
Supplementary Material for RobustFill: Neural
Program Learning under Noisy I/O

A. Attention Formulas
The formula ci = Attention(hi−1, xi, S) is as follows:

ti = tanh(W [hi−1;xi])

dij = sj · ti

αij =
edij∑
k e

dik

ci =
∑
j

αijsj

Where i is the current timestep, hi1 is the previous hidden state, xi is the current input, S = s1, ..., sN are the vectors being
attended to, and W is a learned parameter matrix. The interpolated context vector ci is concatenated into the input and fed
into the LSTM. In the case of double attention, the output of the first attention mechanism CA

i is concatenated to the input
of the second attention, i.e.:

tBi = tanh(W [hi−1;xi; c
A
i])

where the remaining steps are identical.

B. DSL Extended Description
Section 3.2 of the paper provides the grammar of our domain specific language, which both defines the space of possible
programs, and allows us to easily sample programs. The formal semantics of this language are defined below in Figure 1.
The program takes as input a string v and produces a string as output (result of Concat operator).

As an implementational detail, we note that after sampling a program from the grammar, we flatten calls to nesting functions
(as defined in Figure 2 of the paper) into a single token. For example, the function GetToken(t, i)would be tokenized
as a single token GetTokent,i rather than 3 separate tokens. This is possible because for nesting functions, the size of the
total parameter space is small. For all other functions, the parameter space is too large for us to flatten function calls
without dramatically increasing the vocabulary size, so we treat parameters as separate tokens.

JConcat(e1, e2, e3, ...)Kv = Concat(Je1Kv, Je2Kv, Je3Kv, ...)
Jn1(n2)Kv = Jn1Kv1 , where v1 = Jn2Kv

Jn(f)Kv = JnKv1 , where v1 = JfKv
JConstStr(c)Kv = c

JSubStr(k1, k2)Kv = v[p1..p2], where
p1 = k1 > 0 ? k1 : len(v)+ k1

p2 = k2 > 0 ? k2 : len(v)+ k2

JGetSpan(r1, i1, y1, r2, i2, y2)Kv = v[p1..p2] ,where

p1 = y1(Start or End) of |i1|th match of r1 in v from beginning (end if ii < 0)

p2 = y2(Start or End) of |i2|th match of r2 in v from beginning (end if i2 < 0)

JGetToken(t, i)Kv = |i|th match of t in v from beginning (end if i < 0)
JGetUpto(r)Kv = v[0..i], where i is the index of end of first match of r in v from beginning
JGetFrom(r)Kv = v[j..len(v)], where j is the end of last match of r in v from end

JGetFirst(t, i)Kv = Concat(s1, · · · , si), where sj denotes the jth match of t in v

JGetAll(t)Kv = Concat(s1, · · · , sm), where si denotes the ith match of t in v and m denotes the total matches
JToCase(s)Kv = ToCase(s, v)

JTrim()Kv = Trim(v)

JReplace(δ1, δ2)Kv = Replace(v, δ1, δ2)

Figure 1. The semantics of the DSL for string transformations.

C. Synthetic Training Data Generation
Since there are only a few hundred real-world FlashFill benchmarks, we use synthetically generated training data to train
our neural models. The key idea in data generation is to uniformly sample programs from the DSL, and then for each
sampled program, generate a set of input-output examples that are consistent with it. We now describe the key steps in the
data generation process in more detail.

First, programs are sampled randomly from the DSL. We treat the DSL as a probabilistic context free grammar (PCFG)
where the probability of expanding to any child node is uniformly random. Even though the top-level concat operator
can take an arbitrary number of expressions e, in practice, we limit it to have at most k expressions, where k is randomly
sampled from 1 to 10.

Next, the input strings are sampled from the space of all random ASCII strings with lengths between 1 and 100, using
some simple heuristics that are extracted from the sampled programs preconditions. For example, if the program contained
GetToken(Word, 2) and GetFrom(Space, 4) as sub-expressions, then we would first generate 2 words and 4 spaces, then
shuffle these and add other random ASCII characters. In this case, words are defined as random ASCII strings that match
the particular regular expression of [A-Za-z]{1,10}. Finally, to generate the output strings, we execute the program on the
input strings.

