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Abstract
An important mobile health (mHealth) task is the

use of multimodal data, such as sensor streams

and self-report, to construct interpretable time-

to-event predictions of, for example, lapse to

alcohol or illicit drug use. Interpretability of

the prediction model is important for accep-

tance and adoption by domain scientists, en-

abling model outputs and parameters to inform

theory and guide intervention design. Temporal

latent state models are therefore attractive, and

so we adopt the continuous time hidden Markov

model (CT-HMM) due to its ability to describe ir-

regular arrival times of event data. Standard CT-

HMMs, however, are not specialized for predict-

ing the time to a future event, the key variable for

mHealth interventions. Also, standard emission

models lack a sufficiently rich structure to de-

scribe multimodal data and incorporate domain

knowledge. We present iSurvive, an extension

of classical survival analysis to a CT-HMM. We

present a parameter learning method for GLM

emissions and survival model fitting, and present

promising results on both synthetic data and an

mHealth drug use dataset.

1. Introduction
In the emerging field of mobile health (mHealth) an im-

portant problem is the use of collected multimodal data

– e.g., sensor streams along with self-report – to make

time-varying predictions of events like lapse (Chih et al.,

2014). Using latent state models for prediction is an at-

tractive choice for three reasons: (1) States can be made

interpretable by representing behavioral constructs such as

stress and craving; (2) Emission models can handle noisy
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measurements; and (3) Parameters can capture domain

knowledge. Moreover, an interpretable model can repre-

sent a theoretical relationship, such as the hypothesized

link between increased stress and risk of smoking lapse, in

a form which supports learning from data, simulation and

visualization, and hypothesis testing. Such models can be a

tool for data-driven design and testing of theoretical models

by domain scientists (Nahum-Shani et al., 2015). Further,

in the case of small sample sizes, the incorporation of do-

main knowledge may be critical for good performance. In

such cases, superior performance relative to an alternative

”black box” model can provide additional evidence for the

correctness of a behavioral theory.

Discrete time hidden Markov models (DT-HMMs) are a

standard tool for regularly-sampled sensor data, but many

important datatypes, such as EMAs or detected periods of

high stress, take the form of event data with irregular arrival

times. Fortunately, recent work (Wang et al., 2014; Rao &

Teh, 2013) makes it feasible to use continuous time HMMs

(CT-HMMs) to model irregularly-sampled data. This paper

builds on our prior work on efficient parameter learning al-

gorithms for CT-HMMs (Liu et al., 2015).

In order to utilize CT-HMMs for mobile health interven-

tions, however, two limitations with existing models must

be addressed: (1) A mechanism is needed for predicting the

time to future events; and (2) Emission models must go be-

yond the standard Gaussian and multinomial observations

to embrace general multimodal data models. The first lim-

itation can be addressed via classical methods for time-to-

event prediction from survival analysis. Prior work in joint

survival and longitudinal analysis has focused on shared-

random effects models (Rizopoulos, 2012) or latent class

models (Proust-Lima et al., 2014) with Gaussian emissions.

Survival analysis has not been previously used in an in-

terpretable hidden state setting with multimodal data. We

develop a method for using the states of a CT-HMM as in-

terpretable, time-varying covariates in a survival model. In

prior work, Lian et al. (2014) developed an interpretable

latent event process model; interpretability, however, was

achieved post hoc rather than being a built-in feature of the

model as is the case here. We describe additional differ-

ences between this prior work and our current approach in

the supplementary material.
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We address the second limitation, the treatment of multi-

modal observations, by using a factorized GLM emission

model. Rather than simply ”stacking” multimodal obser-

vations into a single vector, GLMs allow the specification

of a different link function for each type of observation

data, such as ordinal, count, and continuous data. Due

to this choice, the M-step of EM does not have a closed

form solution, and the temporal dependencies are differ-

ent from standard GLM training. We derive an iterative

M-step update approach to solve this problem, and pro-

vide convergence guarantees to match. We believe we

are the first to use interpretable latent variables from a

CT-HMM as covariates in a survival model with use of

GLM emissions to handle multimodal data types in a CT-

HMM. Our method allows us to make precise intuitive

statements like “under high risk and low engagement, the

probability of lapse is 74.4%.” Our publicly-released soft-

ware (http://cbi.gatech.edu/Survival-HMM)

will enable the mHealth and data science communities to

benefit from these new modeling capabilities. We show

promising results both in simulation and on a real-world

mHealth recovery support services dataset from individu-

als with substance use disorders.

