A. Proofs from Section 2

A.1. Proof of Proposition 1

For the sake of readability, throughout the proof we abbreviate $\Phi = \Phi(u,v,p)$, $\Phi' = \Phi(u',v',p')$, and denote $\Delta u = u - u'$, $\Delta v = v - v'$, $\Delta p = p - p'$. In this notation, proving p-Lipschitzness for metric Φ amounts to showing that:

$$|\Phi - \Phi'| \le U_p |\Delta u| + V_p |\Delta v| + P_p |\Delta p|,$$

for constants U_p, V_p, P_p , which may only depend on p.

The following fact is going to be very useful in proving p-Lipschitzness. If the metric is of the rational form: $\Phi(u,v,p)=\frac{A(u,v,p)}{B(u,v,p)}+C$, where C is some constant, $B(u,v,p)\geq G_p$ for some positive constant G_p (which may depend on p), and $|\Phi(u,v,p)|\leq \Phi_{\max}$ for some constant Φ_{\max} , it suffices to check p-Lipschitzness of numerator and denominator separately. Indeed, using shorthand notation A=A(u,v,p), A'=A(u',v',p'), and similarly for B,B':

$$\Phi - \Phi' = \frac{A - \frac{A'}{B'}B}{B} = \frac{A - A' + \frac{A'}{B'}B' - \frac{A'}{B'}B}{B}$$
$$= \frac{A - A'}{B} + \frac{A'}{B'}\frac{B - B'}{B},$$

hence:

$$|\Phi - \Phi'| \le \frac{|A - A'|}{G_n} + \frac{\Phi_{\max}}{G_n} |B' - B|.$$

a) Accuracy $\Phi(u, v, p) = 1 - v - p + 2u$. We have:

$$\Phi - \Phi' \le 2\Delta u - \Delta v - \Delta p$$
.

so that by triangle inequality:

$$|\Phi - \Phi'| \le 2|\Delta u| + |\Delta v| + |\Delta p|.$$

Hence, the statement follows with $U_p=2,\ V_p=P_p=1.$

b) $AM \ \Phi(u,v,p) = 1 - \frac{vp-u}{2p(1-p)}$. We can use the result on the rational metric by noting that $A(u,v,p) = u - vp, \ B(u,v,p) = B(p) = 2p(1-p), \ C = 1, \ \Phi_{\max} = 1, \ G_p = 2p(1-p)$. We can now check the p-Lipschitzness of A and B separately:

$$A - A' = u - vp - u' + v'p'$$

$$= \Delta u + (vp' - vp) + (v'p' - vp')$$

$$= \Delta u - v\Delta p - p'\Delta v.$$

and since $|v| \le 1$, $|p'| \le 1$, p-Lipschitzness follows from triangle inequality. For the denominator,

$$B - B' = 2p(1 - p) - 2p'(1 - p')$$
$$= 2(p - p') + 2(p'^2 - p^2)$$
$$= 2(1 - p' - p)(p - p'),$$

so that
$$|B - B'| \le 2|\Delta p|$$
.

- c) Jaccard similarity $\Phi(u,v,p)=\frac{u}{p+v-u}$. Follows from the rational form of the metric, since A(u,v,p)=u, B(u,v,p)=p+v-u, C=0, $\Phi_{\max}=1$, $G_p=p$, and the p-Lipschitzness of A(u,v,p) and B(u,v,p) is trivial to show by the triangle inequality.
- d) G-mean $\Phi(u,v,p)=\frac{u(1-v-p+u)}{p(1-p)}$. Exploiting the rational form of the metric, we have $A(u,v,p)=u(1-v-p+u),\ B(u,v,p)=p(1-p),\ C=0,\ \Phi_{\max}=1,\ G_p=p(1-p).$ The p-Lipschitzness of B was shown above for AM measure. As for A:

$$A - A' = (1 - v - p + u)(u - u')$$

+ $u'(u - p - v - u' - p' - v')$
= $(1 - v - p + u)\Delta u + u'(\Delta u - \Delta v - \Delta p)$,

and hence the p-Lipschitzness follows by triangle inequality and the fact that $|1-v-p+u|\leq 2$ and $|u'|\leq 1$.

e) $AUC \frac{(v-u)(p-u)}{p(1-p)}$. Exploiting the rational form of the metric, we have A(u,v,p)=(v-u)(p-u) and B(u,v,p)=p(1-p). The p-Lipschitzness of B was shown above for AM measure; as for A:

$$A - A' = (v - u)(p - u) - (v' - u')(p - u) + (v' - u')(p - u) - (v' - u')(p' - u') = (\Delta v - \Delta u)(p - u) + (v' - u')(\Delta p - \Delta u),$$

and hence the p-Lipschitzness follows by triangle inequality and the fact that $|p-u| \le 1$ and $|v'-u'| \le 1$.

f) Linear-fractional metric of the form:

$$\Phi(u, v, p) = \frac{a_1 + a_2 u + a_3 v + a_4 p}{b_1 + b_2 u + b_3 v + b_4 p},$$

as long as the denominator is bounded from below by some positive constant G_p . This follows immediately from the rational form of the metric, as the numerator A(u,v,p) and denominator B(u,v,p) are linear functions of (u,v,p), so showing p-Lipschitzness of A(u,v,p) and B(u,v,p) is straightforward.

B. Proofs from Section 3.1

B.1. Proof of Lemma 1

We fix classifier h and use a shorthand notation $u, v, \widehat{u}, \widehat{v}$ to denote $u(h), v(h), \widehat{u}(h), \widehat{v}(h)$. Due to the Lipschitz assumption:

$$|\Phi(u,v,p) - \Phi(\widehat{u},\widehat{v},\widehat{p})| \le U_n |u - \widehat{u}| + V_n |v - \widehat{v}| + P_n |p - \widehat{p}|.$$

Fixing $x = (x_1, ..., x_n)$ and taking expectation with respect to $y = (y_1, ..., y_n)$ conditioned on x, we have:

$$\begin{split} \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \big[|\Phi(u, v, p) - \Phi(\widehat{u}, \widehat{v}, \widehat{p})| \big] \\ &\leq U_p \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[|u - \widehat{u}| \right] + V_p |v - \widehat{v}| + P_p \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[|p - \widehat{p}| \right]. \end{split}$$

Denote:

$$\widetilde{p} = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\widehat{p} \right] = \frac{1}{n} \sum_{i=1}^{n} \eta(x_i),$$

$$\widetilde{u} = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\widehat{u} \right] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \eta(x_i)$$

