Consistency Analysis for Binary Classification Revisited

A. Proofs from Section 2
A.1. Proof of Proposition 1

For the sake of readability, throughout the proof we ab-
breviate ® = ®(u,v,p), ' = &(u/,v',p’), and denote
Au=u—1u,Av=v—v', Ap = p—p’. In this notation,
proving p-Lipschitzness for metric & amounts to showing
that:

|® — @] < Up|Au| + Vp|Av| + P Apl,

for constants Uy, V,,, P,, which may only depend on p.

The following fact is going to be very useful in prov-
ing p-Lipschitzness. If the metric is of the rational form:
&(u,v,p) = ggzzg + C, where C is some constant,
B(u,v,p) > G, for some positive constant G,, (which
may depend on p), and |®(u, v, p)| < Ppax for some con-
stant @, it suffices to check p-Lipschitzness of numer-
ator and denominator separately. Indeed, using shorthand
notation A = A(u,v,p), A = A(u/,v',p’), and similarly
for B, B':

A’ A
b — A—- 4B A A+ 4 B — B
B B
B A—A n i’B - B
- B B B '’
hence:
A—A D ax
|<P—<I>'|§| |+ \B’—B\.
Gp Gp

a) Accuracy ®(u,v,p) =1 —v — p+ 2u. We have:
® — & < 2Au— Av — Ap,
so that by triangle inequality:

|® — | < 2|Au| + |Av| + |Ap].

Hence, the statement follows with U, = 2, V, =
P,=1.
b) AM ®(u,v,p) = 1 — 2;’(1'1:1;). We can use the re-

sult on the rational metric by noting that A(u, v, p) =
u—wp, B(u,v,p) = B(p) = 2p(1 —p), C =1,
Dax = 1, G, = 2p(1 — p). We can now check the
p-Lipschitzness of A and B separately:
A—A =u—vp—u +9p

= Au+ (vp' —vp) + (v'p" — vp')

= Au—vAp — p'Av,
and since |v| < 1, |p’| < 1, p-Lipschitzness follows
from triangle inequality. For the denominator,

B—B'=2p(1-p)—2p'(1-p)
=2(p—p)+20"* - p?)
=2(1-p =p)p—1p),

so that |B — B'| < 2|Ap]|.

¢) Jaccard similarity ®(u,v,p) = . Follows from

p+v u’
the rational form of the metric, since A(u,v,p) = u,

Bu,v,p) =p+v—u,C=0,0nux =1,G, =p,
and the p-Lipschitzness of A(u, v, p) and B(u, v, p) is
trivial to show by the triangle inequality.

d) G-mean ®(u,v,p) = %'

rational form of the metric, we have A(u,v,p) =
u(l —v —p+wu), Bu,v,p) = p(1 —p), C =0,
®ax = 1, Gp = p(1 — p). The p-Lipschitzness of B
was shown above for AM measure. As for A:

Exploiting the

A-—A=10—-v—p+u)(u—1u)
+u(u—p—v—u —p =)
=(1—-v—p+u)Au+u(Au— Av — Ap),

and hence the p-Lipschitzness follows by triangle in-
equality and the fact that |1 — v — p + u| < 2 and

|u'] < 1.

e) AUC %. Exploiting the rational form of the
metric, we have A(u,v,p) = (v — u)(p — u) and
B(u,v,p) = p(1 — p). The p-Lipschitzness of B was
shown above for AM measure; as for A:

A=A =@w-u)(p—u) - —u)(p—u
+ (0 =) p—u) — (v — ) =)
— (v = Au)(p — u) + (' — w')(Ap — Au),

and hence the p-Lipschitzness follows by triangle in-
equality and the fact that [p—u| < 1and |v' —u/| < 1.

f) Linear-fractional metric of the form:

a1 —+ asU —+ asv —+ asp
by + bou + b3v + byp

®(u,v,p) =

as long as the denominator is bounded from below by
some positive constant G,,. This follows immediately
from the rational form of the metric, as the numera-
tor A(u,v,p) and denominator B(u,v,p) are linear
functions of (u, v, p), so showing p-Lipschitzness of
A(u,v,p) and B(u,v,p) is straightforward.