2. Model Description
Our latent variable-based survival model, which we term

iSurvive, has three components: (1) continuous-time hid-

den Markov process, (2) GLM emission models, and (3)

event process. We assume there are N participants. For

each participant, t is the time in hours since the start of

the study. The study-window length ⇠ is pre-specified and

fixed for all participants.

2.1. Continuous-Time HMM

A continuous-time hidden Markov model (Liu et al., 2015)

is a continuous-time latent Markov process where state

transitions and observations can occur at arbitrary times.

There are two sources of hidden information: the states

and their transition times. The estimation problem involves

three sets of parameters: (1) an emission model p(o|s), re-

lating observations o to the latent state s; (2) a transition

rate matrix Q that captures the exponentially distributed

transition rates between states; and (3) an initial state dis-

tribution.

Let S be a vector Markov process of length p with vec-

tor representation S(t) = [S1(t), . . . , Sp

(t)] in which each

S
i

(t) takes discrete values in {0, 1, . . . , `
i

}. Note that

this can always be reduced to an equivalent representa-

tion with a single discrete state

˜S(t) with cardinality p̃ =Q
p

i=1(`i + 1). We will alternate between these representa-

tions as needed.

A p̃⇥ p̃-dimensional transition rate matrix Q governs tran-

sitions for the latent Markov process

˜S. The negative diag-

onal element �Q
ii

is the rate at which the process leaves

state i 2 [p̃], assumed exponentially distributed with pa-

rameter q
i

= �Q
ii

. The equation

P
j 6=i

Q
ij

= �Q
ii

must

hold. If the latent process is currently in state i then at a

transition time from state i, the probability of transitioning

to state j is Q
ij

/q
i

. Suppose we observe the latent state

transition times (t01 = 0, t02, . . . , t
0
V�1, t

0
V

= ⇠) and cor-

responding states (s̃(t00), . . . , s̃(t
0
V

)). From these we de-

duce the sufficient statistics: (1) the number of transitions

between states {n
ij

}p̃
i,j=1 and (2) the total length of time

spent in each state {⌧
i

}p̃
i=1. The probability of this pro-

gression for the latent process is

V�1Y

v=1

q
s̃(t

v

) exp(�qs̃(t
v

) · (tv+1� t
v

)) ·Q
s̃(t

v

),s̃(t
v+1)/qs̃(tv).

The CT-HMM also includes an observation process O =

{O(t)}
t2[0,⇠], which is only observed at observation times.

Let t = (t1, . . . , tV ) denote the observation schedule;

note this is a random subset of [0, ⇠]. At each observation

time t
i

we observe the vector O(t
i

). We assume O(t) ??
(O,S) | S(t). Let O[t] denote the vector of observation

values at the observation schedule (O(t1), . . . , O(t
V

)).

Consider a participant who has already had k observation

times t(k). In this paper, we make the following conditional

independence assumption:

t
k+1 ?? (O,S) | (t(k), O[t(k)]) (1)

In other words, the conditional distribution of the random

interval t
k+1 � t

k

only depends on the observed history.

Under both above conditional independence assumptions,

the joint probability of the latent process S and observation

sequence O[t] = (O(t1), . . . , O(t
V

)) is equal to

p̃Y

i=1

2

4
Y

j 6=i

Q
n
ij

ij

3

5 e�q
i

⌧
i

VY

v=1

p(O(tv) | s̃(tv))p(tv | Hv) (2)

where H
v

is the observed history (t(v�1), O[tv�1
]).

Each observation O(t
k

) is a multimodal vector. In an

mHealth application, for example, we may observe sev-

eral self-reported ordinal ratings (e.g. EMA) along with

the number of times the mobile app has been used recently.

Thus, we have both ordinal and count data. Our observa-

tion model summarizes each component of the observation

vector in terms of the p latent sources.

We assume conditional independence of the M observation

components given the latent process, leading to the emis-

sion factorization:

p(O(t) | S(t)) =
MY

m=1

p(Om(t) | S(t)).
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This factorization simplifies the specification of the GLM

for each observation component.

2.2. Emissions and Generalized Linear Models

A generalized linear model (GLM) is a flexible general-

ization of ordinary linear regression where the error dis-

tributions need not be Gaussian. A GLM has three com-

ponents (McCullagh & Nelder, 1989; Agresti, 2015): (1)

a response variable y following a dispersion exponential

family with distribution p(y | ⌘, d(⌧)) with natural param-

eter ⌘ and dispersion term d(⌧). (2) a linear predictor �0s,

where � is a vector of weights and s our input vector; and

(3) a link function g or activation function g�1
.

