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A Radial transformations
We show an elementary transformation to locally perturb the
geometry of a finite-dimensional vector space and therefore
affect the relative flatness between a finite number minima,
at least in terms of spectral norm of the Hessian. We define
the function:
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For a parameter θ̂ ∈ Θ and δ > 0, ρ ∈]0, δ[, r̂ ∈]0, δ[,
inspired by the radial flows (Rezende & Mohamed, 2015)
in we can define the radial transformations
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with Jacobian
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with r = ‖θ − θ̂‖2.

First, we can observe in Figure 1 that these transformations
are purely local: they only have an effect inside the ball
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(a) ψ(r, r̂, δ, ρ)

(b) g−1(θ)

Figure 1: An example of a radial transformation on a 2-
dimensional space. We can see that only the area in blue
and red, i.e. inside B2(θ̂, δ), are affected. Best seen with
colors.

B2(θ̂, δ). Through these transformations, you can arbitrarily
perturb the ranking between several minima in terms of
flatness as described in subsection 5.1.
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B Considering the bias parameter
When we consider the bias parameter for a one (hidden)
layer neural network, the non-negative homogeneity prop-
erty translates into

y = φrect(x · θ1 + b1) · θ2 + b2

= φrect(x · αθ1 + αb1) · α−1θ2 + b2,

which results in conclusions similar to section 4.

For a deeper rectified neural network, this property results
in

y = φrect

(
φrect

(
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(
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for
∏K
k=1 αk = 1. This can decrease the amount of eigen-

values of the Hessian that can be arbitrarily influenced.

C Rectified neural network and
Lipschitz continuity

Relative to recent works (Hardt et al., 2016; Gonen &
Shalev-Shwartz, 2017) assuming Lipschitz continuity of the
loss function to derive uniform stability bound, we make
the following observation:

Theorem 1. For a one-hidden layer rectified neural network
of the form

y = φrect(x · θ1) · θ2,

if L is not constant, then it is not Lipschitz continuous.

Proof. Since a Lipschitz function is necessarily absolutely
continuous, we will consider the cases where L is absolutely
continuous. First, if L has zero gradient almost everywhere,
then L is constant.

Now, if there is a point θ with non-zero gradient, then by
writing

(∇L)(θ1, θ2) = [(∇θ1L)(θ1, θ2)

(∇θ2L)(θ1, θ2)],

we have

(∇L)(αθ1, α
−1θ2) = [α−1(∇θ1L)(θ1, θ2)

α(∇θ2L)(θ1, θ2)].

Without loss of generality, we consider (∇θ1L)(θ1, θ2) 6= 0.
Then the limit of the norm

‖(∇L)(αθ1, α
−1θ2)‖22 = α−2‖(∇θ1L)(θ1, θ2)‖22

+ α2‖(∇θ2L)(θ1, θ2)‖22

of the gradient goes to +∞ as α goes to 0. Therefore, L is
not Lipschitz continuous.

This result can be generalized to several other models con-
taining a one-hidden layer rectified neural network, includ-
ing deeper rectified networks.

D Euclidean distance and input
representation

A natural consequence of subsectio 5.2 is that metrics rely-
ing on Euclidean metric like mean square error or Earth-
mover distance will rank very differently models depending
on the input representation chosen. Therefore, the choice
of input representation is critical when ranking different
models based on these metrics. Indeed, bijective transfor-
mations as simple as feature standardization or whitening
can change the metric significantly.

On the contrary, ranking resulting from metrics like f-
divergence and log-likelihood are not perturbed by bijective
transformations because of the change of variables formula.

E Eigenspectrum of Hessian
In section 4.2, we show how to manipulate the spectral ra-
dius and trace of the Hessian as a notion of sharpness. In
However, some notion of sharpness might take into account
the entire eigenspectrum of the Hessian as opposed to its
largest eigenvalue, for instance, Chaudhari et al. (2017) de-
scribe the notion of wide valleys, allowing the presence of
very few large eigenvalues. We can generalize the trans-
formations between observationally equivalent parameters
to deeper neural networks with K − 1 hidden layers: for
αk > 0, Tα : (θk)k≤K 7→ (αkθk)k∈K with

∏K
k=1 αk = 1.

If we define

Dα =
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...

...
. . .

...
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
then the first and second derivatives at Tα(θ) will be

(∇L)
(
Tα(θ)

)
=(∇L)(θ)Dα

(∇2L)
(
Tα(θ)

)
=Dα(∇2L)(θ)Dα.

We will show to which extent you can increase several
eigenvalues of (∇2L)

(
Tα(θ)

)
by varying α.
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Definition 1. For each n×n matrixA, we define the vector
λ(A) of sorted singular values of A with their multiplicity
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

If A is symmetric positive semi-definite, λ(A) is also the
vector of its sorted eigenvalues.

Theorem 2. For a (K − 1)-hidden layer rectified neural
network of the form

y = φrect(φrect(· · ·φrect(x · θ1) · · · ) · θK−1) · θK ,

and critical point θ = (θk)k≤K being a minimum for L,
such that (∇2L)(θ) has rank r = rank

(
(∇2L)(θ)

)
, ∀M >

0,∃α > 0 such that
(
r − mink≤K(nk)

)
eigenvalues are

greater than M .

Proof. For simplicity, we will note
√
M the principal

square root of a symmetric positive-semidefinite matrix
M . The eigenvalues of

√
M are the square root of the

eigenvalues of M and are its singular values. By defini-
tion, the singular values of

√
(∇2L)(θ)Dα are the square

root of the eigenvalues of Dα(∇2L)(θ)Dα. Without loss
of generality, we consider mink≤K(nk) = nK and choose
∀k < K,αk = β−1 and αK = βK−1. Since Dα and√

(∇2L)(θ) are positive symmetric semi-definite matrices,
we can apply the multiplicative Horn inequalities (Klyachko,
2000) on singular values of the product

√
(∇2L)(θ)Dα:

∀i ≤ n,j ≤ (n− nK),

λi+j−n
(
(∇2L)(θ)D2

α

)
≥ λi

(
(∇2L)(θ)

)
β2.

By choosing β >
√

M

λr

(
(∇2L)(θ)

) , since we have

∀i ≤ r, λi
(
(∇2L)(θ)

)
≥ λr

(
(∇2L)(θ)

)
> 0 we can

conclude that

∀i ≤ (r − nK),

λi
(
(∇2L)(θ)D2

α

)
≥ λi+nk

(
(∇2L)(θ)

)
β2

≥ λr
(
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)
β2 > M.

It means that there exists an observationally equivalent pa-
rameter with at least

(
r −mink≤K(nk)

)
arbitrarily large

eigenvalues. Since Sagun et al. (2016) seems to suggests that
rank deficiency in the Hessian is due to over-parametrization
of the model, one could conjecture that

(
r−mink≤K(nk)

)
can be high for thin and deep neural networks, resulting in
a majority of large eigenvalues. Therefore, it would still
be possible to obtain an equivalent parameter with large
Hessian eigenvalues, i.e. sharp in multiple directions.
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