B. Proofs from Section 3.1

B.1. Proof of Lemma 1

We fix classifier h and use a shorthand notation u, v, U, 0
to denote u(h),v(h),u(h),v(h). Due to the Lipschitz as-
sumption:

|®(u, v,p)=®(w, v, p)| < Uplu—ul+Vp|v—0]+Pplp—pl.
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Fixing * = (z1,...
specttoy = (y1,. ..
Ey\m [|®<U,’U,p) - (b(aa aaﬁ)”

SUpEy 2 Uu — ﬂ|] + Vplv =0 + PEy|e [|p — ﬁ]] .

, ) and taking expectation with re-
,Yn) conditioned on x, we have:

Denote:
_ 1«
F=Eyia il = 5 > (@)
i=1
_ 1<
u=Eyq[u ~n Z
‘We have:
Ey\a: [|p - ﬁ” = Ey\ac [|p *ﬁﬁLﬁ*ﬁ]]

< |p =Bl + Eypa [P — BI]
= |p— 5l + By [VG- 9]

<lp =PI+ \/Eype [P - )]
|p p| + \/ Vary\a:( ) < |p 5' + \/g

where the second inequality follows from Jensen’s inequal-
ity applied to a concave function x — /7. In an analogous
way, one can show that:

Al <u—al+ 4L < u—al g
- 4dn — 4n

Furthermore, using the convexity of the absolute value
function, Jensen’s inequality implies:

Eyjz [|u

‘@(u,v,p) — By [®(@,5,5)] (

< Ey|m H(I)(U, U7p) - (I)(ﬂv i]\vﬁ)‘] ’

so that:
’q)(u7v7p)—Ey|w (3,5, 5)] ‘<U|u—u\+V|v—v|
- U, +V
P,lp— —L__P

We will now show that under the class of thresholded func-
tions H specified in the statement of the theorem to which
h belongs, all the terms on the right-hand side are well con-
trolled. The rest of the proof follows in a straightforward
way from Hoeffding’s inequality and Vapnik-Chervonenkis
bounds, except for minor, technical details, which are in-
cluded for completeness.

We first apply Hoeffding’s inequality to say that with prob-
ability at least 1 — 0/2,

log %

—nl < .
Ip—p| < o

Similarly, using standard Rademacher complexity argu-
ments (see, e.g. Mohri et al., 2012), we have, uniformly
over all h € H, with probability 1 — §/4,

log 2
- < QEm Rn 2 9
v —72] < [R.(H)] + 5
and similarly, with probability 1 — /4,
_ log 4
=7 < 2Eq [Ru(Hy)] + 1] 22,

where H,, = {h-n: h € H}, and:

hen T

gl

is the Rademacher complexity® of . Furthermore, if we
letz; € {-1,1},i=1,. nwithPr(zizl):H"T(“)
so that E [z;] = n(x;), we have

.l

St -
|

Ra(H) = %w\zm

|:ZJ'L

so that:

Rn(Hy) =E, [sup
heH T

<]Ec7,z|:sup 7‘20—1 xz

heH T

[bup’Zo, x;

heH T

[ o]

|

)| = a0

where the inequality is due to Jensen’s inequality applied to
convex functions | - | and sup{-}, and the second equality is
due to the fact that 0;z; and o; are distributed in the same
way.

Thus choosing L, = max{Up,V,, P,}, with probability
1 — ¢, uniformly over all h € H,

(u,0,) ~ Eyjo [0(0,0,5)]| < 4L, [Ra(H)]

lo L,

g 5 i}
2n \/ﬁ
Now, if H is the class of threshold functions on 7, its
growth function (Mohri et al., 2012) is equal to m + 1, and

thus we have’:

+ 3L,

2log(n+1
Rn(H) < ﬁ’
n
Variables o;, i = 1,...,n, are i.i.d. Rademacher variables
distributed according to P(o; = 1) = P(0;, = —1) = 3
"We could alternatively use the fact that VC-dimension of
is 1, which would give a bound with log(n + 1) replaced by 1 +

log(n).
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so that with probability 1— 4, uniformly over all h € H, we
get the bound in the statement of the theorem. The proof is
complete.