We have:

$$\begin{split} \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[|p - \widehat{p}| \right] &= \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[|p - \widetilde{p} + \widetilde{p} - \widehat{p}| \right] \\ &\leq |p - \widetilde{p}| + \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[|\widetilde{p} - \widehat{p}| \right] \\ &= |p - \widetilde{p}| + \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\sqrt{(\widetilde{p} - \widehat{p})^2} \right] \\ &\leq |p - \widetilde{p}| + \sqrt{\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[(\widetilde{p} - \widehat{p})^2 \right]} \\ &= |p - \widetilde{p}| + \sqrt{\operatorname{Var}_{\boldsymbol{y}|\boldsymbol{x}}(\widehat{p})} \leq |p - \widetilde{p}| + \sqrt{\frac{1}{4n}}, \end{split}$$

where the second inequality follows from Jensen's inequality applied to a concave function $x \mapsto \sqrt{x}$. In an analogous way, one can show that:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|u-\widehat{u}|\right] \leq |u-\widetilde{u}| + \sqrt{\frac{u}{4n}} \leq |u-\widetilde{u}| + \sqrt{\frac{1}{4n}}.$$

Furthermore, using the convexity of the absolute value function, Jensen's inequality implies:

$$\begin{aligned} \left| \Phi(u, v, p) - \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[\Phi(\widehat{u}, \widehat{v}, \widehat{p}) \right] \right| \\ &\leq \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[\left| \Phi(u, v, p) - \Phi(\widehat{u}, \widehat{v}, \widehat{p}) \right| \right]. \end{aligned}$$

so that:

$$\begin{split} \left| \Phi(u, v, p) - \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} \left[\Phi(\widehat{u}, \widehat{v}, \widehat{p}) \right] \right| &\leq U_p |u - \widetilde{u}| + V_p |v - \widehat{v}| \\ &+ P_p |p - \widetilde{p}| + \frac{U_p + V_p}{2\sqrt{n}}. \end{split}$$

We will now show that under the class of thresholded functions \mathcal{H} specified in the statement of the theorem to which h belongs, all the terms on the right-hand side are well controlled. The rest of the proof follows in a straightforward way from Hoeffding's inequality and Vapnik-Chervonenkis bounds, except for minor, technical details, which are included for completeness.

We first apply Hoeffding's inequality to say that with probability at least $1 - \delta/2$,

$$|p - \widetilde{p}| \le \sqrt{\frac{\log \frac{4}{\delta}}{2n}}.$$

Similarly, using standard Rademacher complexity arguments (see, e.g. Mohri et al., 2012), we have, uniformly over all $h \in \mathcal{H}$, with probability $1 - \delta/4$,

$$|v - \widehat{v}| \le 2\mathbb{E}_{x} \left[\mathcal{R}_{n}(\mathcal{H}) \right] + \sqrt{\frac{\log \frac{4}{\delta}}{2n}},$$

and similarly, with probability $1 - \delta/4$,

$$|u - \widetilde{u}| \le 2\mathbb{E}_{\boldsymbol{x}} \left[\mathcal{R}_n(\mathcal{H}_{\eta}) \right] + \sqrt{\frac{\log \frac{4}{\delta}}{2n}},$$

where $\mathcal{H}_{\eta} = \{h \cdot \eta \colon h \in \mathcal{H}\}$, and:

$$\mathcal{R}_n(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \Big| \sum_{i=1}^n \sigma_i h(x_i) \Big| \right]$$

is the Rademacher complexity⁶ of \mathcal{H} . Furthermore, if we let $z_i \in \{-1, 1\}, i = 1, \dots, n$, with $\Pr(z_i = 1) = \frac{1 + \eta(x_i)}{2}$, so that $\mathbb{E}[z_i] = \eta(x_i)$, we have:

$$\sum_{i=1}^{n} \sigma_i h(x_i) \eta(x_i) = \mathbb{E}_{\mathbf{z}} \Big[\sum_{i=1}^{n} \sigma_i h(x_i) z_i \Big],$$

so that:

$$\mathcal{R}_{n}(\mathcal{H}_{\eta}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \Big| \mathbb{E}_{\boldsymbol{z}} \left[\sum_{i=1}^{n} \sigma_{i} h(x_{i}) z_{i} \right] \Big| \right]$$

$$\leq \mathbb{E}_{\sigma, \boldsymbol{z}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \Big| \sum_{i=1}^{n} \sigma_{i} h(x_{i}) z_{i} \Big| \right]$$

$$= \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \Big| \sum_{n=1}^{n} \sigma_{i} h(x_{i}) \Big| \right] = \mathcal{R}_{n}(\mathcal{H}),$$

where the inequality is due to Jensen's inequality applied to convex functions $|\cdot|$ and $\sup\{\cdot\}$, and the second equality is due to the fact that $\sigma_i z_i$ and σ_i are distributed in the same way.

Thus choosing $L_p = \max\{U_p, V_p, P_p\}$, with probability $1 - \delta$, uniformly over all $h \in \mathcal{H}$,

$$\left| \Phi(u, v, p) - \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}, \widehat{v}, \widehat{p}) \right] \right| \leq 4L_p \mathbb{E}_{\boldsymbol{x}} \left[\mathcal{R}_n(\mathcal{H}) \right]$$
$$+ 3L_p \sqrt{\frac{\log \frac{4}{\delta}}{2n}} + \frac{L_p}{\sqrt{n}}.$$

Now, if \mathcal{H} is the class of threshold functions on η , its growth function (Mohri et al., 2012) is equal to m+1, and thus we have⁷:

$$\mathcal{R}_n(\mathcal{H}) \le \sqrt{\frac{2\log(n+1)}{n}},$$

⁶Variables σ_i , $i=1,\ldots,n$, are i.i.d. Rademacher variables distributed according to $\mathbb{P}(\sigma_i=1)=\mathbb{P}(\sigma_i=-1)=\frac{1}{2}$.

⁷We could alternatively use the fact that VC-dimension of \mathcal{H} is 1, which would give a bound with $\log(n+1)$ replaced by $1 + \log(n)$.

so that with probability $1-\delta$, uniformly over all $h\in\mathcal{H}$, we get the bound in the statement of the theorem. The proof is complete.

