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Abstract
Hamiltonian Monte Carlo (HMC) is an efficient
and effective means of sampling posterior distri-
butions on Euclidean space, which has been ex-
tended to manifolds with boundary. However,
some applications require an extension to more
general spaces. For example, phylogenetic (evo-
lutionary) trees are defined in terms of both a
discrete graph and associated continuous param-
eters; although one can represent these aspects
using a single connected space, this rather com-
plex space is not suitable for existing HMC al-
gorithms. In this paper, we develop Probabilistic
Path HMC (PPHMC) as a first step to sampling
distributions on spaces with intricate combina-
torial structure. We define PPHMC on orthant
complexes, show that the resulting Markov chain
is ergodic, and provide a promising implementa-
tion for the case of phylogenetic trees in open-
source software. We also show that a surrogate
function to ease the transition across a bound-
ary on which the log-posterior has discontinuous
derivatives can greatly improve efficiency.

1. Introduction
Hamiltonian Monte Carlo is a powerful sampling algo-
rithm which has been shown to outperform many exist-
ing MCMC algorithms, especially in problems with high-
dimensional and correlated distributions (Duane et al.,
1987; Neal, 2011). The algorithm mimics the movement of
a body balancing potential and kinetic energy by extending
the state space to include auxiliary momentum variables
and using Hamiltonian dynamics. By traversing long iso-
probability contours in this extended state space, HMC is
able to move long distances in state space in a single up-
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date step, and thus has proved to be more effective than
standard MCMC methods in a variety of applications. The
method has gained a lot of interest from the scientific com-
munity and since then has been extended to tackle the prob-
lem of sampling on various geometric structures such as
constrained spaces (Lan et al., 2014; Brubaker et al., 2012;
Hartmann and Schütte, 2005), on general Hilbert space
(Beskos et al., 2011) and on Riemannian manifolds (Giro-
lami and Calderhead, 2011; Wang et al., 2013).

However, these extensions are not yet sufficient to apply to
all sampling problems, such as in phylogenetics, the infer-
ence of evolutionary trees. Phylogenetics is the study of
the evolutionary history and relationships among individ-
uals or groups of organisms. In its statistical formulation
it is an inference problem on hypotheses of shared history
based on observed heritable traits under a model of evolu-
tion. Phylogenetics is an essential tool for understanding
biological systems and is an important discipline of com-
putational biology. The Bayesian paradigm is now com-
monly used to assess support for inferred tree structures
or to test hypotheses that can be expressed in phylogenetic
terms (Huelsenbeck et al., 2001).

Although the last several decades have seen an explosion
of advanced methods for sampling from Bayesian posterior
distributions, including HMC, phylogenetics still uses rela-
tively classical Markov chain Monte Carlo (MCMC) based
methods. This is in part because the number of possible tree
topologies (the labeled graphs describing the branching
structure of the evolutionary history) explodes combinato-
rially as the number of species increases. Also, to represent
the phylogenetic relation among a fixed number of species,
one needs to specify both the tree topology (a discrete ob-
ject) and the branch lengths (continuous distances). This
composite structure has thus far limited sampling methods
to relatively classical Markov chain Monte Carlo (MCMC)
based methods. One path forward is to use a construction
of the set of phylogenetic trees as a single connected space
composed of Euclidean spaces glued together in a com-
binatorial fashion (Kim, 2000; Moulton and Steel, 2004;
Billera et al., 2001; Gavryushkin and Drummond, 2016)
and try to define an HMC-like algorithm thereupon.

Experts in HMC are acutely aware of the need to extend
HMC to such spaces with intricate combinatorial structure:
Betancourt (2017) describes the extension of HMC to dis-
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Figure 1. PPHMC on the orthant complex of tree space, in which
each orthant (i.e. Rn

≥0) represents the continuous branch length
parameters of one tree topology. PPHMC uses the leapfrog al-
gorithm to approximate Hamiltonian dynamics on each orthant,
but can move between tree topologies by crossing boundaries be-
tween orthants. (a) A single PPHMC step moving through three
topologies; each topology change along the path is one NNI move.
(b) Because three orthants meet at every top-dimensional bound-
ary, the algorithm must make a choice as to which topology to se-
lect. PPHMC uniformly selects a neighboring tree topology when
the algorithm hits such a boundary. Here we show three potential
outcomes q1, q2 and q3 of running a single step of PPHMC started
at position q with momentum p.

crete and tree spaces as a major outstanding challenge for
the area. However, there are several challenges to defining
a continuous dynamics-based sampling methods on such
spaces. These tree spaces are composed of Euclidean com-
ponents, one for each discrete tree topology, which are
glued together in a way that respects natural similarities be-
tween trees. These similarities dictate that more than two
such Euclidean spaces should get glued together along a
common lower-dimensional boundary. The resulting lack
of manifold structure poses a problem to the construction of
an HMC sampling method on tree space, since up to now,
HMC has just been defined on spaces with differential ge-
ometry. Similarly, while the posterior function is smooth
within each topology, the function’s behavior may be very

different between topologies. In fact, there is no general
notion of differentiability of the posterior function on the
whole tree space and any scheme to approximate Hamilto-
nian dynamics needs to take this issue into account.