Lower bound. The dependence O(1/+/n) on the sam-
ple size stated in Lemma 1 cannot be improved in general.
To see this, take a metric ®(u,v,p) = u, p-Lipschitzness
of which is trivial to show. Choose h(z) = 1 for all
z. Then, u(h) = p, while u(h) = 13" ;. Hence,
(u,0,) ~ Eyja [0(0,7.5)]| = |
L5 n(w;) and B4 [p] = p. Assume that n(z) follows
a binomial distribution with P(n(z) = 1) = P(n(z) =
0) = 3. Denote [p — p| by Z. By Khinchine in-
equality, E[Z] > 2¢\/E[Z?] = c¢/+/n for some con-
stant ¢ > 0. Furthermore, by Paley-Zygmund inequality
P(Z > E[Z])2) > (EE[ZQT > ¢2. Hence, with constant
probability,

, where p =

(I)(’U,7 U7p) - IEy|m [é(a’ i)\, ]/9\)]

c
>

- 2\/57

for some ¢ > 0, which shows that the rate O(1/+/n) cannot
be improved.

B.2. Proof of Theorem 1

First, note that for a given P, p-Lipschitzness implies
that ®(u, v, p) is continuous as a function of (u,v). Let
H = {hy | hy = Lyz)>y,n € [0,1]} be the set of bi-
nary threshold functions on 7(z). By Assumption 1, u(h,)
and v(h,,) are continuous in the threshold 7), and hence the
maximizer of ®(u, v, p) over H exists due to compactness
of the domain of 7. The existence of the maximizer, to-
gether with Assumption 1 and TP monotonicity implies by
(Narasimhan et al., 2014a, Lemma 11) that hpy; € H, i.e.
the optimal PU classifier is a threshold function.?.

For any given @ = (x1,...,%,), let hfry(x) be the opti-
mal ETU classifier. By TP monotonicity of ¥, (Natarajan
et al., 2016, Theorem 1) implies that hj;; () satisfies:

Jmax {n(zi): hgry(e:) = 0}

< min {n(@;): hgry(zi) = 1}

However, by Assumption 1, n(z;) # n(z;) for all
i # j with probability one, so that the condition above
is satisfied with strict inequality, and hence there exists

*

7*, which is between max{n(x;): hfry(z;) = 0} and
min{n(z;): hry(x;) = 1}. This means that hir;(x)

8Lemma 11 of Narasimhan et al. (2014a) requires that the PU
maximizer within H is h,, for some n € (0, 1). However, we do
not impose this constraint here because the lemma can easily be
extended to the case € [0, 1] under our assumption that n(z)
has a density over [0, 1].

is a threshold function on 7(z) with threshold 7%, i.e.
hiry € H.

To conclude, with probability one, hiry (), hiy € H.

. /2log(n+1) logs | L,
?I?:I/;, (\jzji?l?i):()/sabilif}flj i —0 (OVZ:r the ja:cf;&etfg;
®(u(hgry(2)), v(hgry(2)), )
< @(u(hpy), v(hpy);p)
S]Eylﬂc[ (@(hpy): v(hpy)s )] +¢€/2
< Byl [@((hgry(®)), 0(hiry(2)), D)) +€/2,
< @(u(hgry(@)), v(hgry(®)), p) + €,

where we used Lemma 1 twice in the second and fourth
inequality. Hence, with probability 1 — 7,

®(u(hgry (@), v(hgry(T)), p)
— ®(u(hipy), (o) p)| < .
Using analogous argument, one can show that with proba-
bility 1 — 9,
[Byie [0y (), 2y (2)), )]
— Eyjo [@(@lhp0), 3 ki), )] | < e

which finishes the proof.

B.3. Finite Sample Regime: Proof of Theorem 2
The PU-optimal classifier is:

hpy = arg}lnax Dprec(u(h),v(h),p) = arginax v(zg}ia'

Proposition 2.