Suppose the p latent sources are binary (i.e., l
i

= 1 for each

i). For the j-th observation process, O
j

= {O
j

(t)}
t2[0,⇠],

the conditional mean given the latent process at time t
equals E[O

j

(t) | S(t)] = g�1
(�0 + �0S(t)). That is, the

conditional expectation is equal to the activation function

applied to a linear combination of the current values of the

p latent sources plus a constant. Note this is an assump-

tion of parsimony as the number of parameters in the fully

nonparametric model would be 2

p

.

2.3. Interpretability via Link Restriction

Much of behavioral science theory concerns latent states

such as stress, craving, engagement and risk. We aim for

our model outputs to be interpretable by the clinician, an

important feature necessary for both acceptance and adop-

tion by domain scientists. We achieve this through the

following assumption: some of the variables collected are

noisy measures of only one latent state and not the others.

For example, suppose S has latent binary sources S1(t) and

S2(t) representing stress and craving, respectively. Further

let O1(t) be a binary observation dependent only on stress,

and O2(t) be a second observation dependent on both stress

and craving (see Appendix B for the associated graphical

model). Then taking the logit link function, the form of the

conditional mean is

logit (E[O1(t) | S]) =�baseline

+ �
stress

· S1(t). (3)

Therefore O1(t) is conditionally independent of S2(t)
given S1(t). That is, given information about the user’s

stress, the observation value does not depend on craving.

We call such conditional independence assumptions link
restrictions. iSurvive achieves interpretability via link re-

striction: for each latent source {S
i

(t)}
t2[0,⇠] there ex-

ists at least one observation process {O
j

(t)}
t2[0,⇠] such

that O
j

(t) is a noisy measure of only S
i

(t). In an EMA

context, this can be achieved with questions such as ”Are

you currently experiencing stress?” which target a single

latent state construct. These direct observations enforce in-

terpretability and allow us to incorporate additional more

complex observation processes that can provide improved

accuracy over self-report. Using a survival model then al-

lows us to make intuitive statements such as ”The probabil-

ity of lapse within the next 30 minutes when the participant

is stressed but not craving is 70%.”

2.4. Event Process

We now build a model relating the interpretable, latent pro-

cess S to the event process Y = {Y (t)}
t2[0,⇠] of interest;

this is a binary process where Y (t) = 1 implies an event

occurs at time t. In our case study, for example, the event of

interest is alcohol or drug use at a particular moment t. Sur-

vival analysis provides the appropriate tools for modeling

the intensity function – the instantaneous rate of occurrence

of the event – given the latent process. Let N(t, t + s] be

the number of events in the window (t, t + s]. Then the

intensity function at time t is defined:

h(t) = lim

�t!0

1

�t
P(N(t, t+�t] > 0 | S) (4)

For this paper we consider the proportional hazards model

which expresses the hazard as

h(t | S) = h0(t) exp

 
pX

i=1

�
i

S
i

(t)

!
(5)

where h0(t) is the baseline hazard function. In this paper

we consider a constant baseline hazard; moreover, we pre-

suppose the intensity only depends on the latent process at

the current time t. The proposed model is an interpretable

Cox process (Cox & Isham, 1980; Taylor et al., 2013) – a

generalization of a Poisson process in which the intensity

function is itself a stochastic process. Cox processes have

found success in event prediction problems with respect to

complex health data (Ranganath et al., 2015). Here the la-

tent process is interpretable and therefore helps in answer-

ing both the prediction problem and the sequential deci-

sion making problem of interest. The Cox process assumes

“lapses” are conditionally independent given the latent pro-

cess. Such a model is appropriate when lapse is only a

function of the latent behavioral constructs.

In mHealth applications, the event process can be measured

either via sensors (Sarker et al., 2016; Hossain et al., 2014)

(i.e., continuous monitoring) or self-report (i.e., intermit-

tent monitoring). Alternatively, scientists may schedule ob-

servation times at which the participant is asked if they have

used drugs within a prior window of time. In the case study

for this work, participants were asked if they used either al-

cohol or drugs within the past 30 minutes. This can be

modeled as

P(N(t��, t] > 0) = 1� exp

✓
�
Z

t

t��
h(s)ds

◆
(6)
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Here we assume the window length � (i.e., 30 minutes)

is short enough so that (1) the latent process is likely to

be constant within the window; then given the latent pro-

cess, the chance of no use (exponentiated term in eq. 6)

can be well-approximated by exp (�� · (�0 + �0S(t))),
where �0 + �0S(t) is the hazard. We focus on the latter

case with a similar discretized approximation for the re-

mainder of the paper. For more on survival analysis see

(Aalen et al., 2008; Cook & Lawless, 2007).