In this paper, we develop Probabilistic Path Hamiltonian
Monte Carlo (PPHMC) as a first step to sampling distribu-
tions on spaces with intricate combinatorial structure (Fig-
ure 1). After reviewing how the ensemble of phylogenetic
trees is naturally described as a geometric structure we
identify as an orthant complex (Billera et al., 2001), we de-
fine PPHMC for sampling posteriors on orthant complexes
along with a probabilistic version of the leapfrog algorithm.
This algorithm generalizes previous HMC algorithms by
doing classical HMC on the Euclidean components of the
orthant complex, but making random choices between al-
ternative paths available at a boundary. We establish that
the integrator retains the good theoretical properties of
Hamiltonian dynamics in classical settings, namely prob-
abilistic equivalents of time-reversibility, volume preserva-
tion, and accessibility, which combined together result in
a proof of ergodicity for the resulting Markov chain. Al-
though a direct application of the integrator to the phylo-
genetic posterior does work, we obtain significantly bet-
ter performance by using a surrogate function near the
boundary between topologies to control approximation er-
ror. This approach also addresses a general problem in us-
ing Reflective HMC (RHMC; Afshar and Domke, 2015)
for energy functions with discontinuous derivatives (for
which the accuracy of RHMC is of order O(ε), instead of
the standard local error O(ε3) of HMC on Rn). We pro-
vide, validate, and benchmark two independent implemen-
tations in open-source software.

2. Mathematical framework
2.1. Bayesian learning on phylogenetic tree space

A phylogenetic tree (τ, q) is a tree graph τ with N leaves,
each of which has a label, and such that each edge e is
associated with a non-negative number qe. Trees will be
assumed to be bifurcating (internal nodes of degree 3) un-
less otherwise specified. We denote the number of edges of
such a tree by n = 2N − 3. Any edge incident to a leaf
is called a pendant edge, and any other edge is called an
internal edge. Let TN be the set of all N -leaf phylogenetic
trees for which the lengths of pendant edges are bounded
from below by some constant e0 > 0. (This lower bound
on branch lengths is a technical condition for theoretical
development and can be relaxed in practice.)

We will use nearest neighbor interchange (NNI) moves
(Robinson, 1971) to formalize what tree topologies that are
“near” to each other. An NNI move is a transformation
that collapses an internal edge to zero and then expands
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the resulting degree 4 vertex into an edge and two degree 3
vertices in a new way (Figure 1a). Two tree topologies τ1
and τ2 are called adjacent topologies if there exists a single
NNI move that transforms τ1 into τ2.

We will parameterize TN as Billera-Holmes-Vogtmann
(BHV) space (Billera et al., 2001), which we describe as
follows. An orthant of dimension n is simply Rn≥0; each
n-dimensional orthant is bounded by a collection of lower
dimensional orthant faces. An orthant complex is a geo-
metric object X obtained by gluing various orthants of the
same dimension n, indexed by a countable set Γ, such that:
(i) the intersection of any two orthants is a face of both
orthants, and (ii) each x ∈ X belongs to a finite number
of orthants. Each state of X is thus represented by a pair
(τ, q), where τ ∈ Γ and q ∈ Rn≥0. Generalizing the defini-
tions from phylogenetics, we refer to τ as its topology and
to q as the vector of attributes. The topology of a point in
an orthant complex indexes discrete structure, while the at-
tributes formalize the continuous components of the space.

For phylogenetics, the complex is constructed by taking
one n-dimensional orthant for each of the (2n − 3)!! pos-
sible tree topologies, and gluing them together along their
common faces. The geometry can also be summarized as
follows. In BHV space, each of these orthants parameter-
izes the set of branch lengths for a single topology (as a
technical point, because we are bounding pendant branch
lengths below by e0, we can take the corresponding entries
in the orthant to parameterize the amount of branch length
above e0). Top-dimensional orthants of the complex shar-
ing a facet, i.e. a codimension 1 face, correspond to (NNI)
adjacent topologies.