. 1, ifx € Ay,
fipu (@) = {0 else

Proof. Note that for the defined hpy; classifier, we have
u(hpy) = v(hpy) = P(A1), and

P(X1)

Pprec(u(hpy), W'

v(hpy),p) =
Firstly, observe that for any candidate optimal classifier
B, it must hold that A'(x) = 0 for all z € X3 (other-
wise the metric strictly decreases). Now, suppose there ex-
ists a classifier A’ # hj which has strictly higher util-
ity than hjy. Then, it must be that A'(z) = 1 for all
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z € Xo. We have, u(h') = P(X)) + P(X2)(1 — /a)
and v(h') = P(X1) + P(X%). So:

P(X1) + P(A2)(1 — Va)
P(Xl) + P(XQ) +a

(bPI‘eC<u(hl)7 ’U(h/),p) =

But for the chosen small value of «, we can show the con-
tradiction that:

Pprec(u(h'), v(h'), p) < Pprec (u(hpy), v(hpy), p)-

Therefore, hpy; as stated is indeed optimal. O

We see from the above constructed example that the PU
optimal classifier assigns negative labels to 50% of the data
which are highly likely to belong to the positive class. PU
is sensitive to label noise if the metric is less stable as im-
plied by the high p-Lipschitz constant. Next, we show that
ETU is relatively more robust.

Given a set of instances @ = {z1, 2, ..., Zn}, recall that
the ETU-optimal assignments can be computed as:

hETU(w) =s" = argmax Ewa(.\m)(DPrec (S, y) .
se{0,1}"

Proposition 3. On the subset of instances in x that have
deterministic labels, the ETU-optimal predictions satisfy:

1, ifz € A,

hero(25) = 85 = {0 if 2 € X

Note that the predictions coincide with that of his; on these
indices.

Proof. LetZ; = {j : x; € A;}, fori = 1,2,3. Note that
the optimal value at the solution s* is given by:

2jex, 8j T Alsz,,Y1,)
jeniuz, 55+ Ljer, 8§ +on’
2)
where s7 indicates the optimal assignments corresponding
to indices in Zp and A(s7,, Yz, ) is a quantity that depends
only on indices in Z,, and is given by:

Ay, yz,) = Y

yz,€{0,1}1 %2l

EyNIP’(J:c)(I)Prec(S*a y) = Z

]P(yI’z ) <y12 ) 532 > (3)

Fixing the optimal predictions for indices corresponding to
T5, the value (2) is maximized by maximizing the numer-
ator term » jer, S; and minimizing the denominator term
> jeTyuzs ;- This is achieved precisely when the opti-
mal solution satisfies the statement in the proposition. The
proof is complete. O

We know from Proposition 2 that hpy; sets the labels corre-
sponding to indices in the set Z, to 0. Now let us examine
what happens in the case of ETU, when labels have mild
noise (i.e. with some small probability /€, the label of an
instance from X, can be 0), at optimality. Consider a can-
didate optimal solution s’ that behaves exactly like hj, i.e.
s} = 0forall j € Zy, for some 1 < k < |Z5|.

Then, A(s%,,yz,) =0, so:

74|
E, o 1o Pprc(s y) = — 2L 4
y~P(.|z) *P (S y) |Il\—|—om 4

Now, consider another candidate solution s’ that is equal
to s/, but has a value of 1 corresponding to a subset of in-

dices ji1,j2,- -,k € Zo. The value of this solution can be
shown to be:
Il| +/€(1 —6)
Eyp(2) Pprec(s”, :‘—‘ 5
yp (o) Peree(S7,Y) = T e ®)

Comparing equations (4) and (5), we have that if:

an

< =, 6
¢ |Z1| + an ©

then s” is a strictly better solution than s’. In particular, as
(5) is mononotic in k, the optimal choice is k = |Z3|. This
immediately leads to the following corollary.

1. If |Zo| = O, then

hiry(x) =" = hpy(x) .

Corollary 1.

2. Otherwise, if € < 1_% then

hiry(x) =" # hpy(x) .

In particular, hiypy assigns label 1 to all instances that
are overwhelmingly positive under P, corresponding
to indices Lo, whereas hpy; assigns label 0.

3. If |Th] = 0, but | 3| > 0 then forany 0 < € < 1,

hgry(@) = 8" # hpy(x) == 0.