3. Parameter Estimation for iSurvive
Here we present an expectation-maximization algorithm

for parameter estimation of iSurvive. Our development

uses the context of our case study, and so we assume

that the event process and observation processes are mea-

sured via self-report (EMA) following the same observa-

tion schedule (i.e., Y (t) ⇢ O(t)). It is straightforward to

apply our approach to other use cases.

One property of self-report data is that participants may not

respond at a scheduled observation time, and instead may

decline to provide data. Let M = {M(t)}
t2[0,⇠] be a bi-

nary process representing missing data. Suppose an obser-

vation is scheduled at time t
v

; we write M(t
v

) = 1 if the

participant declines to provide information (i.e., the obser-

vation O(t
v

) is missing). Consider a participant who al-

ready has k observations at times t(k). Then define t
(k)
0 to

be the set of observation times at which we do observe the

observation (i.e., {t
i

2 t(k) s.t. M(t
i

) = 0}).

We make the following conditional independence assump-

tions regarding the missing data indicator process:

M(tk+1) ?? S | O[t(k)0 ],M [t(k)], t(k). (7)

That is, the missing data indicator at tk+1
is independent of

the latent process, given the observed history (i.e., observa-

tion and missing data processes at prior observation times

of tk). This assumption plus variational independence (i.e.,

no parameter sharing across components of the joint den-

sity) imply that likelihood estimation can ignore the miss-

ing data process. Note that observed missing data indica-

tors can still be used in the survival and emission models.

For example, missing data may be an indicator of future

risk; assumption (7) only states that missing data may only

depend on the latent process through the observed history.

A plausible alternative to assumption (7) is conditional in-

dependence given the observed history and the latent pro-

cess at the observation time,

M(tk+1) ?? S | S(tk+1), O[t(k)0 ],M [t(k)], t(k). (8)

Under this assumption, likelihood estimation cannot ig-

nore the missing data process; however, the emission model

becomes hierarchical and so can be readily handled within

the iSurvive framework.

As the preceding discussion illustrates, the iSurvive frame-

work is sufficiently flexible to describe a wide range of ex-

periment designs and modeling assumptions. In the case

study in Section 6, behavioral scientists identified through

participant interviews that the primary cause for missed ap-

pointment was exogenous shocks to their schedule.

3.1. EM Method
For ease of presentation, we present the EM algorithm

based on equation (2) under the conditional independence

assumptions for observations and missing data given by

equations (1) and (7) respectively. Excluding the initial

state distribution, the expected complete log-likelihood is

given by

L(Q,�) =
PX

i=1

2

4
X

j 6=i

log(qij)E
h
nij | O[t], ˆQ(l), ˆ�(l)

i
3

5

� qiE
h
⌧i | O[t], ˆQ(l), ˆ�(l)

i

+

VX

v=1

E
h
log p(O(tv) | S(tv)) | O[t], ˆQ(l), ˆ�(l)

i

where (

ˆQ(l), ˆ�(l)
) are the parameter estimates from the l-th

iteration. Under variational independence of the emission

models and the latent Markov process, the maximization

step can be done separately for the latent variable parame-

ters and emission models.

We begin by describing the EM-steps for the transition ma-

trix. The M-step for the transition matrix yields the follow-

ing (l + 1) iteration estimate:

ˆQ(l+1)
ij =

E
h
nij | O[t], ˆQ(l), ˆ�(l)

i

E
h
⌧i | O[t], ˆQ(l), ˆ�(l)

i
(9)

for i 6= j and

ˆQ
ii

= �
P

j 6=i

ˆQ
ij

.

The main challenge here is in the E-step, which (Liu et al.,

2015) solved by breaking up the expectations into terms

per observation, and terms conditioned on the possible

state transitions between observations. Let ⇣(v, s, s0) de-

note the transition probability p(S(t
v

) = s, S(t
v+1) =

s0 | O[t], ˆQ(l), ˆ�(l)
). Then

E
⇥
nij | O[t], ˆQ(l), ˆ�(l)⇤

=

V �1X

v=1

SX

s,s0=1

⇣(v, s, s0)⇥ E
h
nij | S(tv) = s, S(tv+1) = s0, ˆQ(l)

i

E
⇥
⌧i | O[t], ˆQ(l), ˆ�(l)⇤

=

V �1X

v=1

SX

s,s0=1

⇣(v, s, s0)⇥ E
h
⌧i | S(tv) = s, S(tv+1) = s0, ˆQ(l)

i
.