Lower bound. The dependence $\tilde{O}(1/\sqrt{n})$ on the sample size stated in Lemma 1 cannot be improved in general. To see this, take a metric $\Phi(u,v,p)=u$, p-Lipschitzness of which is trivial to show. Choose h(x)=1 for all x. Then, u(h)=p, while $\widehat{u}(h)=\frac{1}{n}\sum_{i=1}^n y_i$. Hence, $\left|\Phi(u,v,p)-\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\Phi(\widehat{u},\widehat{v},\widehat{p})\right]\right|=\left|p-\widetilde{p}\right|$, where $\widetilde{p}=\frac{1}{n}\sum_{i=1}^n \eta(x_i)$ and $\mathbb{E}_{\boldsymbol{x}}\left[\widetilde{p}\right]=p$. Assume that $\eta(x)$ follows a binomial distribution with $\mathbb{P}(\eta(x)=1)=\mathbb{P}(\eta(x)=0)=\frac{1}{2}$. Denote $|p-\widetilde{p}|$ by Z. By Khinchine inequality, $\mathbb{E}\left[Z\right]\geq 2c\sqrt{\mathbb{E}\left[Z^2\right]}=c/\sqrt{n}$ for some constant c>0. Furthermore, by Paley-Zygmund inequality $\mathbb{P}(Z>\mathbb{E}\left[Z\right]/2)\geq \frac{(\mathbb{E}\left[Z\right])^2}{4\mathbb{E}\left[Z^2\right]}\geq c^2$. Hence, with constant probability,

$$\left|\Phi(u,v,p) - \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\Phi(\widehat{u},\widehat{v},\widehat{p})\right]\right| \geq \frac{c}{2\sqrt{n}},$$

for some c>0, which shows that the rate $\tilde{O}(1/\sqrt{n})$ cannot be improved.

B.2. Proof of Theorem 1

First, note that for a given $\mathbb{P},\ p$ -Lipschitzness implies that $\Phi(u,v,p)$ is continuous as a function of (u,v). Let $\mathcal{H}=\{h_\eta\mid h_\eta=\mathbb{1}_{\eta(x)\geq\eta},\eta\in[0,1]\}$ be the set of binary threshold functions on $\eta(x)$. By Assumption $1,u(h_\eta)$ and $v(h_\eta)$ are continuous in the threshold η , and hence the maximizer of $\Phi(u,v,p)$ over \mathcal{H} exists due to compactness of the domain of η . The existence of the maximizer, together with Assumption 1 and TP monotonicity implies by (Narasimhan et al., 2014a, Lemma 11) that $h_{\mathrm{PU}}^*\in\mathcal{H}$, i.e. the optimal PU classifier is a threshold function.

For any given $\boldsymbol{x}=(x_1,\ldots,x_n)$, let $h_{\mathrm{ETU}}^*(\boldsymbol{x})$ be the optimal ETU classifier. By TP monotonicity of Ψ , (Natarajan et al., 2016, Theorem 1) implies that $h_{\mathrm{ETU}}^*(\boldsymbol{x})$ satisfies:

$$\max_{i=1,...,n} \{ \eta(x_i) \colon h_{\text{ETU}}^*(x_i) = 0 \}$$

$$\leq \min_{i=1,...,n} \{ \eta(x_i) \colon h_{\text{ETU}}^*(x_i) = 1 \}.$$

However, by Assumption 1, $\eta(x_i) \neq \eta(x_j)$ for all $i \neq j$ with probability one, so that the condition above is satisfied with strict inequality, and hence there exists τ^* , which is between $\max\{\eta(x_i)\colon h^*_{\mathrm{ETU}}(x_i)=0\}$ and $\min\{\eta(x_i)\colon h^*_{\mathrm{ETU}}(x_i)=1\}$. This means that $h^*_{\mathrm{ETU}}(x)$

is a threshold function on $\eta(x)$ with threshold τ^* , i.e. $h^*_{\mathrm{ETIJ}} \in \mathcal{H}.$

To conclude, with probability one, $h_{\text{ETU}}^*(\boldsymbol{x}), h_{\text{PU}}^* \in \mathcal{H}$.

Now, define $\epsilon/2 = 4L_p\sqrt{\frac{2\log(n+1)}{n}} + 3L_p\sqrt{\frac{\log\frac{4}{\delta}}{2n}} + \frac{L_p}{\sqrt{n}}$. Then, with probability $1-\delta$ (over the random choice of x),

$$\begin{split} &\Phi(u(h_{\mathrm{ETU}}^*(\boldsymbol{x})), v(h_{\mathrm{ETU}}^*(\boldsymbol{x})), p) \\ &\leq \Phi(u(h_{\mathrm{PU}}^*), v(h_{\mathrm{PU}}^*), p) \\ &\leq \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}(h_{\mathrm{PU}}^*), \widehat{v}(h_{\mathrm{PU}}^*), \widehat{p}) \right] + \epsilon/2 \\ &\leq \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}(h_{\mathrm{ETU}}^*(\boldsymbol{x})), \widehat{v}(h_{\mathrm{ETU}}^*(\boldsymbol{x})), \widehat{p}) \right] + \epsilon/2, \\ &\leq \Phi(u(h_{\mathrm{ETU}}^*(\boldsymbol{x})), v(h_{\mathrm{ETU}}^*(\boldsymbol{x})), p) + \epsilon, \end{split}$$

where we used Lemma 1 twice in the second and fourth inequality. Hence, with probability $1 - \eta$,

$$\begin{split} \left| \Phi(u(h_{\mathrm{ETU}}^*(\boldsymbol{x})), v(h_{\mathrm{ETU}}^*(\boldsymbol{x})), p) - \Phi(u(h_{\mathrm{PU}}^*), v(h_{\mathrm{PU}}^*), p) \right| &\leq \epsilon. \end{split}$$

Using analogous argument, one can show that with probability $1 - \delta$,

$$\begin{split} \left| \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}(h_{\mathrm{ETU}}^*(\boldsymbol{x})), \widehat{v}(h_{\mathrm{ETU}}^*(\boldsymbol{x})), \widehat{p}) \right] \right. \\ \\ \left. \left. - \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}(h_{\mathrm{PU}}^*), \widehat{v}(h_{\mathrm{PU}}^*), \widehat{p}) \right] \right| \leq \epsilon, \end{split}$$

which finishes the proof.