For a fixed phylogenetic tree (τ, q), the phylogenetic like-
lihood is defined as follows and will be denoted by L(τ, p)
(see Kenney and Gu, 2012, for a full exposition). Let
ψ = (ψ1, ψ2, ..., ψS) ∈ ΩN×S be the observed sequences
(with characters in Ω) of length S over N leaves. The like-
lihood of observing ψ given the tree has the form

L(τ, q) =

S∏
s=1

∑
as

η(asρ)
∏

(u,v)∈E(τ,q)

Puvasuasv (quv)

where ρ is any internal node of the tree, as ranges over all
extensions of ψs to the internal nodes of the tree, asu de-
notes the assigned state of node u by as, E(τ, q) denotes
the set of tree edges, Pij(t) denotes the transition prob-
ability from character i to character j across an edge of
length t defined by a given evolutionary model and η is
the stationary distribution of this evolutionary model. For
this paper we will assume the simplest Jukes and Cantor
(1969) model of a homogeneous continuous-time Markov
chain on Ω with equal transition rates, noting that inferring
parameters of complex substitution models is a vibrant yet
separate subject of research (e.g. Zhao et al., 2016).

Given a proper prior distribution with density π0 imposed
on the branch lengths and on tree topologies, the posterior
distribution can be computed as P(τ, q) ∝ L(τ, q)π0(τ, q).

2.2. Bayesian learning on orthant complexes

With the motivation of phylogenetics in mind, we now de-
scribe how the phylogenetic problem sits as a specific case
of a more general problem of Bayesian learning on orthant
complexes, and distill the criteria needed to enable PPHMC
on these spaces. This generality will also enable applica-
tions of Bayesian learning on similar spaces in other set-
tings. For example in robotics, the state complex can be
described by a cubical complexes whose vertices are the
states, whose edges correspond to allowable moves, and
whose cubes correspond to collections of moves which can
be performed simultaneously (Ardila et al., 2014). Simi-
larly, in learning on spaces of treelike shapes, the attributes
are open curves translated to start at the origin, described by
a fixed number of landmark points (Feragen et al., 2010).

An orthant complex, being a union of Euclidean orthants,
naturally inherits the Lebesgue measure which we will de-
note hereafter by µ. Orthant complexes are typically not
manifolds, thus to ensure consistency in movements across
orthants, we assume that local coordinates of the orthants
are defined in such a way that there is a natural one-to-one
correspondence between the sets of attributes of any two
orthants sharing a common face.

Assumption 2.1 (Consistency of local coordinates). Given
two topologies τ, τ ′ ∈ Γ and state x = (τ, qτ ) = (τ ′, qτ ′)
on the boundary of the orthants for τ and τ ′, then qτ = qτ ′ .

We show that BHV tree space can be given such coordi-
nates in the Appendix. For the rest of the paper, we define
for each state (τ, q) ∈ X the setN (τ, q) of all neighboring
topologies τ ′ such that τ ′ orthant contains (τ, q). Note that
N (τ, q) always includes τ , and if all coordinates of q are
positive,N (τ, q) is exactly {τ}. Moreover, if τ ′ ∈ N (τ, q)
and τ ′ 6= τ , we say that τ and τ ′ are joined by (τ, q). If
the intersection of orthants for two topologies is a facet of
each, we say that the two topologies are adjacent.

Finally, let G be the adjacency graph of the orthant complex
X , that is, the graph with vertices representing the topolo-
gies and edges connecting adjacent topologies. Recalling
that the diameter of a graph is the maximum value of the
graph distance between any two vertices, we assume that

Assumption 2.2. The adjacency graph G of X has finite
diameter, hereafter denoted by k.

For phylogenetics, k is of order O(N logN) (Li et al.,
1996).

We seek to sample from a posterior distribution P(τ, q) on
X . Assume that the negative logarithm of the posterior dis-
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tribution U(τ, q) := − logP (τ, q) satisfies:

Assumption 2.3. U(τ, q) is a continuous function on X ,
and is smooth up to the boundary of each orthant τ ∈ Γ.

In the Appendix, we prove that if the logarithm of the phy-
logenetic prior distribution π0(τ, q) satisfies Assumption
2.3, then so does the phylogenetic posterior distribution.
It is also worth noting that while U(τ, q) is smooth within
each orthant, the function’s behavior may be very different
between orthants and we do not assume any notion of dif-
ferentiability of the posterior function on the whole space.