Liu et al. (2015) adapt methods from the continuous-time

Markov chain (CTMC) literature to compute the end-state
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conditioned expectations, and develop an equivalent inho-

mogeneous discrete-time hidden Markov model to calcu-

late the pairwise beliefs ⇣(v, s, s0).

The density for the kth observation pro-

cess p(O
k

(t) | S(t) = s;�) can be rewritten in the

following exponential dispersion family form:

p(O
k

(t) = o | S(t) = s) = h(o, ⌧) exp

✓
⌘
s

T (o)�A(⌘
s

)

d(⌧)

◆
.

Define �
v,s

= p(S(t
v

) = s | O, ˆQ(l), ˆ�(l)
). Then the

corresponding component of the expected complete log-

likelihood (ECLL) is given by

VX

v=1

SX

s=1

�
v,s


log h(O(t

v

), ⌧) +
⌘
s

T (O(t
v

))�A(⌘
s

)

d(⌧)

�
.

Maximizing the ECLL, which is done after maximization

of the transition terms, does not have a closed form solu-

tion, and Fisher scoring or Newton’s method must be used.

However, Fisher scoring for GLMs assumes an unweighted

log-likelihood, which is not the case for this objective be-

cause of the �
v,s

terms. Appendix C extends the Fisher

scoring method to the weighted setting above. A similar

learning procedure was derived in (Escola et al., 2011), but

focused on incorporating covariates into an HMM rather

than using GLM emissions.

Algorithm 1 Forward-backward + Weighted Fisher scor-

ing estimation procedure

Input: N participants, observation processes

{O(i)}N
i=1, observation times {t(i)}N

i=1

Output: rate matrix

ˆQ, emission parameters

ˆ

�

Smart initialization: ( ˆQ(0), ˆ�(0)
)

Set l = 0

repeat
Use forward-backward algorithm to com-

pute ⇣(v, s, s0) and �(v, s) for v = 0, . . . , V
and s, s0 = 1, . . . , S.

Compute E
h
⌧
i

| O[t], ˆQ(l), ˆ�(l)
i
, and

E
h
n
ij

| O[t], ˆQ(l), ˆ�(l)
i
.

Compute

ˆQ(l+1)
via equation (9).

Compute

ˆ

�

(l+1)
via weighted Fisher scoring with

weights {�(v, s)}.

until log-likelihood converges

3.2. Parameter Initialization and Convergence

Algorithm 1 presents the EM-algorithm for iSurvive us-

ing a combination of the forward-backward and weighted

Fisher scoring procedures. The algorithm requires initial

estimates (

ˆQ(0), ˆ�(0)
), and these initial values will effect

its convergence properties. We want to ensure that EM con-

verges to intuitively reasonable estimates so that we can

interpret the resulting model parameters in the context of

relevant behavioral theory.

Prior theoretical work has provided some convergence

guarantees for standard EM algorithms (Balakrishnan

et al., 2014; Wang et al., 2015). To guarantee convergence,

in each case strong concavity and first-order stability con-

ditions are required along with reasonable parameter ini-

tialization. Here we provide a similar guarantee for EM

parameter estimation for the case of CT-HMMs with fac-

torized GLM emissions and conditional independence on

the observation schedule. Our development is based on the

assumption of strong concavity, which seems likely to hold

based on prior work (Kakade et al., 2010) on almost strong

concavity of exponential families. Our supporting simu-

lation results in Section 5 provide additional evidence. A

proof of strong concavity remains for future work.

For iSurvive, the Q-function of the EM-algorithm is de-

composable into three components for the latent process,

the observation model, and the event process. Decompos-

ability allows us to discuss the assumption of strong con-

cavity separately for each component; in particular, it al-

lows us to isolate the issue of strong concavity for general-

ized linear models and investigate this independently of the

other model components. Further, since the Q-function is

decomposable, so is the M -step.

Under the assumption that the participant trajectories are

independent and identically distributed, the law of large

numbers ensures that as the sample size N increases, the

sample-based Q-function approaches its expectation:

˜Q(✓ | ✓0) = E
⇥
QN (✓ | ✓0)

⇤

= E
⇥
ES | O[t],Y,✓0 [log(p(S, O[t],Y; ✓))]

⇤

The population M -function can then be defined as

˜M(✓0) = argmax

✓2⌦
˜Q(✓ | ✓0). When applying EM, ✓0

corresponds to ✓(t�1)
, the parameters of the previous itera-

tion. The population M -function is also decomposable; We

now present Lemma 1 which provides convergence guaran-

tees and motivates our approach to parameter initialization.