B.3. Finite Sample Regime: Proof of Theorem 2

The PU-optimal classifier is:

$$h_{\text{PU}}^* = \underset{h}{\operatorname{argmax}} \Phi_{\text{Prec}}(u(h), v(h), p) = \underset{h}{\operatorname{argmax}} \frac{u(h)}{v(h) + \alpha}.$$

Proposition 2.

$$h_{\text{PU}}^*(x) = \begin{cases} 1, & \text{if } x \in \mathcal{X}_1, \\ 0, & \text{else} \end{cases}$$

Proof. Note that for the defined h_{PU}^* classifier, we have $u(h_{\text{PU}}^*) = v(h_{\text{PU}}^*) = \mathbb{P}(\mathcal{X}_1)$, and

$$\Phi_{\operatorname{Prec}}(u(h_{\operatorname{PU}}^*), v(h_{\operatorname{PU}}^*), p) = \frac{\mathbb{P}(\mathcal{X}_1)}{\mathbb{P}(\mathcal{X}_1) + \alpha}.$$

Firstly, observe that for any candidate optimal classifier h', it must hold that h'(x)=0 for all $x\in\mathcal{X}_3$ (otherwise the metric strictly decreases). Now, suppose there exists a classifier $h'\neq h_{\mathrm{PU}}^*$ which has strictly higher utility than h_{PU}^* . Then, it must be that h'(x)=1 for all

⁸Lemma 11 of Narasimhan et al. (2014a) requires that the PU maximizer within \mathcal{H} is h_{η} for some $\eta \in (0,1)$. However, we do not impose this constraint here because the lemma can easily be extended to the case $\eta \in [0,1]$ under our assumption that $\eta(x)$ has a density over [0,1].

 $x \in \mathcal{X}_2$. We have, $u(h') = \mathbb{P}(\mathcal{X}_1) + \mathbb{P}(\mathcal{X}_2)(1 - \sqrt{\alpha})$ and $v(h') = \mathbb{P}(\mathcal{X}_1) + \mathbb{P}(\mathcal{X}_2)$. So:

$$\Phi_{\operatorname{Prec}}(u(h'),v(h'),p) = \frac{\mathbb{P}(\mathcal{X}_1) + \mathbb{P}(\mathcal{X}_2)(1-\sqrt{\alpha})}{\mathbb{P}(\mathcal{X}_1) + \mathbb{P}(\mathcal{X}_2) + \alpha}.$$

But for the chosen small value of α , we can show the contradiction that:

$$\Phi_{\operatorname{Prec}}(u(h'), v(h'), p) < \Phi_{\operatorname{Prec}}(u(h_{\operatorname{PU}}^*), v(h_{\operatorname{PU}}^*), p).$$

Therefore, h_{PU}^* as stated is indeed optimal.

We see from the above constructed example that the PU optimal classifier assigns negative labels to 50% of the data which are highly likely to belong to the positive class. PU is sensitive to label noise if the metric is less stable as implied by the high *p*-Lipschitz constant. Next, we show that ETU is relatively more robust.

Given a set of instances $x = \{x_1, x_2, \dots, x_n\}$, recall that the ETU-optimal assignments can be computed as:

$$h_{\mathrm{ETU}}^*(\boldsymbol{x}) = \mathbf{s}^* \coloneqq \operatorname*{argmax}_{\mathbf{s} \in \{0,1\}^n} \mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(.|\boldsymbol{x})} \Phi_{\mathrm{Prec}}(\mathbf{s}, \boldsymbol{y}) \; .$$

Proposition 3. On the subset of instances in x that have deterministic labels, the ETU-optimal predictions satisfy:

$$h_{\text{ETU}}^*(x_j) = s_j^* = \begin{cases} 1, & \text{if } x \in \mathcal{X}_1, \\ 0, & \text{if } x \in \mathcal{X}_3. \end{cases}$$

Note that the predictions coincide with that of h_{PU}^* on these indices.

Proof. Let $\mathcal{I}_i = \{j : x_j \in \mathcal{X}_i\}$, for i = 1, 2, 3. Note that the optimal value at the solution \mathbf{s}^* is given by:

$$\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(.|\boldsymbol{x})} \Phi_{\text{Prec}}(\mathbf{s}^*, \boldsymbol{y}) = \frac{\sum_{j \in \mathcal{I}_1} s_j^* + \Delta(\mathbf{s}_{\mathcal{I}_2}^*, \boldsymbol{y}_{\mathcal{I}_2})}{\sum_{j \in \mathcal{I}_1 \cup \mathcal{I}_3} s_j^* + \sum_{j \in \mathcal{I}_2} s_j^* + \alpha n},$$
(2)

where $\mathbf{s}_{\mathcal{I}_2}^*$ indicates the optimal assignments corresponding to indices in \mathcal{I}_2 and $\Delta(\mathbf{s}_{\mathcal{I}_2}^*, \boldsymbol{y}_{\mathcal{I}_2})$ is a quantity that depends only on indices in \mathcal{I}_2 , and is given by:

$$\Delta(\mathbf{s}_{\mathcal{I}_2}^*, \boldsymbol{y}_{\mathcal{I}_2}) = \sum_{\mathbf{y}_{\mathcal{I}_2} \in \{0,1\}^{|\mathcal{I}_2|}} \mathbb{P}(\mathbf{y}_{\mathcal{I}_2}) \langle \mathbf{y}_{\mathcal{I}_2}, \mathbf{s}_{\mathcal{I}_2}^* \rangle$$
 (3)

Fixing the optimal predictions for indices corresponding to \mathcal{I}_2 , the value (2) is maximized by maximizing the numerator term $\sum_{j\in\mathcal{I}_1}s_j^*$ and minimizing the denominator term $\sum_{j\in\mathcal{I}_1\cup\mathcal{I}_3}s_j^*$. This is achieved precisely when the optimal solution satisfies the statement in the proposition. The proof is complete.

We know from Proposition 2 that h_{PU}^* sets the labels corresponding to indices in the set \mathcal{I}_2 to 0. Now let us examine what happens in the case of ETU, when labels have mild noise (i.e. with some small probability $\sqrt{\epsilon}$, the label of an instance from \mathcal{X}_2 can be 0), at optimality. Consider a candidate optimal solution \mathbf{s}' that behaves exactly like h_{PU}^* , i.e. $\mathbf{s}'_j = 0$ for all $j \in \mathcal{I}_2$, for some $1 \leq k \leq |\mathcal{I}_2|$.