Note that ¢ < /(1 + «) does not hold for our choice of
€ = y/a. However, case 3 in Corollary 1 is sufficient to es-
tablish the bound in Theorem 2, when P(X5) is very large.

C. Proofs for Section 4.1

Fix a binary classifier h: X — {0,1} and let the input
sample = (x1,...,x,) be generated i.i.d. from P. For
the sake of clarity, abbreviate n(x;) = n; and h(x;) = h;,
i =1,...,n. In the proofs of Lemma 2 and Lemma 3 we
will use the following:
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e Empirical quantities:

1 & N lem, . 1

e Semi-empirical quantities:

1 — 1 —
:Ezhinia and ﬁ:EZ’”
=1 1=1

(we do not define ¥(h), as it would the same as v(h)).

Note that:

ﬂ(h) = Ey‘m [a(h)] s and ﬁz Ey‘m []/?\] .

We will jointly denote z = (u(h),p), and similarly
z = (u(h),p). We will also abbreviate ®(z) =
®(u(h),v(h),p) and similarly for ®(Z).

C.1. Proof of Lemma 2

Assume @ is two-times differentiable, with all partial
second-order derivatives bounded by A. Taylor expanding
®(Z) around point Z up to the second order gives:

B(z)+VE(2) (2-2)

+ %(z ~5)TV20(2)(2 - 2)

B(2) =

for some z between z and z. Note that E, |, [2] = Z, so
that:
Ey |VO(Z)T(Z-2)| =0.

Furthermore, note that:

(z - E)Tv%(z)(z —z)
= Vi, (u—u)?+2V, (u-u){p-p) +V;,[H-Dp)?
<A(@—u)?+2/@-u)@-p)l+ @-p?)
<2A((—u)*+ (P -p)?),

where we used elementary inequality ab < a? + b2, and
2 2 v2 ot
Viws Vaps Vi, denote the second-order derivatives evalu-
p). Hence:

ated at some z = (u,
Eye [(2 -3 V20(2)(2 - )|
<24 (Eym (@) +Eya [(5- ;‘ﬂ) .
Since w is the empirical average over n labels and @ is its

expectation (over the labels), E,, [(4 — @)?] is the vari-
ance of u, which is at most ﬁ, because u € [0, 1]:

1
var (@ Zvar i) < thzl—m e

where we used the independence of labels Yi,t=1,...,n.

Similarly, E,4 [(p D) ] is at most -, which in total
gives:

> _ AT O2H3\ (5 _ > A

Eylo [(z —3)TV20(2)(2 - z)} <=

n’

Using a lower bound —A on the second-order derivatives
and performing a similar chain of reasoning, one also gets:

Eylo [(2 ) TV20(2)(2 - "z')] > —%.

From that we have:

A
Eyz |2(Z2) —23)|| < —
By [0(2)] - 2@ < 5,
which is exactly what was to be shown.

C.2. Proof of Lemma 3

Assume @ is three-times differentiable, with all partial
third-order derivatives bounded by B. Taylor expanding
®(Z) around point Z up to the third order gives:

P(2)=2(2)+VO(z) (2 -2

+-(2-2)"V20(2)(z - 2)

\H [\D\H

2

PO(z) . o~
= Y e (Fa— ) (B — B)(3, — F),
a,B,y=1

Za 62’/5@2’7

for some z between Z and Zz. First note that E, |, [Z] = Z,
so that:

Eyle [W( )T <z—z)} —0.

Furthermore,
Eyle [v?(z 5 Te(z)(z - z)}
—E,. [tr (v2<1>(z)(2 G- z)T)]
— tr (v2<1>(z)z) :

where X = Ey |, [(Z—2)(z — %) "] is the covariance ma-
trix of Z — Zz. By independence of examples,

S [(z;gg; i, hééf“_‘n?ifﬂ
- pXm-m (i)

so that:

tr (V%(E)E) = (V2,4 2V2 )5, + V2,5,
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where:
1 n
Spi= 3 Zm(l =),
Sy = TL2 thnz ’L
and V2| Vip, Vf,p denote be the second-order derivative

terms evaluated at (@, p). Thus, to finish the proof, we
only need to show that the first order term is bounded by
Bp=3/2. To this end, note that for any numbers a;, b;p,
such that |b;;,| < B,4,j,k=1,...,2:

> biraiazar < By aslagljax| =

ijk ijk

B(jas| + |az|).