Lemma 1. If each component of the population M -
function satisfies strong concavity and first-order stability
conditions for parameters ✓ 2 ⌦, then for sample size N
sufficiently large the EM-algorithm satisfies

kˆ✓(t) � ✓?k  tk✓? � ˆ✓(0)k+ 1

1�  ( (N, �)) (10)

where ✓⇤ is the MLE, ˆ✓(t) is the tth EM-iteration esti-
mates,  = L/�, L is a measure of first-order stability,
� a measure of strong concavity, and  (N, �) is the sum
of high-probability lower bounds on the distance between
M

N

(✓) and ˜M(✓) for each component.
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See Appendix D for additional technical details. Lemma 1

motivates a practical problem: how do we choose the initial

parameter estimates? iSurvive leverages GLMs for con-

necting the latent process to each component of the observ-

able process. Kakade et al. (2010) shows (almost) strong

concavity of exponential families. In particular, their The-

orem 3.4 quantifies the fact that “exponential families be-

have in a strongly concave manner only in a (sufficiently

small) neighborhood of ✓?. These findings combined with

equation (10) highlight the importance of appropriately

choosing

ˆ✓(0). A good initialization will ensure conver-

gence to high quality parameter estimates.

We propose a smart initialization strategy which leverages

domain expertise. First, we treat rate matrix and emission

initializations separately. For the rate matrix, we obtain

an initial estimate of the hidden state sequences by assum-

ing that the direct observations of the states resulting from

link restriction (see Section 2.3) are noise-free. This allows

us to estimate an initial Q corresponding to a CTMC over

the observed states using the method of (Metzner et al.,

2007). For the emission parameters, we hand-design an ini-

tial emission model by drawing from behavioral theory to

connect the latent states to the observations. For example,

we can ascertain the likelihood that a participant is experi-

encing stress if they answer positively to a question about

being stressed. We can then choose GLM weight parame-

ters accordingly. Note that this initialization method pro-

vides an indirect test of of our behavioral theories: if they

are correct, they should lead to good predictive accuracy.

4. Prediction and Validation
iSurvive is designed to be an interpretable event predic-

tion model. Here we show how to take parameter esti-

mates (

ˆQ, ˆ�) and answer the question “Given observed

data O[t], what is the probability that a lapse will not occur

at any of a future set of observation times (t01, . . . , t
0
k

)?”.

Note we allow for multiple events to occur and thus are in-

terested in whether any event occurs in the window or not.

This is the primary question of interest when analyzing the

recovery support services data in Section 6. In this case,

prior data includes self-reported alcohol or drug use at ob-

servation times (i.e., Y [t] ⇢ O[t]). As we are interested

in predicting self-reported lapse, we do not require the full

generality of equation (6), as we only need to compute the

chance of no use within a small prior window (i.e., a dis-

cretized approximation). At time t01 we can use the forward

algorithm to compute the posterior distribution of the latent

process at time t1 conditional on the observed data. We

can then compute the probability of not observing a lapse

at time t01. To do this, we use a logistic emission model

for p(Y (t
i

) = 0 | S(t
i

) = s). This is equivalent to the

discretized approximation described in Section 2.4 for the

event process. We iterate on this procedure to compute a

sequence of conditional probabilities of not lapsing (condi-

tional on observed history and the fact that the participant

has yet to lapse at any future scheduled observation time);

multiplying them together yields the prediction of interest.

Algorithm 2 presents pseudo-code.

We use the brier score (Blanche et al., 2015; van Houwelin-

gen & Putter, 2011) and log-loss to define prediction accu-

racy. Use of the log-likelihood is inappropriate as it mea-

sures overall fit, which is not the main quantity of interest.

We choose a time t and window-length �. We then produce

the probability of no lapses at any of the scheduled obser-

vations times within the interval (t, t + �). Let ⇡
n

(t,�)

denote this prediction for the nth participant. We compute

an indicator of whether no events occur at these scheduled

observation times within the window for the chosen par-

ticipant I
n

(t,�). The brier score is the average squared

difference in these quantities (⇡
n

(t,�)� I
n

(t,�))

2
.