2.3. Hamiltonian dynamics on orthant complexes

The HMC state space includes auxiliary momentum vari-
ables in addition to the usual state variables. In our frame-
work, the augmented state of this system is represented by
the position (τ, q) and the momentum p, an n-dimensional
vector. We will denote the set of all possible augmented
state (τ, q, p) of the system by T.

The Hamiltonian is defined as in the traditional HMC set-
ting: H(τ, q, p) = U(τ, q) +K(p), where K(p) = 1

2‖p‖
2.

We will refer to U(τ, q) and K(p) as the potential energy
function and the kinetic energy function of the system at
the state (τ, q, p), respectively.

Our stochastic Hamiltonian-type system of equations is:

dpi
dt

=− ∂U

∂qi
(τ, q) if qi > 0

pi ← −pi; τ ∼ Z(N (τ, q)) if qi = 0

dqi
dt

= pi

(2.1)

where Z(A) denotes the uniform distribution on the set A.

If all coordinates of q are positive, the system behaves as
in the traditional Hamiltonian setting on Rn. When some
attributes hit zero, however, the new orthant is picked ran-
domly from the orthants of neighboring topologies (includ-
ing the current one), and the momenta corresponding to
non-positive attributes are negated.

Assumption 2.3 implies that despite the non-differentiable
changes in the governing equation across orthants, the
Hamiltonian of the system along any path is constant:

Lemma 2.1. H is conserved along any system dynamics.

2.4. A probabilistic “leap-prog” algorithm

In practice, we approximate Hamiltonian dynamics by the
following integrator with step size ε, which we call “leap-
prog” as a probabilistic analog of the usual leapfrog algo-
rithm. This extends previous work of (Afshar and Domke,
2015) on RHMC where particles can reflect against planar
surfaces of Rn≥0.

In the RHMC formulation, one breaks the step size ε into
smaller sub-steps, each of which correspond to an event
when some of the coordinates cross zero. We adapt this
idea to HMC on orthant complexes as follows. Every time
such an event happens, we reevaluate the values of the posi-
tion and the momentum vectors, update the topology (uni-
formly at random from the set of neighboring topologies),
reverse the momentum of crossing coordinates and con-
tinue the process until a total step size ε is achieved (Algo-
rithm 1). We note that several topologies might be visited
in one leap-prog step.

If there are no topological changes in the trajectory to time
ε, this procedure is equivalent to classical HMC. Moreover,
since the algorithm only re-evaluates the gradient of the en-
ergy function at the end of the step when the final position
has been fixed, changes in topology on the path have no
effect on the changes of position and momentum. Thus,
the projection of the particles (in a single leap-prog step) to
the (q, p) space is identical to a leapfrog step of RHMC on
Rn≥0.

Algorithm 1 Leap-prog algorithm with step size ε.
p← p− ε∇U(τ, q)/2
if FirstUpdateEvent(τ, q, p, ε) = ∅ then
q ← q + εp

else
t← 0
while FirstUpdateEvent(τ, q, p, ε− t) 6= ∅ do

(q, e, I)← FirstUpdateEvent(τ, q, p, ε− t)
t← t+ e
τ ∼ Z(N (τ, q))
pI ← −pI

end while
q ← q + (ε− t)p

end if
p← p− ε∇U(τ, q)/2

Here FirstUpdateEvent(τ, q, p, t) returns x, the position of
the first event for which the line segment [q, q+ tp] crosses
zero; e, the time when this event happens; and I , the indices
of the coordinates crossing zero during this event. If qi and
pi are both zero before FirstUpdateEvent is called, i is not
considered as a crossing coordinate. If no such an event
exists, ∅ is returned.

3. Hamiltonian Monte Carlo on orthant
complexes

Probabilistic Path Hamiltonian Monte Carlo (PPHMC)
with leap-prog dynamics iterates three steps, similar to that
of classical HMC. First, new values for the momentum
variables are randomly drawn from their Gaussian distri-
bution, independently of the current values of the posi-
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tion variables. Second, starting with the current augmented
state, s = (τ, q, p), the Hamiltonian dynamics is run for a
fixed number of steps T using the leap-prog algorithm with
fixed step size ε. The momentum at the end of this tra-
jectory is then negated, giving a proposed augmented state
s∗ = (τ∗, q∗, p∗). Finally, this proposed augmented state is
accepted as the next augmented state of the Markov chain
with probability r(s, s∗) = min (1, exp(H(s)−H(s∗))).