By Holder’s inequality,
2 2 1/3
Sl = (L) 2
=1 =1
so that:
B(lar| + laa| + las])* < 4B (Jar* + [azl? + [as]*)

Hence, if we bound:

3
0°®(2) < B
02402802, —
the third-order term 5 Za B4=1-- - is bounded by:

2 (\afa|3+|ﬁ—m3)

We now bound Ey |, [[@ — @|*] and Ey, [[p— pI*]. B
Cauchy-Schwarz inequality,

Eyje |- 7°] < \/Eyje [0 - "] /Eyte (- 5)?]-

Before, we already showed that

Eyla [(p p) ] - 4n

Denote a; = y; — 1;, and let pu, = By, [a¥]. Using p1y =
0, we have:

Ey\m [(i)\_m4:| = 4 Z a;Q;aKay

i,5,k,¢
1 2
=— (nu4 + 3n(n — 1)u2) .

Since M2 >~ 7 and ,U/4 >~ 12’ y\z [(p @ ] = 16n2’ and

thus:

PO V3 1
Ey\m [|p _p‘ﬂ < ?n 3/2 < Zn 3/2,

Using similar bound for E,,, [|@ — u|*], we conclude that
the third-order term is bounded by = B~3/2. Bounding the
third-order derivatives from below by — B, and using simi-
lar reasoning gives a lower bound of the same value. This

finishes the proof.

C.3. Proof of Theorem 3

Abbreviating ®(h) = E,, [®(u(h),v(h),p)] and
D, (h) = (I)appr(h):

(I)(hETU) - ‘I)(hf;) - ‘I)(hETU) - (I)a(hETU)

§37L§/2
. . . . 2B
(I)a(hETU) - (I)a(ha) + (I)a(hu) (h ) = 3n3/2’

<0 _B__
- S 3n3/2

where the bounds shown in the inequalities are from
Lemma 3.

C.4. Derivation of the approximation algorithm for
Fg-measure
1+p°
Rec.all .that FB(U, v,p) = (62£+3J“.
derivatives with respect to u and p are:

*Fg _ 0°Fy _ —p°(1+5%) 8*F5 261+ *)u
ouz  oudp  (Bp+w)? ) Op2  (BZp4w)3

To optimize @, (h), we first sort observations according
to 7(z;). Then we precompute:

1
p= E Zn($2)7 ﬁvar =
=1

Next, foreach k =0,1,...,

The seconder order

01— ).

n, we precompute:

k

ko 1 &
> (i), 0" = o Uvar = 3 Zn(xi)(lfn(zi))

i=1

=

1
n
We then choose k for which the ETU approximation:
(1+ﬁ2)ﬂk 52(1—&-ﬁ2)ﬁ;€ 64(1—#52)&’“]3
/82ﬁ+% (ﬂ2p—|— )2 var (525_’_ E)?) var:s
is maximized. The maximization can be done in time lin-

ear in O(n), so the most expensive operation is sorting the
instances.

D. Additional material to Section 4.2

Let x = (x1,...,x,) be the input sample (test set) of size
n generated i.i.d. from IP. Given « and a function 77: X —
[0, 1], let

h = argmax Eyq(q) [®(i(h), 5(h), p)] -
heH

=:®gru(h)
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be the classifier returned by the ETU procedure upon re-
ceiving the input sample x. Likewise, let:

h* = argmax By, ) [®(@(h),0(h),D)],
heH

:5<I>ETU (h)

be the optimal ETU classifier in . We want to bound the

difference E,, [|<I>ETU (lAz) - @ETU(h*)ﬂ. By the definition

o~

of h*, Pgry(h) < Pgry(h*) for any x, and thus:

Es [[@ery () — @ery(h)]
= Eq [Peru(h")] — Eo [‘I’ETU(E)}
=E, [®Peru(h*)] — Ep [E)ETU(h*)}