However, the extracted heuristics do not always encapsulate all preconditions exactly, as there are some edge cases that
may prevent successful execution. If the program could not be executed on an input string (e.g., say one expression in
our sampled program is SubStr(GetToken(word, 2), 1, 10)), but the 2nd word isnt 10 characters long), we simply reject
the input string and re-sample until we find one that executes successfully. We find that in practice, the pre-conditions are
usually sufficient conditions for efficient generation of viable input strings.

D. Synthetic Evaluation Details
Results on synthetically generated examples are largely omitted from the paper since, in a vacuum, the synthetic dataset can
be made arbitrarily easy or difficult via different generation procedures, making summary statistics difficult to interpret.
We instead report results on an external real-world dataset to verify that the model has learned function semantics which
are at least as expressive as programs observed in real data.

Nevertheless, we include additional details about our experiments on synthetically generated programs for readers inter-
ested in the details of our approach. As described in the paper, programs were randomly generated from the DSL by first
determining a program length up to a maximum of 10 expressions, and then independently sampling each expression. We
used a simple set of heuristics to restrict potential inputs to strings which will produce non-empty outputs (e.g. any program
which references the third occurrence of a number will cause us to sample strings containing at least three numbers). We
rejected any degenerate samples e.g. those resulting in empty outputs, or outputs longer than 100 characters.

Figure 4 shows several random synthetically generated samples.

Figure 2 shows the accuracy of each model on the synthetically generated validation set. Model accuracy on the synthetic
validation set is generally consistent with accuracy on the FlashFill dataset, with stronger models on the synthetic dataset
also demonstrating stronger performance on the real-world data.

Figure 2. Generalization accuracy for different models on the synthetic validation set

E. Examples of Synthesized Programs
Figure 5 shows several randomly sampled (anonymized) examples from the FlashFill test set, along with their predicted
programs outputted by the synthesis model.

Figure 6 shows several examples which were hand-selected to demonstrate interesting limitations of the model. In the
case of the first example, the task is to reformat international telephone numbers. Here, the task is underconstrained given
the observed input-output examples, because there are many different programs which are consistent with the observed
examples. Note that to extract the first two digits, there are many other possible functions which would produce the correct
output in the observed examples, some of which would generalize and some which would not: for exampling, getting the
second and third characters, getting the first two digits, or getting the first number. In this case, the predicted program
extracts the country code by taking the first two digits, a strategy which fails to generalize to examples with different
country codes. The third example demonstrates a difficulty of using real world data. Because examples can come from a
variety of sources, they may be irregularly formatted. In this case, although the program is consistent with the observed
examples, it does not generalize when the second space in the address is removed. In the final example, the synthesis model
completely fails, and none of the 100 highest scoring programs from the model were consistent with the observed output
examples. The selected program is the closest program scored by character edit distance.

F. Induction Network Architecture
The network architecture used in the program induction setting is described in Section 6.1 of the paper. The network
structure is a modification of synthesis Attention-A, using double attention to jointly attend to Ix andOj , and an additional
LSTM to encode Ix. We include a complete diagram below in Figure 3.

Figure 3. The network architecture used for program induction. A dotted line from x to y means that x attends to y.

Reference program: GetToken_Alphanum_3 | GetFrom_Colon | GetFirst_Char_4
Ud 9:25,JV3 Obb 2525,JV3 ObbUd92
zLny xmHg 8:43 A44q 843 A44qzLny
A6 g45P 10:63 Jf 1063 JfA6g4
cuL.zF.dDX,12:31 dDX31cuLz
ZiG OE bj3u 7:11 bj3u11ZiGO

Reference program: Get_Word_-1(GetSpan(Word, 1, Start, ‘(’, 5,
Start)) | GetToken_Number_-5 | GetAll_Proper | SubStr(-24, -14) |
GetToken_Alphanum_-2 | EOS
4 Kw ()SrK (11 (3 CHA xVf)4)8 Qagimg) (
)(vs