PPHMC has two natural advantages over MCMC meth-
ods for phylogenetic inference: jumps between topologies
are guided by the potential surface, and many jumps can
be combined into a single proposal with high acceptance
probability. Indeed, rather than completely random jumps
as used for MCMC, the topological modifications of HMC
are guided by the gradient of the potential. This is impor-
tant because there are an enormous number of phylogenetic
trees, namely (2n − 3)!! trees with n leaves. Secondly,
HMC can combine a great number of tree modifications
into a single step, allowing for large jumps in tree space
with high acceptance probability. These two characteris-
tics are analogs of why HMC is superior to conventional
MCMC in continuous settings and what we aimed to ex-
tend to our problem.

3.1. Theoretical properties of the leap-prog integrator

To support the use of this leap-prog integrator for MCMC
sampling, we establish that integrator retains analogs of
the good theoretical properties of Hamiltonian dynamics
in classical settings, namely, time-reversibility, volume
preservation and accessibility (proofs in Appendix).

We formulate probabilistic reversibility as:

Lemma 3.1 (Reversibility). For a fixed finite time horizon
T , we denote by P (s, s′) the probability that the integrator
moves s to s′ in a single update step. We have

P ((τ, q, p), (τ ′, q′, p′)) = P ((τ ′, q′,−p′), (τ, q,−p)).

for any augmented states (τ ′, q′, p′) and (τ, q, p) ∈ T.

The central part of proving the detailed balance condition
of PPHMC is to verify that Hamiltonian dynamics pre-
serves volume. Unlike the traditional HMC setting where
the proposal distribution is a single point mass, in our prob-
abilistic setting, if we start at one augmented state s, we
may end up at countably many end points due to stochastic
HMC integration. The equation describing volume preser-
vation in this case needs to be generalized to the form of
Equation (3.1), where the summations account for the dis-
creteness of the proposal distribution.

Lemma 3.2 (Volume preservation). For every pair of mea-
surable sets A,B ⊂ T and elements s, s′ ∈ T, we denote
by P (s, s′) the probability that the integrator moves s to s′

in a single update step and define

B(s) = {s′ ∈ B : P (s, s′) > 0}

and
A(s′) = {s ∈ A : P (s, s′) > 0}.

Then∫
A

∑
s′∈B(s)

P (s, s′) ds =

∫
B

∑
s∈A(s′)

P (s′, s) ds′. (3.1)

If we restrict to the case of trajectories staying in a single
topology, A(s) and B(s′) are singletons and we get back
the traditional equation of volume preservation. We also
note that the measure ds in Equation (3.1) is the Lebesgue
measure: when there is no randomness in the Hamiltonian
paths, (3.1) becomes the standard volume preservation con-
dition, where volumes are expressed by the Lebesgue mea-
sure.

Typically, accessibility poses no major problem in var-
ious settings of HMC since it is usually clear that one
can go between any two positions in a single HMC step.
In the case of PPHMC, however, the composition of dis-
crete and continuous structure, along with the possible
non-differentiability of the potential energy across orthants,
make it challenging to verify this condition. Here we show
instead that the PPHMC algorithm can go between any two
states with k steps, where k denotes the diameter of adja-
cency graph G the space X and each PPHMC step consists
of T leap-prog steps of size ε.

Lemma 3.3 (k-accessibility). For a fixed starting state
(τ (0), q(0)), any state (τ ′, q′) ∈ X can be reached from
(τ (0), q(0)) by running k steps of PPHMC.

The proof of this Lemma is based on Assumption 2.2,
which asserts that the adjacency graph G of X has finite
diameter, and that classical HMC allows the particles to
move freely in each orthant by a single HMC step.

To show that Markov chains generated by PPHMC are er-
godic, we also need to prove that the integrator can reach
any subset of positive measure of the augmented state space
with positive probability. To enable such a result, we show:

Lemma 3.4. For every sequence of topologies ω =
{τ (0), τ (1), . . . , τ (nω)} and every set with positive measure
B ⊂ X , let Bω be the set of all (τ ′, q′) ∈ B such that
(τ ′, q′) can be reached from (τ (0), q(0)) in k PPHMC steps
and such that the sequence of topologies crossed by the tra-
jectory is ω. We denote by IB,ω the set of all sequences of
initial momenta for each PPHMC step {p(0), . . . , p(k)} that
make such a path possible.

Then, if µ(IB,ω) = 0, then µ(Bω) = 0.
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We also need certain sets to be countable.
Lemma 3.5. Given s ∈ T, we denote by R(s) the set of
all augmented states s′ such that there is a finite-size leap-
prog step with path γ connecting s and s′, and by K(s)
the set of all such leap-prog paths γ connecting s and s′ ∈
R(s). Then R(s) and K(s) are countable. Moreover, the
probability P∞(s, s′) of moving from s to s′ via paths with
infinite number of topological changes is zero.

