≤ 4B
(
|a1|3 + |a2|3 + |a3|3

)
.

Hence, if we bound:

∂3Φ(z)

∂zα∂zβ∂zγ
≤ B,

the third-order term 1
6

∑2
α,β,γ=1 . . . is bounded by:

2B

3

(
|û− ũ|3 + |p̂− p̃|3

)
We now bound Ey|x

[
|û− ũ|3

]
and Ey|x

[
|p̂− p̃|3

]
. By

Cauchy-Schwarz inequality,

Ey|x

[
|p̂− p̃|3

]
≤
√
Ey|x

[
(p̂− p̃)4

]√
Ey|x

[
(p̂− p̃)2

]
.

Before, we already showed that

Ey|x

[
(p̂− p̃)2

]
≤ 1

4n
.

Denote ai = yi − ηi, and let µk = Ey|x
[
aki
]
. Using µ1 =

0, we have:

Ey|x

[
(p̂− p̃)4

]
=

1

n4

∑
i,j,k,`

aiajaka`

=
1

n4

(
nµ4 + 3n(n− 1)µ2

2

)
.

Since µ2 ≤ 1
4 and µ4 ≤ 1

12 , Ey|x
[
(p̂− p̃)4

]
≤ 3

16n2 , and
thus:

Ey|x

[
|p̂− p̃|3

]
≤
√

3

8
n−3/2 ≤ 1

4
n−3/2.

Using similar bound for Ey|x
[
|û− ũ|3

]
, we conclude that

the third-order term is bounded by B
3 n
−3/2. Bounding the

third-order derivatives from below by −B, and using simi-
lar reasoning gives a lower bound of the same value. This
finishes the proof.

C.3. Proof of Theorem 3

Abbreviating Φ(h) = Ey|x
[
Φ(û(h), v̂(h), p̂)

]
and

Φa(h) = Φappr(h):

Φ(h∗ETU)− Φ(h∗a) = Φ(h∗ETU)− Φa(h∗ETU)︸ ︷︷ ︸
≤ B

3n3/2

Φa(h∗ETU)− Φa(h∗a)︸ ︷︷ ︸
≤0

+ Φa(h∗a)− Φ(h∗a)︸ ︷︷ ︸
≤ B

3n3/2

≤ 2B

3n3/2
,

where the bounds shown in the inequalities are from
Lemma 3.

C.4. Derivation of the approximation algorithm for
Fβ-measure

Recall that Fβ(u, v, p) = (1+β2)u
β2p+v . The seconder order

derivatives with respect to u and p are:

∂2Fβ
∂u2

=0,
∂2Fβ
∂u∂p

=
−β2(1 + β2)

(β2p+ v)2
,
∂2Fβ
∂p2

=
2β4(1 + β2)u

(β2p+ v)3
.

To optimize Φappr(h), we first sort observations according
to η(xi). Then we precompute:

p̃ =
1

n

n∑
i=1

η(xi), p̃var =
1

n2

n∑
i=1

η(xi)(1− η(xi)).

Next, for each k = 0, 1, . . . , n, we precompute:

ũk =
1

n

k∑
i=1

η(xi), v̂
k =

k

n
, ũkvar =

1

n2

k∑
i=1

η(xi)(1−η(xi)).

We then choose k for which the ETU approximation:

(1 + β2)ũk

β2p̃+ k
n

− β2(1 + β2)

(β2p̃+ k
n )2

ũkvar +
β4(1 + β2)ũk

(β2p̃+ k
n )3

p̃var,

is maximized. The maximization can be done in time lin-
ear in O(n), so the most expensive operation is sorting the
instances.

D. Additional material to Section 4.2
Let x = (x1, . . . , xn) be the input sample (test set) of size
n generated i.i.d. from P. Given x and a function η̂ : X →
[0, 1], let

ĥ = argmax
h∈Ĥ

Ey∼η̂(x)

[
Φ(û(h), v̂(h), p̂)

]︸ ︷︷ ︸
=:Φ̂ETU(h)

.



Consistency Analysis for Binary Classification Revisited

be the classifier returned by the ETU procedure upon re-
ceiving the input sample x. Likewise, let:

h∗ = argmax
h∈Ĥ

Ey∼η(x)

[
Φ(û(h), v̂(h), p̂)

]︸ ︷︷ ︸
=:ΦETU(h)

,

be the optimal ETU classifier in Ĥ. We want to bound the
difference Ex

[
|ΦETU(ĥ)− ΦETU(h∗)|

]
. By the definition

of h∗, ΦETU(ĥ) ≤ ΦETU(h∗) for any x, and thus:

Ex

[
|ΦETU(ĥ)− ΦETU(h∗)|

]
= Ex

[
ΦETU(h∗)

]
− Ex

[
ΦETU(ĥ)

]
= Ex

[
ΦETU(h∗)

]
− Ex

[
Φ̂ETU(h∗)

]
+ Ex

[
Φ̂ETU(h∗)

]
− Ex

[
Φ̂ETU(ĥ)

]
︸ ︷︷ ︸

≤0

+ Ex

[
Φ̂ETU(ĥ)