Qagimg4Kw Sr Vf QagimgVf)4
)8 QaQagimg

iY))hspA.5 ()8,ZsLL (nZk.6 (E4w)2(Hpprsqr
)2(Z

Hpgjprsqr8Zs Zk Hpprsqrk.6
(E4w)22

Cqg)) ((1005 (()VCE hz) (10 Hadj)zg
Tqwpaxft-7 5 6

hz10005Cqg Hadj Tqwpaxft
Hadj)zg T5

JvY) (Ihitux)) ((6 SFl (7 XLTD sfs)
)11,lU7 (6 9

lU7Jv Ihitux Frl XLTD sfs)6

NjtT(D7QV (4 (yPuY)8.sa ())6 aX 4)DXR (
@6) Ztje

DXR4Njt Pu Ztje)6 aX 4)DX6

Reference program: GetToken_AllCaps_-2(GetSpan(AllCaps, 1, Start,
AllCaps, 5, Start)) | EOS
YDXJZ @ZYUD Wc-YKT GTIL BNX W
JUGRB.MPKA.MTHV,tEczT-GZJ.MFT MTHV
VXO.OMQDK.JC-OAR,HZGH-DJKC JC
HCUD-WDOC,RTTRQ-KVETK-whx-DIKDI RTTRQ
JFNB.Avj,ODZBT-XHV,KYB @,RHVVW ODZBT

Reference program: SubStr(-20, -8) | GetToken_AllCaps_-3 | SubStr(11,
19) | GetToken_Alphanum_-5 | EOS
DvD 6X xkd6 OZQIN ZZUK,nCF aQR IOHR IN ZZUK,nCF aCFv OZQIN

ZOZQIN
BHP-euSZ,yy,44-CRCUC,ONFZA.mgOJ.Hwm CRCUC,ONFZA.mONFZAy,44-CRCU44

NGM-8nay,xrL.GmOc.PFLH,CMFEX-JPFA,iIcj,329 ,CMFEX-JPFA,iCMFEXrL.GmOc.PPFLH

hU TQFLD Lycb NCPYJ oo FS TUM l6F NCPSYJ oo FS FScb NCPYJ
NCPYJ

OHHS NNDQ XKQRN KDL 8Ucj dUqh Cpk Kafj L 8Ucj dUqh CUXKQRN KDLKDL

Figure 4. Randomly sampled programs and corresponding input-output examples, drawn from training data. Multi-line examples are all
broken into lines on spaces.

Model prediction: GetSpan(‘[’, 1, Start, Number, 1, End) | Const(]) |
EOS
[CPT-101 [CPT-101] [CPT-101]
[CPT-101 [CPT-101] [CPT-101]
[CPT-11] [CPT-11] [CPT-11]
[CPT-1011] [CPT-1011] [CPT-1011]
[CPT-1011 [CPT-1011] [CPT-1011]
[CPT-1012 [CPT-1012] [CPT-1012]
[CPT-101] [CPT-101] [CPT-101]
[CPT-111] [CPT-111] [CPT-111]
[CPT-1011] [CPT-1011] [CPT-1011]
[CPT-101] [CPT-101] [CPT-101]

Model prediction: Replace_Space_Comma(GetSpan(Proper, 1, Start, Proper,
4, End) | Const(.) | GetToken_Proper_-1 | EOS
Jacob Ethan James
Alexander Michael