3.2. Ergodicity of Probabilistic Path HMC

In this section, we establish that a Markov chain gen-
erated by PPHMC is ergodic with stationary distribution
π(τ, q) ∝ exp(−U(τ, q)). To do so, we need to verify that
the Markov chain generated by PPHMC is aperiodic, be-
cause we have shown k-accessibility of the integrator rather
than 1-accessibility. Throughout this section, we will use
the notation P ((τ, q, p), ·) to denote the one-step proposal
distribution of PPHMC starting at augmented state (τ, q, p),
and P ((τ, q), ·) to denote the one-step proposal distribution
of PPHMC starting at position (τ, q) and with a momentum
vector drawn from a Gaussian as described above.

We first note that:
Lemma 3.6. PPHMC preserves the target distribution π.

Given probabilistic volume preservation (3.2), the proof is
standard and is given in the Appendix.
Theorem 3.1 (Ergodic). The Markov chain generated by
PPHMC is ergodic.

Proof of Theorem 3.1. For every sequence of topologies
ω = {τ (0), τ (1), . . . , τ (nω)} (finite by Lemma 3.5) and ev-
ery set with positive measure B ⊂ X , we define Bω and
IB,ω as in the previous section. By Lemma 3.3, we have

B =
⋃
ω

Bω.

Assume that µ(IB,ω) = 0 for all ω. From Lemma 3.4, we
deduce that µ(Bω) = 0 for all ω. This makes µ(B) = 0,
which is a contradiction. Hence µ(IB,ω) > 0 for some ω
and Pnω ((τ (0), q(0)), B) is at least the positive quantity

1

Z

∫
p∈IB,ω

Pnω ((τ (0), q(0), p), B) exp(−K(p))dp

where Z is the normalizing constant. This holds for all sets
with positive measure B ⊂ X , so PPHMC is irreducible.

Now assume that a Markov chain generated by the leapfrog
algorithm is periodic. The reversibility of Hamiltonian dy-
namics implies that the period d must be equal to 2. In
other words, there exist two disjoint subsets X1, X2 of X
such that π(X1) > 0, and

P (x,X2) = 1 ∀x ∈ X1, and P (x,X1) = 1 ∀x ∈ X2.

Consider x ∈ X1 with all positive attributes. There exists a
neighborhood Ux around x such that any y ∈ Ux is reach-
able from x by Hamiltonian dynamics. Since X1, X2 are
disjoint, we deduce that µ(Ux ∩X1) = 0. Since the neigh-
borhood Ux exists for almost every x ∈ X1, this implies
that µ(X1) = 0, and hence, that π(X1) = 0, which is a
contradiction. We conclude that any Markov chain gener-
ated by the leapfrog algorithm is aperiodic.

Lemma 3.6 shows that PPHMC preserves the target distri-
bution π. This, along with π-irreducibility and aperiodicity,
completes the proof (Roberts and Rosenthal, 2004).

3.3. An efficient surrogate smoothing strategy

One major advantage of HMC methods over traditional ap-
proaches is that HMC-proposed states may be distant from
the current state but nevertheless have a high probability of
acceptance. This partially relies on the fact that the leapfrog
algorithm with smooth energy functions has a local ap-
proximation error of order O(ε3) (which leads to global
errorO(Tε3), where T is the number of leapfrog steps in a
Hamiltonian path).

However, when the potential energy function U(τ, q) is not
differentiable on the whole space this low approximation
error can break down. Indeed, although PPHMC inherits
many nice properties from vanilla HMC and RHMC (Af-
shar and Domke, 2015), this discontinuity of the deriva-
tives of the potential energy across orthants may result in
non-negligible loss of accuracy during numerical simula-
tions of the Hamiltonian dynamics. A careful analysis of
the local approximation error of RHMC for potential en-
ergy functions with discontinuous first derivatives reveals
that it only has an local error rate of order at least Ω(ε) (see
proof in Appendix):

Proposition 3.1. Given a potential function V , we denote
by V + and V − the restrictions of V on the half-spaces
{x1 ≥ 0} and {x1 ≤ 0} and assume that V + and V −

are smooth up to the boundary of their domains. If the
first derivative with respect to the first component of the
potential energy V (q) are discontinuous across the hyper-
plane {x1 = 0} (i.e., (∂V +)/(∂q1) and (∂V −)/(∂q1) are
not identical on this set), then RHMC on this hyper-plane
has a local error of order at least Ω(ε).