The complete brier score and log-loss are then

BS(�) /
NX

n=1

m
nX

j=1

(⇡n(tj ,�)� In(tj ,�))

2

LL(�) / �
NX

n=1

m
nX

j=1


In(tj ,�) log(1� ⇡n(tj ,�))

+ (1� In(tj ,�)) log(⇡n(tj ,�))

�

respectively where {t
j

}mn

j=1 are a set of chosen, participant

specific times. The Brier score and log-loss are two ways

to verify the accuracy of a probability forecast, the former

ranges from 0 (completely accurate) to 1 (wholly inaccu-

rate) while the latter from 0 to1.

For each experiment that follows, we perform a cross-

validation based assessment of prediction accuracy. We

randomly partition the N participants into groups of

size K. Suppose N/K = M and we label each partition

uniquely m = 1, . . . ,M , then the Brier score and log-loss

for the mth run is denoted BS
m

(�) and LL
m

(�) respec-

tively. The cross-validated complete brier score and log-

loss is then given by

P
m

BS
m

(�) and

P
m

LL
m

(�) re-

spectively. We perform this calculation for various choices

of � to observe performance over a range of window-

lengths.

5. Synthetic Experiments

Our experiments are focused on the setting of self-reported

alcohol or illicit drug use at scheduled observation times,

which is the basis for our case study in Section 6.

We start with a synthetic experiment aimed at illustrating
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Algorithm 2 Event prediction algorithm

Input: Rate matrix Q, emission parameters �, prior ob-

servations O[t]; current time t0 and future observation

times (t1, . . . , tk).

Output:
Q

k

i=1  (ti) for i = 1, . . . , k.

Compute ↵
t

(s) p(S(t) = s | O[t];Q,�)
for k0 2 {1, . . . , k} do

Compute P (i)  exp(Q(t
i

� t
i�1))

for s 2 {1, . . . , S} do
Set ↵

t

i

(s) 
hP

s

0 �
t

i�1(s
0
)P (i)

s

0
s

i

Set �
t

i

(s) ↵
t

i

(s)p(Y (t
i

) = 0 | S(t
i

) = s)
end for
Set  (t

i

) 
P

s2S

�
t

i

(s)
Normalize �

t

i

(s) �
t

i

(s)/
P

s

�
t

i

(s)
end for

Figure 1. Convergence to the generating parameters (50 itera-

tions) measured via Frobenius (l2 in count case) norm a) with

smart initialization b) without it. With smart initialization we re-

cover good estimates of the generating parameters, while without

it we do not even get closer to them in the binary case. The count

difference norms are exponentiated to make visual comparison

easier.

the importance of good initialization. Due to our desire for

interpretability, we are concerned with how close the pa-

rameter estimates are to the true parameter values. We now

briefly describe the synthetic experiment; see Appendix F

for details. The latent process has three binary sources.

We generate a random transition matrix, Q. We generate

three ordinal ratings, each taking binary values. Each rat-

ings question is associated with only one latent source (i.e.,

one binary question per latent source). We also generate

count data to represent the number of times a user has used

the app in the past 30 minutes. All emissions models are

generalized linear models; for the ordinal ratings we as-

sume a logit link while for the count data we assume a log-

arithmic link. For each, we are interested in observing the

effect of smart initialization.

Figure 1 shows convergence (50 iterations) of the emis-

sion coefficients to the generating parameters a) with and

b) without smart initialization. With smart initialization,

convergence is very good, and without it, convergence is

very poor; in fact, the estimated logistic parameters do not

even converge toward the generating parameters.