Jacob,Ethan,James,Alexander.-
Michael

Jacob,Ethan,James,Alexander.-
Michael

Elijah Daniel Aiden
Matthew Lucas

Elijah,Daniel,Aiden,Matthew.-
Lucas

Elijah,Daniel,Aiden,Matthew.-
Lucas

Jackson Oliver
Jayden Chris Kevin

Jackson,Oliver,Jayden,Chris.-
Kevin

Jackson,Oliver,Jayden,Chris.-
Kevin

Earth Fire Wind
Water Sun

Earth,Fire,Wind,Water.Sun Earth,Fire,Wind,Water.Sun

Tom Mickey Minnie
Donald Daffy

Tom,Mickey,Minnie,Donald.DaffyTom,Mickey,Minnie,Donald.Daffy

Jacob Mickey Minnie
Donald Daffy

Jacob,Mickey,Minnie,Donald.-
Daffy

Jacob,Mickey,Minnie,Donald.-
Daffy

Gabriel Ethan James
Alexander Michael

Gabriel,Ethan,James,Alexander-
.Michael

Gabriel,Ethan,James,Alexander.-
Michael

Rahul Daniel Aiden
Matthew Lucas

Rahul,Daniel,Aiden,Matthew.-
Lucas

Rahul,Daniel,Aiden,Matthew.-
Lucas

Steph Oliver Jayden
Chris Kevin

Steph,Oliver,Jayden,Chris.KevinSteph,Oliver,Jayden,Chris.Kevin

Pluto Fire Wind
Water Sun

Pluto,Fire,Wind,Water.Sun Pluto,Fire,Wind,Water.Sun

Model prediction: GetAll_Proper | EOS
Emma Anders Emma Anders Emma Anders
Olivia Berglun Olivia Berglun Olivia Berglun
Madison Ashworth Madison Ashworth Madison Ashworth
Ava Truillo Ava Truillo Ava Truillo
Isabella Isabella Isabella
Mia Mia Mia
Emma Stevens Emma Stevens Emma Stevens
Chris Charles Chris Charles Chris Charles
Liam Lewis Liam Lewis Liam Lewis
Abigail Jones Abigail Jones Abigail Jones

Figure 5. Random samples from the FlashFill test set. The first two columns are InStr and OutStr respectively, and the third column
is the execution result of the predicted program. Example strings which do not fit on a single line are broken on spaces, or hyphenated
when necessary. All line-ending hyphens are inserted for readability, and are not part of the example.

Model prediction: GetToken_Proper_1 | Const(.) |
GetToken_Char_1(GetToken_Proper_-1) | Const(@) | EOS
Mason Smith Mason.S@ Mason.S@
Lucas Janckle Lucas.J@ Lucas.J@
Emily Jacobnette Emily.B@ Emily.B@
Charlotte Ford Charlotte.F@ Charlotte.F@
Harper Underwood Harper.U@ Harper.U@
Emma Stevens Emma.S@ Emma.S@
Chris Charles Chris.C@ Chris.C@
Liam Lewis Liam.L@ Liam.L@
Olivia Berglun Olivia.B@ Olivia.B@
Abigail Jones Abigail.J@ Abigail.J@

Figure 5. Random samples from the FlashFill test set. The first two columns are InStr and OutStr respectively, and the third column
is the execution result of the predicted program. Example strings which do not fit on a single line are broken on spaces, or hyphenated
when necessary. All line-ending hyphens are inserted for readability, and are not part of the example.

Model prediction: GetFirst_Digit_2 | Const(.) | GetToken_Number_2 |
Const(.) | GetToken_Number_3 | Const(.) | GetToken_Alpha_-1 | EOS
+32-2-704-33 32.2.704.33 32.2.704.33
+44-118-909-3574 44.118.909.3574 44.118.909.3574
+90-212-326 5264 90.212.326.5264 90.212.326.5264
+44 118 909 3843 44.118.909.3843 44.118.909.3843
+386 1 5800 839 386.1.5800.839 38.1.5800.839
+1 617 225 2121 1.617.225.2121 16.617.225.2121
+91-2-704-33 91.2.704.33 91.2.704.33
+44-101-909-3574 44.101.909.3574 44.101.909.3574
+90-212-326 2586 90.212.326.2586 90.212.326.2586
+44 118 212 3843 44.118.212.3843 44.118.212.3843

Model prediction: GetFirst_Char_1 | Const(.) | GetFirst_Char_1(
GetToken_Proper_4) | Const(.) | EOS
Milk 4, Yoghurt 12, Juice 2 Lassi 5 M.L. M.L.
Alpha 10 Beta 20 Charlie 40 60
Epsilon

A.E. A.E.