Then, $\Delta(\mathbf{s}'_{\mathcal{I}_2}, \boldsymbol{y}_{\mathcal{I}_2}) = 0$, so:

$$\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(.|\boldsymbol{x})} \Phi_{\text{Prec}}(\mathbf{s}', \boldsymbol{y}) = \frac{|\mathcal{I}_1|}{|\mathcal{I}_1| + \alpha n}. \tag{4}$$

Now, consider another candidate solution s'' that is equal to s', but has a value of 1 corresponding to a subset of indices $j_1, j_2, \ldots, j_k \in \mathcal{I}_2$. The value of this solution can be shown to be:

$$\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(.|\boldsymbol{x})} \Phi_{\text{Prec}}(\mathbf{s}'', \boldsymbol{y}) = \frac{|\mathcal{I}_1| + k(1 - \epsilon)}{|\mathcal{I}_1| + k + \alpha n}.$$
 (5)

Comparing equations (4) and (5), we have that if:

$$\epsilon < \frac{\alpha n}{|\mathcal{I}_1| + \alpha n},\tag{6}$$

then s'' is a strictly better solution than s'. In particular, as (5) is mononotic in k, the optimal choice is $k = |\mathcal{I}_2|$. This immediately leads to the following corollary.

Corollary 1. 1. If $|\mathcal{I}_2| = 0$, then

$$h^*_{\mathrm{ETU}}(\boldsymbol{x}) \coloneqq \mathbf{s}^* = h^*_{\mathrm{PU}}(\boldsymbol{x})$$
.

2. Otherwise, if $\epsilon < \frac{\alpha}{1+\alpha}$, then

$$h_{\text{ETII}}^*(\boldsymbol{x}) := \mathbf{s}^* \neq h_{\text{PII}}^*(\boldsymbol{x})$$
.

In particular, h_{ETU}^* assigns label 1 to all instances that are overwhelmingly positive under \mathbb{P} , corresponding to indices \mathcal{I}_2 , whereas h_{PU}^* assigns label 0.

3. If $|\mathcal{I}_1| = 0$, but $|\mathcal{I}_2| > 0$ then for any $0 < \epsilon < 1$,

$$h_{\text{FTII}}^*(\boldsymbol{x}) := \mathbf{s}^* \neq h_{\text{PII}}^*(\boldsymbol{x}) := \mathbf{0}$$
.

Note that $\epsilon < \alpha/(1+\alpha)$ does *not* hold for our choice of $\epsilon = \sqrt{\alpha}$. However, case 3 in Corollary 1 is sufficient to establish the bound in Theorem 2, when $\mathbb{P}(\mathcal{X}_2)$ is very large.

C. Proofs for Section 4.1

Fix a binary classifier $h \colon X \to \{0,1\}$ and let the input sample $\boldsymbol{x} = (x_1,\ldots,x_n)$ be generated i.i.d. from \mathbb{P} . For the sake of clarity, abbreviate $\eta(x_i) = \eta_i$ and $h(x_i) = h_i$, $i = 1,\ldots,n$. In the proofs of Lemma 2 and Lemma 3 we will use the following:

• Empirical quantities:

$$\widehat{u}(h) = \frac{1}{n} \sum_{i=1}^{n} h_i y_i, \widehat{v}(h) = \frac{1}{n} \sum_{i=1}^{n} h_i, \widehat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

• Semi-empirical quantities:

$$\widetilde{u}(h) = \frac{1}{n} \sum_{i=1}^{n} h_i \eta_i, \quad \text{and} \quad \widetilde{p} = \frac{1}{n} \sum_{i=1}^{n} \eta_i$$

(we do not define $\widetilde{v}(h)$, as it would the same as $\widehat{v}(h)$).

Note that:

$$\widetilde{u}(h) = \mathbb{E}_{oldsymbol{y} \mid oldsymbol{x}} \left[\widehat{u}(h)
ight], \qquad ext{and} \quad \widetilde{p} = \mathbb{E}_{oldsymbol{y} \mid oldsymbol{x}} \left[\widehat{p}
ight].$$

We will jointly denote $\widehat{\boldsymbol{z}}=(\widehat{u}(h),\widehat{p})$, and similarly $\widetilde{\boldsymbol{z}}=(\widetilde{u}(h),\widetilde{p})$. We will also abbreviate $\Phi(\widehat{\boldsymbol{z}})=\Phi(\widehat{u}(h),\widehat{v}(h),\widehat{p})$ and similarly for $\Phi(\widetilde{\boldsymbol{z}})$.

C.1. Proof of Lemma 2

Assume Φ is two-times differentiable, with all partial second-order derivatives bounded by A. Taylor expanding $\Phi(\widehat{z})$ around point \widetilde{z} up to the second order gives:

$$\begin{split} \Phi(\widehat{\boldsymbol{z}}) &= \Phi(\widetilde{\boldsymbol{z}}) + \nabla \Phi(\widetilde{\boldsymbol{z}})^{\top} (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \\ &+ \frac{1}{2} (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^{\top} \nabla^2 \Phi(\boldsymbol{z}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \end{split}$$

for some z between \hat{z} and \tilde{z} . Note that $\mathbb{E}_{y|x}[\hat{z}] = \tilde{z}$, so that:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\nabla\Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right]=0.$$

Furthermore, note that:

$$\begin{split} &(\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\boldsymbol{z}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \\ &= \nabla_{uu}^{2} (\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}})^{2} + 2 \nabla_{up}^{2} (\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}}) (\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}}) + \nabla_{pp}^{2} (\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}})^{2} \\ &\leq A \big((\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}})^{2} + 2 |(\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}}) (\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}})| + (\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}})^{2} \big) \\ &\leq 2A \big((\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}})^{2} + (\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}})^{2} \big), \end{split}$$

where we used elementary inequality $ab \leq a^2 + b^2$, and $\nabla^2_{uu}, \nabla^2_{up}, \nabla^2_{pp}$ denote the second-order derivatives evaluated at some z = (u, p). Hence:

$$\begin{split} \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[(\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^{\top} \nabla^2 \Phi(\widetilde{\boldsymbol{z}}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \right] \\ & \leq 2A \left(\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[(\widehat{\boldsymbol{u}} - \widetilde{\boldsymbol{u}})^2 \right] + \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[(\widehat{\boldsymbol{p}} - \widetilde{\boldsymbol{p}})^2 \right] \right). \end{split}$$

Since \widehat{u} is the empirical average over n labels and \widetilde{u} is its expectation (over the labels), $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{u}-\widetilde{u})^2\right]$ is the variance of \widehat{u} , which is at most $\frac{1}{4n}$, because $\widehat{u} \in [0,1]$:

$$\operatorname{var}(\widehat{u}) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{var}(h_i y_i) \le \frac{1}{n} \sum_{i=1}^n h_i \eta_i (1 - \eta_i) \le \frac{1}{4n},$$

where we used the independence of labels y_i , $i=1,\ldots,n$. Similarly, $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^2\right]$ is at most $\frac{1}{4n}$, which in total gives:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top}\nabla^{2}\Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] \leq \frac{A}{n}.$$

Using a lower bound -A on the second-order derivatives and performing a similar chain of reasoning, one also gets:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top}\nabla^{2}\Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] \geq -\frac{A}{n}.$$

From that we have:

$$\|\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\Phi(\widehat{\boldsymbol{z}})\right] - \Phi(\widetilde{\boldsymbol{z}})\| \le \frac{A}{2n},$$

which is exactly what was to be shown.