Since PPHMC uses RHMC, when the first derivatives of
the potential energy are discontinuous, it also has a global
error of orderO(Cε+Tε3), which depends on the number
of critical events C along a Hamiltonian path (that is, the
number of reflection/refraction events). This makes it diffi-
cult to tune the step size ε for optimal acceptance rate, and
requires small ε, limiting topology exploration.

To alleviate this issue, we propose the use of a surrogate
induced Hamiltonian dynamics (Strathmann et al., 2015;
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Zhang et al., 2016) with the Hamiltonian H̃(τ, q, p) =
Ũ(τ, q) +K(p), where the surrogate potential energy is

Ũ(τ, q) = U(τ,G(q)), G(q) = (g(q1), . . . , g(qn))

and g(x) is some positive and smooth approximation of |x|
with vanishing gradient at x = 0. One simple example
which will be used for the rest of this paper is

gδ(x) =

{
x, x ≥ δ
1
2δ (x2 + δ2), 0 ≤ x < δ

where δ will be called the smoothing threshold.

Due to the vanishing gradient of g, Ũ now has continuous
derivatives across orthants. However, Ũ is no longer con-
tinuous across orthants since g(0) 6= 0 and we thus employ
the refraction technique introduced in Afshar and Domke
(2015) (see Algorithm 2 for more details). The proposed
state s∗δ = (τ∗δ , q

∗
δ , p
∗
δ) at the end of the trajectory is ac-

cepted with probability according to the original Hamilto-
nian, that is, min(1, exp(H(s)−H(s∗δ))).

By following the same framework proposed in previous
sections, we can prove that the resulting sampler still sam-
ples from the exact posterior distribution P(τ, q). A com-
plete treatment, however, requires more technical adjust-
ments and is beyond the scope of the paper. We will leave
this as a subject of future work.

Algorithm 2 Refractive Leap-prog with surrogate

p← p− ε∇Ũ(τ, q)/2
if FirstUpdateEvent(τ, q, p, ε) = ∅ then
q ← q + εp

else
t← 0
while FirstUpdateEvent(q, p, ε− t) 6= ∅ do

(q, e, I)← FirstUpdateEvent(τ, q, p, ε− t)
t← t+ e
τ ′ ∼ Z(N (τ, q))
∆E ← Ũ(τ ′, q)− Ũ(τ, q)
if ‖pI‖2 > 2∆E then
pI ←

√
‖pI‖2 − 2∆E · −pI

‖pI‖
τ ← τ ′

else
pI ← −pI

end if
end while
q ← q + (ε− t)p

end if
p← p− ε∇Ũ(τ, q)/2

As we will illustrate later, compared to the exact potential
energy, the continuity of the derivative of the surrogate po-
tential across orthants dramatically reduces the discretiza-

tion error and allows for high acceptance probability with
relatively large step size.

4. Experiments
In this section, we demonstrate the validity and efficiency
of our PPHMC method by an application to Bayesian
phylogenetic inference. We compared our PPHMC im-
plementations to industry-standard MrBayes 3.2.5, which
uses MCMC to sample phylogenetic trees (Ronquist et al.,
2012). We concentrated on the most challenging part: sam-
pling jointly for the branch lengths and tree topologies,
and assumed other parameters (e.g., substitution model,
hyper-parameters for the priors) are fixed. More specifi-
cally, for all of our experiments we continued to assume
the Jukes-Cantor model of DNA substitution and placed a
uniform prior on the tree topology τ ∼ Z (TN ) with branch
lengths i.i.d. qi ∼ Exponential (λ = 10), as done by others
when measuring the performance of MCMC algorithms for
Bayesian phylogenetics (e.g., Whidden and Matsen, 2015).
As mentioned earlier, although in the theoretical develop-
ment we assumed that the lengths of the pendant edges are
bounded from below by a positive constant e0 to ensure
that the likelihood stays positive on the whole tree space,
this condition is not necessary in practice since the Hamil-
tonian dynamics guide the particles away from regions with
zero likelihood (i.e., the region with U =∞). We validate
the algorithm through two independent implementations in
open-source software:

1. a Scala version available at https://github.com/
armanbilge/phyloHMC that uses the Phylogenetic
Likelihood Library1 (Flouri et al., 2015), and

2. a Python version available at https://github.

com/zcrabbit/PhyloInfer that uses the ETE
toolkit (Huerta-Cepas et al., 2016) and Biopython
(Cock et al., 2009).