6. Recovery Support Services – a Case Study
Here we analyze a set of recovery support studies on indi-

viduals with substance use disorders (SUDs). In particular,

we analyze two pilot studies – a 5-week study of adults

(N = 23) and a 6-week study of adolescents (N = 29) –

where participants have recently been discharged from out-

patient, intensive outpatient, or residential treatment. Each

study was done using a modified version of the Addic-

tion Comprehensive Health Enhancement Support System

(ACHESS) (Gustafson et al., 2014). Participants of each

pilot study have met criteria for substance use disorder in

the year prior to the original treatment intake and have used

alcohol or other drugs in the 90 days prior to the original

treatment; prompts occur at six random times by the mo-

bile phone per day. At each prompt, self-report data is col-

lected concerning the prior 30 minutes exposure to internal

and external protective and risk factors. Ratings were given

to how each factor aids in their recovery or makes them

want to use drugs/alcohol. Self-report also included ques-

tions regarding physical pain, illness or withdrawal from

drugs/alcohol, level of craving for drugs/alcohol, exposure

to drugs/alcohol, and resistance to drugs/alcohol. Partic-

ipants were given smartphones enabled with 24/7 access

to a range of drug abuse and HIV ecological momentary

interventions (Dennis et al., 2015; Scott et al., 2017). Par-

ticipants were asked to self-report use of drugs/alcohol in

the prior 30 minutes. Sensor data was collected includ-

ing information on when EMIs (Ecological momentary in-

terventions; interventions delivered in real time) were ac-

cessed and the amount of time engaged with the EMI. Such

a rich dataset of complex longitudinal data (e.g., simulta-

neously measuring EMI usage, drug use, self-reported rat-

ings) is becoming increasingly common as the field of mo-

bile health grows. We are interested in using the collected

complex longitudinal data in event prediction – in partic-

ular the probability of any substance use within a future
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window of time.

Prompts occur at random times so the observation schedule

automatically satisfies the sequential conditional indepen-

dence assumption. Prompts cannot occur from midnight to

6AM every morning; since participants are likely asleep

at these times, we compute time since recruitment after

removing these “sleeping windows”. Consider a prompt

at time t; we consider the reduced observation O(t) =

(O1(t), O2(t), O3(t), Y (t)). This is a 4-dimensional vec-

tor where O1(t) is a 3-level ordinal response to a question

on how one’s current feelings helps with/supports recovery,

O2(t) is a 3-level ordinal variable related to EMI usage,

O3(t) is a binary variable indicating whether the partici-

pant kept all default answers in the self-report, and Y (t)
is the binary event process indicating use of drugs/alcohol.

We assume the latent process S = {(S1(t), S2(t))}
t2[0,⇠] is

comprised of two binary sources; S1(t) represents level of

engagement; S2(t) represents level of risk. In this paper en-

gagement is defined in terms of active engagement in self-

report and is therefore connected to the indicator O3(t).

We now specify the models for each observation compo-

nent conditional on S(t). For the event variable Y (t), we

assume a logit model where the mean is a linear, additive

model in terms of S1(t) and S2(t). For the engagement

variable O3(t), we assume a logit model where the mean

is a linear, additive model in terms of only S1(t). For

the EMI usage variable O2(t), we assume a proportional

odds model where the linear predictor is additive in terms

of S1(t) and S2(t). The risk variable O1(t) is a mixture

depending on engagement. Given the participant is not cur-

rently engaged, the responses are not related to latent risk;

given the participant is currently engaged, we assume a pro-

portional odds model where the linear predictor is additive

only in terms of S2(t). Appendix E provides further details

on the observations, latent states, and models.

We fit several alternative discriminative models aiming to

predict future events given a fixed window length �. We

fit both logistic regressions and kernel SVMs where the

response is an indicator of use in a future window with a

particular choice of features from the history. The first fea-

ture set is simply the current observation values; the second

adds an additional covariate indicating whether an event

occurred at the current observation time; the third adds an

additional covariate indicating whether an event occurred

in the prior twenty-four hours; the fourth adds an addi-

tional covariate indicating whether an event occurred in

the prior week. Finally, we add as a covariate the num-

ber of scheduled observation times in the future window.

For each discriminative model and iSurvive, we compute

the cross-validated complete brier score and complete log-

loss. Figure 2 shows that iSurvive outperforms the discrim-

inative models in terms of the cross-validated Brier score

for each �  5 days. Figure 8 in Appendix E shows iSur-

vive also outperforms the alternative discriminative models

in terms of the cross-validated log-loss.

Figure 2. Cross-validated complete Brier score on recovery sup-

port services study for several discriminative models and iSurvive

Our analysis via iSurvive yields the interpretable finding

that 30-minute probability of lapse is highest for individu-

als in the latent states of High risk and Low engagement

(74.4%), decreases for High risk and High engagement

(21.5%), decreases more for Low risk and Low Engage-

ment (1.1%), and is negligible for Low risk and High en-

gagement (0.1%). The finding is intuitive for our behav-

ioral scientist collaborators and can be used to help decide

what types of interventions to provide and when to provide

them.

7. Conclusion and Future Work
In this paper we introduce iSurvive, an interpretable, event-

time prediction model for mHealth. By using a continuous-

time hidden Markov model and a factorized GLM emission

model with link restriction, we can summarize our observa-

tions in terms of interpretable latent variables. We then use

these in a survival model to predict event times. iSurvive is

designed with an interest toward treatment policies; by hav-

ing interpretable latent states, we hope to leverage iSurvive

in optimizing the delivery of mobile health interventions as

future work.
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