C.2. Proof of Lemma 3

Assume Φ is three-times differentiable, with all partial third-order derivatives bounded by B. Taylor expanding $\Phi(\widehat{z})$ around point \widetilde{z} up to the third order gives:

$$\begin{split} \Phi(\widehat{\boldsymbol{z}}) &= \Phi(\widetilde{\boldsymbol{z}}) + \nabla \Phi(\widetilde{\boldsymbol{z}})^{\top} (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \\ &+ \frac{1}{2} (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\widetilde{\boldsymbol{z}}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \\ &+ \frac{1}{6} \sum_{\alpha, \beta, \gamma = 1}^{2} \frac{\partial^{3} \Phi(\boldsymbol{z})}{\partial z_{\alpha} \partial z_{\beta} \partial z_{\gamma}} (\widehat{z}_{\alpha} - \widetilde{z}_{\alpha}) (\widehat{z}_{\beta} - \widetilde{z}_{\beta}) (\widehat{z}_{\gamma} - \widetilde{z}_{\gamma}), \end{split}$$

for some z between \widehat{z} and \widetilde{z} . First note that $\mathbb{E}_{y|x}\left[\widehat{z}\right] = \widetilde{z}$, so that:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[\nabla\Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] = 0.$$

Furthermore.

$$\begin{split} \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\nabla^2 (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^\top \Phi(\widetilde{\boldsymbol{z}}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) \right] \\ &= \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\operatorname{tr} \left(\nabla^2 \Phi(\widetilde{\boldsymbol{z}}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}) (\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^\top \right) \right] \\ &= \operatorname{tr} \left(\nabla^2 \Phi(\widetilde{\boldsymbol{z}}) \Sigma \right), \end{split}$$

where $\Sigma = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}})^{\top}\right]$ is the covariance matrix of $\widehat{\boldsymbol{z}} - \widetilde{\boldsymbol{z}}$. By independence of examples,

$$\Sigma = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}_{y_i|x_i} \left[\begin{pmatrix} h_i(y_i - \eta_i)^2 & h_i(y_i - \eta_i)^2 \\ h_i(y_i - \eta_i)^2 & (y_i - \eta_i)^2 \end{pmatrix} \right]$$
$$= \frac{1}{n^2} \sum_{i=1}^{n} \eta_i (1 - \eta_i) \begin{pmatrix} h_i & h_i \\ h_i & 1 \end{pmatrix},$$

so that:

$$\operatorname{tr}\left(\nabla^2 \Phi(\widetilde{\boldsymbol{z}}) \Sigma\right) = (\nabla_{uu}^2 + 2\nabla_{up}^2) s_u + \nabla_{pp}^2 s_p,$$

where:

$$s_p := \frac{1}{n^2} \sum_{i=1}^n \eta_i (1 - \eta_i),$$

$$s_u := \frac{1}{n^2} \sum_{i=1}^n h_i \eta_i (1 - \eta_i),$$

and ∇^2_{uu} , ∇^2_{up} , ∇^2_{pp} denote be the second-order derivative terms evaluated at $(\widetilde{u}, \widetilde{p})$. Thus, to finish the proof, we only need to show that the first order term is bounded by $\frac{B}{3}n^{-3/2}$. To this end, note that for any numbers a_i , b_{ijk} , such that $|b_{ijk}| \leq B$, $i, j, k = 1, \ldots, 2$:

$$\sum_{ijk} b_{ijk} a_i a_j a_k \le B \sum_{ijk} |a_i| |a_j| |a_k| = B(|a_1| + |a_2|)^3.$$

By Hölder's inequality,

$$\sum_{i=1}^2 |a_i| \leq \bigg(\sum_{i=1}^2 |a_i|^3\bigg)^{1/3} 2^{2/3},$$

so that:

$$B(|a_1| + |a_2| + |a_3|)^3 \le 4B(|a_1|^3 + |a_2|^3 + |a_3|^3)$$

Hence, if we bound:

$$\frac{\partial^3 \Phi(\boldsymbol{z})}{\partial z_{\alpha} \partial z_{\beta} \partial z_{\gamma}} \le B,$$

the third-order term $\frac{1}{6}\sum_{\alpha,\beta,\gamma=1}^2\dots$ is bounded by:

$$\frac{2B}{3}\left(|\widehat{u}-\widetilde{u}|^3+|\widehat{p}-\widetilde{p}|^3\right)$$

We now bound $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|\widehat{u}-\widetilde{u}|^3\right]$ and $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^3\right]$. By Cauchy-Schwarz inequality,

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^3\right] \leq \sqrt{\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^4\right]}\sqrt{\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^2\right]}.$$

Before, we already showed that

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p}-\widehat{p})^2\right] \le \frac{1}{4n}.$$

Denote $a_i = y_i - \eta_i$, and let $\mu_k = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[a_i^k\right]$. Using $\mu_1 = 0$, we have:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p}-\widehat{p})^4\right] = \frac{1}{n^4} \sum_{i,j,k,\ell} a_i a_j a_k a_\ell$$
$$= \frac{1}{n^4} \left(n\mu_4 + 3n(n-1)\mu_2^2\right).$$

Since $\mu_2 \leq \frac{1}{4}$ and $\mu_4 \leq \frac{1}{12}$, $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[(\widehat{p} - \widetilde{p})^4\right] \leq \frac{3}{16n^2}$, and thus:

$$\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^3\right] \leq \frac{\sqrt{3}}{8}n^{-3/2} \leq \frac{1}{4}n^{-3/2}.$$

Using similar bound for $\mathbb{E}_{y|x}\left[|\widehat{u}-\widetilde{u}|^3\right]$, we conclude that the third-order term is bounded by $\frac{B}{3}n^{-3/2}$. Bounding the third-order derivatives from below by -B, and using similar reasoning gives a lower bound of the same value. This finishes the proof.