]
− Ex

[
ΦETU(ĥ)

]
≤ 2 sup

h∈Ĥ

∣∣∣Ex

[
ΦETU(h)− Φ̂ETU(h)

] ∣∣∣. (7)

Now, fix some classifier h and input sample x. We
let û(h), v̂(h), p̂ denote the random variables generated
according to η (for fixed x), while û′(h), p̂′(h) denote
random variables generated according to η̂; for instance,
û′(h) = 1

n

∑n
i=1 h(xi)yi, where yi ∼ η̂(xi). Using this

notation, we have:

ΦETU(h) = Ey|x
[
Φ(û(h), v̂(h), p̂)

]
,

Φ̂ETU(h) = Ey|x
[
Φ(û′(h), v̂(h), p̂′)

]
(note that v̂(h) does not depend on η̂ or η, we v̂′(h) =
v̂(h)). We now bound the term under sup in (7):∣∣∣Ex

[
ΦETU(h)− Φ̂ETU(h)

] ∣∣∣
≤ E

[∣∣Φ(û, v̂, p̂)− Φ(û′, v̂, p̂′)
∣∣]

≤ E
[∣∣Φ(û, v̂, p̂)− Φ(u, v, p)

∣∣]
+ E

[∣∣Φ(u, v, p)− Φ(û′, v̂, p̂′)
∣∣] ,

where the first inequality is due to Jensen’s inequality ap-
plied to a convex function x 7→ |x|, the all expectations
except for the first line are joint with respect to (x,y),
and for the sake of clarity we drop the dependence on h
in û(h), v̂(h), û′(h). Now, it follow from Lemma 1 that:

E
[∣∣Φ(û, v̂, p̂)− Φ(u, v, p)

∣∣] ≤ c√ log n

n
,

for some constant c. Moreover, using p-Lipschitzness of Φ,
we have:

E
[∣∣Φ(u, v, p)− Φ(û′, v̂, p̂′)

∣∣] ≤ UpE [|û′ − u|]
+ VpE

[
|v̂ − v|

]
+ PpE

[
|p̂′ − p|

]
.

Now, the term E
[
|v̂ − v|

]
is well-controlled and was

shown in the proof of Lemma 1 to be at most
√

1
4n as the

expected deviation of the empirical average of [0, 1]-valued
random variable from its mean. Thus it remains to bound
the terms E

[
|p̂′ − p|

]
and E

[
|û′ − u|

]
. Define:

p̃′ = Ey|x
[
p̂′
]

=
1

n

n∑
i=1

η̂(xi),

ũ′ = Ey|x
[
û′
]

=
1

n

n∑
i=1

h(xi)η̂(xi),

pη̂ = Ex

[
p̃′
]

= E
[
η̂(x)

]
.

uη̂ = Ex

[
ũ′
]

= E
[
h(x)η̂(x)

]
.

We decompose:

|p− p̂′| ≤ |p− pη̂|+ |pη̂ − p̃′|+ |p̃′ − p̂′|

As before, we use the fact that Ex

[
|pη̂ − p̃′|

]
, as well

as Ey|x
[
|p̃′ − p̂′|

]
are both the expected deviations of the

empirical averages of [0, 1]-valued random variables from

their means, and therefore are bounded by
√

1
4n . Hence:

E
[
|p̂′ − p|

]
≤ |p− pη̂|+

1√
n
.

Using analogous way of reasoning, one gets:

E
[
|û′ − u|

]
≤ |u− uη̂|+

1√
n
.

Putting it all together, we get:∣∣∣Ex

[
ΦETU(h)− Φ̂ETU(h)

] ∣∣∣
≤ c′

√
log n

n
+ Up|u(h)− uη̂(h)|+ Pp|p− pη̂|,

for some constant c′. Using (7), we finally get:

Ex

[∣∣ΦETU(ĥ)− ΦETU(h∗)
∣∣] ≤ c′√ log n

n
+ Pp|p− pη̂|

+ sup
h∈Ĥ

Up|u(h)− uη̂(h)|,

which was to be shown.
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E. Isotron Algorithm (Kalai & Sastry, 2009)
Here we include the Isotron Algorithm of (Kalai & Sas-
try, 2009) for completeness. The second update step is the
Pool of Adjacent Violators (PAV) routine, which solves the
isotonic regression problem:

u∗1, u
∗
2, . . . , u

∗
n = arg min

u1≤u2≤···≤un

n∑
i=1

(yi − ui)2,

where the instances are assumed to be sorted according to
their scores wTx (using w obtained in first update step of
the iteration). This is a convex quadratic program and can
be solved efficiently. The output link function u of the Al-
gorithm is a piecewise linear estimate.

Algorithm 2 The Isotron algorithm (Kalai & Sastry, 2009).
Input: Training data {(xi, yi)}ni=1, iterations T
Output: wT , uT
w0 ← 0
u0 ← z 7→ min(max(0, 2 · z + 1), 1)
for t = 1, 2, . . . , T do
wt ← wt−1 + 1

n

∑n
i=1(yi − ut−1(〈wt−1, xi〉)) · xi

ut ← PAV({〈wt, xi〉, yi})
end for


