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8. Appendix
This appendix contains additional plots and proofs of the
results from Section 2.

Lemma 6. The divergence from q(z) to p(z) is

KL (q(Z)kp(Z)) = KL (q(Z|W )kp(Z))| {z }
D0

�Iq[W,Z],

(27)
where D0 = Eq(W,Z) log (q(Z|W )/p(Z)) is conditional
divergence and Iq denotes mutual information under q.

Proof. Define the joint distribution p(w, z) = q(w)p(z).
Then, the chain-rule of KL-divergence (Cover & Thomas,
2006, Thm. 2.5.3) states that

KL (q(Z,W )kp(Z,W )) = KL (q(W |Z)kp(W |Z))

+KL (q(Z)kp(Z)) . (28)

The left-hand side simplifies into D0, and the first term on
the right-hand side simplifies into Iq[W,Z].

Theorem 7. For fixed values of � and p(w|z), the distri-
bution q(w) that minimizes D� is

q⇤(w) = exp

�
s(w)�A)

A = log

Z

w
exp s(w)

s(w) = log p(w)�KL (q(Z|w)kp(Z|w))
�
�
��1 � 1

�
KL (q(Z|w)kp(Z)) .

Moreover, at q⇤, the objective value is D⇤
� = ��A.

Proof. First, consider derivatives of D0 and D1 with re-
spect to q(w). The first can immediately be seen to be

dD0

dq(w)
= KL (q(Z|w)kp(Z)) .

For the second, we can derive

dD1

dq(w)
=

d

dq(w)

Z

w,z
q(w, z) log

q(z|w)
p(w, z)

+

d

dq(w)

Z

w,z
q(w) log q(w)

=

Z

z
q(z|w) log q(z|w)

p(w, z)
+ log q(w) + 1

= KL (q(Z|w)kp(Z|w))� log p(w) + log q(w) + 1.

If we create a Lagrangian for D� with a Lagrange multi-
plier � to enforce normalization of q(w), we know that at

the optimal q(w) its gradient will be zero. Using the above
derivatives, we therefore have that

0 =(1� �)KL (q(Z|w)kp(Z)) + �KL (q(Z|w)kp(Z|w))
� � log p(w) + � log q(w) + �,

Which solved for q(w), this gives

q(w) / exp

�
� (1� ��1

)KL (q(Z|w)kp(Z))

�KL (q(Z|w)kp(Z|w)) + log p(w)
�
,

which establishes the given form for s(w) and A.

Now, to establish the value of D� at the solution, expand
the negative entropy of q(w) to get

�

Z

w
q(w) log q(w)

= �

Z

w
q(w)

⇣
� (1� ��1

)KL (q(Z|w)kp(Z))

�KL (q(Z|w)kp(Z|w)) + log p(w)
⌘
� �A. (29)

Now, taking the left-hand side and terms in the bottom line,
we can recognize that

Z

w
q(w)

✓
log

p(w)

q(w)
�KL (q(Z|w)kp(Z|w))

◆
= �D1.

Further, if we take the terms from the middle line, we have
that

��

Z

w
q(w)(1� ��1

)KL (q(Z|w)kp(Z)) = (� � 1)D0.

Thus, we can re-write Eq. 29 as ��A = (1��)D0+�D1,
establishing the value of D⇤

� .

Remark 8. In the limit where � ! 0 the divergence bound
becomes

lim

�!0
D⇤

� = inf

w
KL (q(Z|w)kp(Z)) .

Proof. Use the representation that lim�!0 D
⇤
� =

lim�!0 ��A is equal to

lim

�!0
�� log

Z

w
exp

⇣
log p(w)�KL (q(Z|w)kp(Z|w))

�
�
��1 � 1

�
KL (q(Z|w)kp(Z))

⌘

= lim

�!0
�� log

Z

w
exp

⇣
���1KL (q(Z|w)kp(Z))

⌘
.

The form for D⇤
� follows from the fact that

lim�!0 � log

R
w exp(��1f(w)) = supw f(w).
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Lemma 9. If p(w|z) = r(w)q(z|w)/rz and rz is a con-
stant, then the solution in Thm. 3 holds with

s(w) = log r(w)� log rz

+ Eqw(Z)[�
�1

log p(z) + (1� ��1
) log q(z|w)].

Proof. First, without using the particular form for p(w|z),
we can write s(w) as

log p(w)�
Z

z
q(z|w) log q(z|w)

p(z|w)

�
�
��1 � 1

� Z

z
q(z|w) log q(z|w)

p(z)

Cancelling terms involving q(z|w) in the numerators, this
is

log p(w)�
Z

z
q(z|w) log p(z)

p(z|w)

� ��1

Z

z
q(z|w) log q(z|w)

p(z)

The log p(w) can be absorbed into the first term to give,
after some cancellation that

s(w) =

Z

z
q(z|w) log p(w|z)� ��1KL (q(Z|w)kp(Z)) .

Now, using the assumed form for p(w|z), we can immedi-
ately write that s(w) is
Z

z
q(z|w) log r(w)q(z|w)

rz
� ��1

Z

z
q(z|w) log q(z|w)

p(z)
,

equivalent to the form stated.
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� = 0 � = .05 � = .10 � = .15 � = .20

� = .25 � = .30 � = .35 � = .40 � =, 45

� = .50 � = .55 � = .60 � = .65 � = .70

� = .75 � = .80 � = .85 � = .90 � = .95

Figure 5. Examples sampling from a two-dimensional mixture of three gaussians after running inference for 5 ⇥ 105 iterations. The
sampled weights w are pictured as ellipsoids at one standard deviation. Colored contours show the density p(z). To avoid visual clutter,
a smaller number (equally spaced) of samples are shown for smaller �.
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� = 0 � = .05 � = .10 � = .15 � = .20

� = .25 � = .30 � = .35 � = .40 � =, 45

� = .50 � = .55 � = .60 � = .65 � = .70

� = .75 � = .80 � = .85 � = .90 � = .95

Figure 6. Examples sampling from a two-dimensional “donut” distribution after running inference for 5 ⇥ 105 iterations. The sampled
weights w are pictured as ellipsoids at one standard deviation. Colored contours show the density p(z). To avoid visual clutter, a smaller
number (equally spaced) of samples are shown for smaller �.
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� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0 Stan

Figure 7. Inference for various values of � on ionosphere after 104 (top row) 105 (middle row) or 106 (bottom row) iterations. After
each iteration, one sample is drawn from qw(Z), and plots show the first two principal components (computed on samples from Stan).
Each plot show samples resulting from the (constant) step-size ✏ that resulted in the minimum MMD for that � and number of iterations.
The same sequence of random numbers is for all inference methods. (More results are in the appendix.)

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0 Stan

Figure 8. Inference for various values of � on a1a after 104 (top row) 105 (middle row) or 106 (bottom row) iterations. In some of these
plots, a “tail” is visible, reflecting the path into the high-density region from where w = 0 where inference was initialized.
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� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0 Stan

Figure 9. Inference for various values of � on australian after 104 (top row) 105 (middle row) or 106 (bottom row) iterations.

� = 0.0 � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0 Stan

Figure 10. Inference for various values of � on sonar after 104 (top row) 105 (middle row) or 106 (bottom row) iterations.