C.3. Proof of Theorem 3

Abbreviating $\Phi(h) = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p}) \right]$ and $\Phi_a(h) = \Phi_{\mathrm{appr}}(h)$:

$$\Phi(h_{\mathrm{ETU}}^*) - \Phi(h_a^*) = \underbrace{\Phi(h_{\mathrm{ETU}}^*) - \Phi_a(h_{\mathrm{ETU}}^*)}_{\leq \frac{B}{3n^{3/2}}}$$

$$\underbrace{\Phi_a(h_{\rm ETU}^*) - \Phi_a(h_a^*)}_{\leq 0} + \underbrace{\Phi_a(h_a^*) - \Phi(h_a^*)}_{\leq \frac{B}{3n^{3/2}}} \leq \frac{2B}{3n^{3/2}},$$

where the bounds shown in the inequalities are from Lemma 3.

C.4. Derivation of the approximation algorithm for F_{β} -measure

Recall that $F_{\beta}(u, v, p) = \frac{(1+\beta^2)u}{\beta^2p+v}$. The seconder order derivatives with respect to u and p are:

$$\frac{\partial^2 F_\beta}{\partial u^2} = 0, \frac{\partial^2 F_\beta}{\partial u \partial p} = \frac{-\beta^2 (1+\beta^2)}{(\beta^2 p + v)^2}, \frac{\partial^2 F_\beta}{\partial p^2} = \frac{2\beta^4 (1+\beta^2)u}{(\beta^2 p + v)^3}.$$

To optimize $\Phi_{appr}(h)$, we first sort observations according to $\eta(x_i)$. Then we precompute:

$$\widetilde{p} = \frac{1}{n} \sum_{i=1}^{n} \eta(x_i), \qquad \widetilde{p}_{\text{var}} = \frac{1}{n^2} \sum_{i=1}^{n} \eta(x_i) (1 - \eta(x_i)).$$

Next, for each k = 0, 1, ..., n, we precompute:

$$\widetilde{u}^k = \frac{1}{n} \sum_{i=1}^k \eta(x_i), \widehat{v}^k = \frac{k}{n}, \widetilde{u}_{\text{var}}^k = \frac{1}{n^2} \sum_{i=1}^k \eta(x_i) (1 - \eta(x_i)).$$

We then choose k for which the ETU approximation:

$$\frac{(1+\beta^2)\widetilde{u}^k}{\beta^2\widetilde{p}+\frac{k}{n}} - \frac{\beta^2(1+\beta^2)}{(\beta^2\widetilde{p}+\frac{k}{n})^2}\widetilde{u}_{\mathrm{var}}^k + \frac{\beta^4(1+\beta^2)\widetilde{u}^k}{(\beta^2\widetilde{p}+\frac{k}{n})^3}\widetilde{p}_{\mathrm{var}},$$

is maximized. The maximization can be done in time linear in O(n), so the most expensive operation is sorting the instances.

D. Additional material to Section 4.2

Let $x = (x_1, \dots, x_n)$ be the input sample (test set) of size n generated i.i.d. from \mathbb{P} . Given x and a function $\widehat{\eta} \colon X \to [0, 1]$, let

$$\widehat{h} = \operatorname*{argmax}_{h \in \widehat{\mathcal{H}}} \underbrace{\mathbb{E}_{\boldsymbol{y} \sim \widehat{\boldsymbol{\eta}}(\boldsymbol{x})} \left[\Phi(\widehat{\boldsymbol{u}}(h), \widehat{\boldsymbol{v}}(h), \widehat{\boldsymbol{p}}) \right]}_{=: \widehat{\boldsymbol{\Phi}}_{\mathrm{ETU}}(h)}.$$

be the classifier returned by the ETU procedure upon receiving the input sample x. Likewise, let:

$$h^* = \underset{h \in \widehat{\mathcal{H}}}{\operatorname{argmax}} \underbrace{\mathbb{E}_{\boldsymbol{y} \sim \eta(\boldsymbol{x})} \left[\Phi(\widehat{\boldsymbol{u}}(h), \widehat{\boldsymbol{v}}(h), \widehat{\boldsymbol{p}}) \right]}_{=:\Phi_{\text{ETU}}(h)},$$

be the optimal ETU classifier in $\widehat{\mathcal{H}}$. We want to bound the difference $\mathbb{E}_{\boldsymbol{x}}\left[|\Phi_{\mathrm{ETU}}(\widehat{h})-\Phi_{\mathrm{ETU}}(h^*)|\right]$. By the definition of h^* , $\Phi_{\mathrm{ETU}}(\widehat{h}) \leq \Phi_{\mathrm{ETU}}(h^*)$ for any \boldsymbol{x} , and thus:

$$\begin{split} \mathbb{E}_{\boldsymbol{x}} \left[|\Phi_{\mathrm{ETU}}(\widehat{h}) - \Phi_{\mathrm{ETU}}(h^*)| \right] \\ &= \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(h^*) \right] - \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(\widehat{h}) \right] \\ &= \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(h^*) \right] - \mathbb{E}_{\boldsymbol{x}} \left[\widehat{\Phi}_{\mathrm{ETU}}(h^*) \right] \\ &+ \mathbb{E}_{\boldsymbol{x}} \left[\widehat{\Phi}_{\mathrm{ETU}}(h^*) \right] - \mathbb{E}_{\boldsymbol{x}} \left[\widehat{\Phi}_{\mathrm{ETU}}(\widehat{h}) \right] \\ &+ \mathbb{E}_{\boldsymbol{x}} \left[\widehat{\Phi}_{\mathrm{ETU}}(\widehat{h}) \right] - \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(\widehat{h}) \right] \\ &\leq 2 \sup_{h \in \widehat{\mathcal{H}}} \left| \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(h) - \widehat{\Phi}_{\mathrm{ETU}}(h) \right] \right|. \end{split} \tag{7}$$

Now, fix some classifier h and input sample x. We let $\widehat{u}(h), \widehat{v}(h), \widehat{p}$ denote the random variables generated according to η (for fixed x), while $\widehat{u}'(h), \widehat{p}'(h)$ denote random variables generated according to $\widehat{\eta}$; for instance, $\widehat{u}'(h) = \frac{1}{n} \sum_{i=1}^n h(x_i) y_i$, where $y_i \sim \widehat{\eta}(x_i)$. Using this notation, we have:

$$\begin{split} & \Phi_{\mathrm{ETU}}(h) = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{\boldsymbol{u}}(h), \widehat{\boldsymbol{v}}(h), \widehat{\boldsymbol{p}}) \right], \\ & \widehat{\Phi}_{\mathrm{ETU}}(h) = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\Phi(\widehat{\boldsymbol{u}}'(h), \widehat{\boldsymbol{v}}(h), \widehat{\boldsymbol{p}}') \right] \end{split}$$