Sumit 7 Rico 12 Wolfram 15 Rick 19 S.R. S.R.
Us 38 China 35 Russia 27 India 1 U.I. U.I.
10 Apple 2 Oranges 13 Bananas 40
Pears

A.P. 1.P.

10 Bpple 2 Oranges 13 Bananas 40
Pears

B.P. 1.P.

Milk 4, Yoghurt 12, Juice 2 Massi 5 M.M. M.M.
Alpha 10 Beta 20 Charlie 40 60 Delta A.D. A.D.

Parul 7 Rico 12 Wolfram 15 Rick 19 P.R. P.R.
Us 38 China 35 Russia 27 America 1 U.A. U.A.

Model prediction: Replace_Space_Dash(GetSpan(AlphaNum, 1, Start, Proper,
1, End)) | EOS
212 2nd Avenue 212-2nd-Avenue 212-2nd-Avenue
124 3rd Avenue 124-3rd-Avenue 124-3rd-Avenue
123 4th Avenue 123-4th-Avenue 123-4th-Avenue
999 5th Avenue 999-5th-Avenue 999-5th-Avenue
123 1st Avenue 123-1st-Avenue 123-1st-Avenue
223 1stAvenue 223-1st-Avenue 223-1stAvenue
112 2nd Avenue 112-2nd-Avenue 112-2nd-Avenue
224 3rd Avenue 224-3rd-Avenue 224-3rd-Avenue
123 5th Avenue 123-5th-Avenue 123-5th-Avenue
99 5th Avenue 99-5th-Avenue 99-5th-Avenue

Figure 6. Selected samples of incorrect model predictions on the Flashfill test set. These include both inconsistent programs, and
consistent programs which failed to generalize.

Model prediction: GetToken_Word_1 | Const(-) | GetToken_Proper_1(GetSpan(‘;’,
-5, Start, ‘#’, 5, Start)) | GetUpto_Comma Replace_Space_Dash
| GetToken_Word_1(GetSpan(Proper, 4, End, ‘$’, 5, End)) |
GetToken_Number_-5 | GetSpan(‘#’, 5, End, ‘$’, 5, Start) | EOS
28;#DSI;#139;#ApplicationVirt-
ualization;#148;#BPOS;#138;#Mi-
crosoft PowerPoint

DSI-ApplicationVirtualization-B-
POS-Microsoft PowerPoint

DSI-Application

102;#Excel;#14;#Meetings;#55;-
#OneNote;#155;#Word

Excel-Meetings-OneNote-Word Excel-Meetings

19;#SP Workflow
Solutions;#102;#Excel;#194;-
#Excel Services;#46;#BI

SP Workflow Solut-
ions-Excel-Excel
Services-BI

SP Workflow
Solutions-Excel

37;#PowerPoint;#141;#Meetings;-
#55;#OneNote;#155;#Word

PowerPoint-Meetings-OneNote-WordPowerPoint-Meetings

148;#Access;#102;#Excel;#194-
;#Excel Services;#46;#BI

Access-Excel-Excel
Services-BI

Access-Excel

248;#Bccess;#102;#Excel;#194;-
#Excel Services;#46;#BI

Bccess-Excel-Excel
Services-BI

Bccess-Excel

28;#DCI;#139;#ApplicationVirt-
ualization;#148;#BPOS;#138;#-
Microsoft PowerPoint

DCI-ApplicationVirtualizat-
ion-BPOS-Microsoft
PowerPoint

DCI-Application

12;#Word;#141;#Meetings;#55;#O-
neNote;#155;#Word

Word-Meetings-OneNote-Word Word-Meetings

99;#AP Workflow Solutions;-
#102;#Excel;#194;#Excel
Services;#46;#BI

AP Workflow Solutions-Ex-
cel-Excel Services-BI

AP Workflow
Solutions-Excel

137;#PowerPoint;#141;#Meetings;-
#55;#OneNote;#155;#Excel

PowerPoint-Meetings-OneNo-
te-Excel

PowerPoint-Meetings

Figure 6. Selected samples of incorrect model predictions on the Flashfill test set. These include both inconsistent programs, and
consistent programs which failed to generalize.