4.1. Simulated data

As a proof of concept, we first tested our PPHMC method
on a simulated data set. We used a random unrooted tree
with N = 50 leaves sampled from the aforementioned
prior. 1000 nucleotide observations for each leaf were
then generated by simulating the continuous-time Markov
model along the tree. This moderate data set provided
enough information for model inference while allowing for
a relatively rich posterior distribution to sample from.

We ran MrBayes for 107 iterations and sampled every 1000
iterations after a burn-in period of the first 25% iterations
to establish a ground truth for the posterior distribution.

1https://github.com/xflouris/libpll
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For PPHMC, we set the step size ε = 0.0015 and smooth-
ing threshold δ = 0.003 to give an overall acceptance rate
of about α = 0.68 and set the number of leap-prog steps
T = 200. We then ran PPHMC for 10, 000 iterations with
a burn-in of 25%. We saw that PPHMC indeed samples
from the correct posterior distribution (see Figure S1 in the
Appendix).

4.2. Empirical data

We also analyzed an empirical data set labeled DS4 by
Whidden and Matsen (2015) that has become a standard
benchmark for MCMC algorithms for Bayesian phyloge-
netics since Lakner et al. (2008). DS4 consists of 1137
nucleotide observations per leaf from N = 41 leaves rep-
resenting different species of fungi. Notably, only 554 of
these observations are complete; the remaining 583 are
missing a character for one or more leaves so the likeli-
hood is marginalized over all possible characters. Whidden
and Matsen (2015) observed that the posterior distribution
for DS4 features high-probability trees separated by paths
through low-probability trees and thus denoted it a “peaky”
data set that was difficult to sample from using MrBayes.

To find the optimal choice of tuning parameters for DS4,
we did a grid search on the space of step size ε and the
smoothing threshold–step size ratio δ/ε. The number of
leap-prog steps T was adjusted to keep the total simulation
time εT fixed. For each choice of parameters, we estimated
the expected acceptance rate α by averaging over 20 pro-
posals from the PPHMC transition kernel per state for 100
states sampled from the posterior in a previous, well-mixed
run. This strategy enabled us to obtain an accurate estimate
of the average acceptance rate without needing to account
for the different mixing rates in a full PPHMC run due to
the various settings for the tuning parameters.

The results suggest that choosing δ ≈ 2εmaximizes the ac-
ceptance probability (Figure 2b). Furthermore, when aim-
ing for the optimal acceptance rate of α = 0.65 (Neal,
2011), the use of the surrogate function enables a choice of
step size ε nearly 10 times greater than otherwise. In prac-
tice, this means that an equivalent proposal requires less
leap-prog steps and gives a more efficient sampling algo-
rithm.

To see the difference this makes in practice, we ran long
trajectories for exact and surrogate-smoothed PPHMC with
a relatively large step size ε = 0.0008. Indeed, we found
that the surrogate enables very long trajectories and large
number of topology transformations (Figure 2a,c).

5. Conclusion
Sophisticated techniques for sampling posteriors using
HMC have thus far been restricted to manifolds with
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Figure 2. (a) A hexbin plot comparison showing that the
surrogate-smoothed PPHMC achieves much higher acceptance
rate and longer paths than exact PPHMC on the DS4 data set.
(b) Average acceptance rate α for different choices of step size ε
and smoothing threshold δ for phylogenetic HMC applied to DS4,
where εT = 0.08. The black series (δ/ε = 0.0) is equivalent to
exact PPHMC. The dashed red line indicates the acceptance rate
α = 0.65. (c) Expected number of NNI moves made by both
exact and surrogate-smoothed PPHMC. Results are obtained by
averaging 100 HMC iterations with long trajectories (T = 1000),
starting from the same posterior sample.

boundary. To address this limitation, we have developed
“PPHMC,” which is the first extension of HMC to a space
with intricate combinatorial structure. The correspond-
ing integrator makes a random choice among alternatives
when encountering a boundary. To prove ergodicity, we
extend familiar elements of HMC proofs to this probabilis-
tic path setting. We develop a smoothing surrogate function
that enables long HMC paths with many boundary transi-
tions across which the posterior is not differentiable. Our
surrogate method enables high acceptance probability for
RHMC (Afshar and Domke, 2015) in the case of potential
functions with discontinuous derivatives; this aspect of our
work is independent of the probabilistic nature of PPHMC.
Our implementation shows good performance on both sim-
ulated and real data. There are many opportunities for fu-
ture development, including extending the theory to other
classes of combinatorially-described spaces and surrogate
functions, developing adaptive path length algorithms, as
well as extending our implementation for phylogenetics to
sample other mutation model and demographic parameters
along with topologies.
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