(note that $\widehat{v}(h)$ does not depend on $\widehat{\eta}$ or η , we $\widehat{v}'(h) = \widehat{v}(h)$). We now bound the term under \sup in (7):

$$\begin{split} \left| \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\mathrm{ETU}}(h) - \widehat{\Phi}_{\mathrm{ETU}}(h) \right] \right| \\ &\leq \mathbb{E} \left[\left| \Phi(\widehat{u}, \widehat{v}, \widehat{p}) - \Phi(\widehat{u}', \widehat{v}, \widehat{p}') \right| \right] \\ &\leq \mathbb{E} \left[\left| \Phi(\widehat{u}, \widehat{v}, \widehat{p}) - \Phi(u, v, p) \right| \right] \\ &+ \mathbb{E} \left[\left| \Phi(u, v, p) - \Phi(\widehat{u}', \widehat{v}, \widehat{p}') \right| \right], \end{split}$$

where the first inequality is due to Jensen's inequality applied to a convex function $x \mapsto |x|$, the all expectations except for the first line are joint with respect to $(\boldsymbol{x}, \boldsymbol{y})$, and for the sake of clarity we drop the dependence on h in $\widehat{u}(h), \widehat{v}(h), \widehat{u}'(h)$. Now, it follow from Lemma 1 that:

$$\mathbb{E}\left[\left|\Phi(\widehat{u},\widehat{v},\widehat{p}) - \Phi(u,v,p)\right|\right] \le c\sqrt{\frac{\log n}{n}},$$

for some constant c. Moreover, using p-Lipschitzness of Φ , we have:

$$\mathbb{E}\left[\left|\Phi(u, v, p) - \Phi(\widehat{u}', \widehat{v}, \widehat{p}')\right|\right] \le U_p \mathbb{E}\left[\left|\widehat{u}' - u\right|\right] + V_p \mathbb{E}\left[\left|\widehat{v} - v\right|\right] + P_p \mathbb{E}\left[\left|\widehat{p}' - p\right|\right].$$

Now, the term $\mathbb{E}\left[|\widehat{v}-v|\right]$ is well-controlled and was shown in the proof of Lemma 1 to be at most $\sqrt{\frac{1}{4n}}$ as the expected deviation of the empirical average of [0,1]-valued random variable from its mean. Thus it remains to bound the terms $\mathbb{E}\left[|\widehat{p}'-p|\right]$ and $\mathbb{E}\left[|\widehat{u}'-u|\right]$. Define:

$$\widetilde{p}' = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\widehat{p}' \right] = \frac{1}{n} \sum_{i=1}^{n} \widehat{\eta}(x_i),$$

$$\widetilde{u}' = \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[\widehat{u}' \right] = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \widehat{\eta}(x_i),$$

$$p_{\widehat{\eta}} = \mathbb{E}_{\boldsymbol{x}} \left[\widetilde{p}' \right] = \mathbb{E} \left[\widehat{\eta}(x) \right].$$

$$u_{\widehat{\eta}} = \mathbb{E}_{\boldsymbol{x}} \left[\widetilde{u}' \right] = \mathbb{E} \left[h(x) \widehat{\eta}(x) \right].$$

We decompose:

$$|p - \widehat{p}'| \le |p - p_{\widehat{n}}| + |p_{\widehat{n}} - \widetilde{p}'| + |\widetilde{p}' - \widehat{p}'|$$

As before, we use the fact that $\mathbb{E}_{\boldsymbol{x}}\left[|p_{\widehat{\eta}}-\widetilde{p}'|\right]$, as well as $\mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}}\left[|\widetilde{p}'-\widehat{p}'|\right]$ are both the expected deviations of the empirical averages of [0,1]-valued random variables from their means, and therefore are bounded by $\sqrt{\frac{1}{4n}}$. Hence:

$$\mathbb{E}\left[|\widehat{p}'-p|\right] \le |p-p_{\widehat{\eta}}| + \frac{1}{\sqrt{n}}.$$

Using analogous way of reasoning, one gets:

$$\mathbb{E}\left[|\widehat{u}' - u|\right] \le |u - u_{\widehat{\eta}}| + \frac{1}{\sqrt{n}}.$$

Putting it all together, we get:

$$\begin{split} \left| \mathbb{E}_{\boldsymbol{x}} \left[\Phi_{\text{ETU}}(h) - \widehat{\Phi}_{\text{ETU}}(h) \right] \right| \\ & \leq c' \sqrt{\frac{\log n}{n}} + U_p |u(h) - u_{\widehat{\eta}}(h)| + P_p |p - p_{\widehat{\eta}}|, \end{split}$$

for some constant c'. Using (7), we finally get:

$$\mathbb{E}_{\boldsymbol{x}}\left[\left|\Phi_{\mathrm{ETU}}(\widehat{h}) - \Phi_{\mathrm{ETU}}(h^*)\right|\right] \leq c' \sqrt{\frac{\log n}{n}} + P_p |p - p_{\widehat{\eta}}| + \sup_{h \in \widehat{\mathcal{P}}} U_p |u(h) - u_{\widehat{\eta}}(h)|,$$

which was to be shown.

E. Isotron Algorithm (Kalai & Sastry, 2009)

Here we include the Isotron Algorithm of (Kalai & Sastry, 2009) for completeness. The second update step is the Pool of Adjacent Violators (PAV) routine, which solves the isotonic regression problem:

$$u_1^*, u_2^*, \dots, u_n^* = \arg\min_{u_1 \le u_2 \le \dots \le u_n} \sum_{i=1}^n (y_i - u_i)^2,$$

where the instances are assumed to be sorted according to their scores $\mathbf{w}^T x$ (using \mathbf{w} obtained in first update step of the iteration). This is a convex quadratic program and can be solved efficiently. The output link function u of the Algorithm is a piecewise linear estimate.

Algorithm 2 The Isotron algorithm (Kalai & Sastry, 2009).

```
Input: Training data \{(x_i,y_i)\}_{i=1}^n, iterations T

Output: \mathbf{w}_T, u_T
\mathbf{w}_0 \leftarrow 0
u_0 \leftarrow z \mapsto \min(\max(0, 2 \cdot z + 1), 1)
for t = 1, 2, \dots, T do
\mathbf{w}_t \leftarrow \mathbf{w}_{t-1} + \frac{1}{n} \sum_{i=1}^n (y_i - u_{t-1}(\langle \mathbf{w}_{t-1}, x_i \rangle)) \cdot x_i
u_t \leftarrow \text{PAV}(\{\langle \mathbf{w}_t, x_i \rangle, y_i \})
end for
```