+E, [(/I\’ETU(h*)} —Eg [(/I\)ETU(E)}

<0
+Es FI\)ETU(E)} —Eg [‘I’ETU(E)}
<2 sup E, [@ETU(h) - (/ISETU(h):| ‘ (7N
heH

Now, fix some classifier h and input sample . We
let u(h),v(h),p denote the random variables generated
according to n (for fixed x), while @ (h),p'(h) denote
random variables generated according to 7; for instance,
a'(h) = 25" h(xi)y;, where y; ~ 7j(x;). Using this
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notation, we have:

Opry(h) = Eyje [@(@ (h),5(h), )]

(note that ¥(h) does not depend on 7 or 7, we v'(h) =
v(h)). We now bound the term under sup in (7):

[Ea [@610(h) — Beru(h)] |

P — @@, 5.7

<E[|9@5,5) - ®(u,v,)|

<)

<E|[|2@

)
+E [|Q>(u,v,p) - q)(a’,@aﬁ)” ;

where the first inequality is due to Jensen’s inequality ap-
plied to a convex function z +— |z|, the all expectations
except for the first line are joint with respect to (x,vy),
and for the sake of clarity we drop the dependence on h
inu(h),v(h),d (h). Now, it follow from Lemma 1 that:

£ [|9(5.5.5) - ®(uv.p)]] < ey 25",

n

for some constant c. Moreover, using p-Lipschitzness of @,
we have:

E [[®(u,v,p) - &(@,5,7)|| < U,E | — ul
+V,E[[o—v|] + PE[7 —p|] -

Now, the term E [[o — v|] is well-controlled and was

shown in the proof of Lemma 1 to be at most 4/ ﬁ as the
expected deviation of the empirical average of [0, 1]-valued
random variable from its mean. Thus it remains to bound

the terms E [|p’ — p[] and E [|@’ — u]. Define:

P =By 0] = ) i),

U =Ey [U] = %Z Maa)i(w:),
p7 =Eo [7'] = E [fi(2)] .

up = Eq [0] = E [h(2)ij(2)]

We decompose:
lp =P <Ip—pal +Ips = 2|+ 1P =Pl

As before, we use the fact that E, [|p,7 -7 ] as well
as Ey|q [|]37 -p |] are both the expected deviations of the
empirical averages of [0, 1]-valued random variables from

their means, and therefore are bounded by / ﬁ. Hence:

1
Ellp —pl] <|p—ps| + —.
[P = pl] <lp—pal + 7
Using analogous way of reasoning, one gets:

~ 1
E[|@" —ul] < \u—uﬁ\—&—%.

Putting it all together, we get:

Ee |:(I)ETU(h) - (/ISETU(h):| ‘

logn
SC’\/T+Up|u(h)—Uﬁ(h)|+Ppp—pﬁ|v

for some constant ¢’. Using (7), we finally get:

logn

Eg U‘I’ETU(E) — ®gry(h”) + Pplp — pal

<
n

+ sup Uplu(h) — uz(h)],
het

which was to be shown.



Consistency Analysis for Binary Classification Revisited

E. Isotron Algorithm (Kalai & Sastry, 2009)

Here we include the Isotron Algorithm of (Kalai & Sas-
try, 2009) for completeness. The second update step is the
Pool of Adjacent Violators (PAV) routine, which solves the
isotonic regression problem:

n

* * * . 2
U, Uy, ..., U, = AT min i — Ujg
Do tin TS e <un Z O
=

where the instances are assumed to be sorted according to
their scores w’ x (using w obtained in first update step of
the iteration). This is a convex quadratic program and can
be solved efficiently. The output link function u of the Al-
gorithm is a piecewise linear estimate.

Algorithm 2 The Isotron algorithm (Kalai & Sastry, 2009).
Input: Training data {(x;,y;)} ,, iterations T
Output: wp, up
wo <0
up + z — min(max(0,2 -z + 1),1)
fort=1,2,...,Tdo

Wi = W1+ =500 (Y — w1 ((Wem1, 23))) - @
up < PAV({(wy, ), 4 })
end for




