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Abstract

We describe a procedure enhancingL1-penalized
regression by adding dynamically generated
rules describing multidimensional “box” sets.
Our rule-adding procedure is based on the
classical column generation method for high-
dimensional linear programming. The pricing
problem for our column generation procedure
reduces to the NP-hard rectangular maximum
agreement (RMA) problem of finding a box
that best discriminates between two weighted
datasets. We solve this problem exactly us-
ing a parallel branch-and-bound procedure. The
resulting rule-enhanced regression method is
computation-intensive, but has promising predic-
tion performance.

1. Motivation and Overview
This paper considers the general learning problem in which
we have m observation vectors X1, . . . , Xm ∈ Rn, with
matching response values y1, . . . , ym ∈ R. Each response
yi is a possibly noisy evaluation of an unknown function
f : Rn → R at Xi, that is, yi = f(Xi) + ei, where ei ∈
R represents the noise or measurement error. The goal is
to estimate f by some f̂ : Rn → R such that f̂(Xi) is
a good fit for yi, that is, |f̂(Xi) − yi| tends to be small.
The estimate f̂ may then be used to predict the response
value y corresponding to a newly encountered observation
x ∈ Rn through the prediction ŷ = f̂(x). A classical
linear regression model is one simple example of the many
possible techniques one might employ for constructing f̂ .
The classical regression approach to this problem is to posit
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a particular functional form for f̂(x) (for example, an affine
function of x) and then use an optimization procedure to
estimate the parameters in this functional form.

Here, we are interested in cases in which a concise can-
didate functional form for f̂ is not readily apparent, and
we wish to estimate f̂ by searching over a very high-
dimensional space of parameters. For example, Breiman
(2001) proposed the method of random forests, which
constructs f̂ by training regression trees on multiple ran-
dom subsamples of the data, and then averaging the re-
sulting predictors. Another proposal is the RuleFit algo-
rithm (Friedman & Popescu, 2008), which enhances L1-
regularized regression by generating box-based rules to use
as additional explanatory variables. Given a, b ∈ Rn with
a ≤ b, the rule function r(a,b) : Rn → {0, 1} is given by

r(a,b)(x) = I
(
∧j∈{1,...,n}(aj ≤ xj ≤ bj)

)
, (1)

that is r(a,b)(x) = 1 if a ≤ x ≤ b (componentwise) and
r(a,b)(x) = 0 otherwise. RuleFit generates rules through a
two-phase procedure: first, it determines a regression tree
ensemble, and then decomposes these trees into rules and
determines the regression model coefficients (including for
the rules).

The approach of Dembczyński et al. (2008a) generates
rules more directly (without having to rely on an initial en-
semble of decision trees) within gradient boosting (Fried-
man, 2001) for non-regularized regression. In this scheme,
a greedy procedure generates the rules within a gradient
descent method runs that for a predetermined number of it-
erations. Aho et al. (2012) extended the RuleFit method to
solve more general multi-target regression problems. For
the special case of single-target regression, however, their
experiments suggest that random forests and RuleFit out-
perform several other methods, including their own ex-
tended implementation and the algorithm of Dembczyński
et al. (2008a). Compared with random forests and other
popular learning approaches such as kernel-based methods
and neural networks, rule-based approaches have the ad-
vantage of generally being considered more accessible and
easier to interpret by domain experts. Rule-based methods
also have a considerable history in classification settings, as
in for example Weiss & Indurkhya (1993), Cohen & Singer
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(1999), and Dembczyński et al. (2008b).

Here, we propose an iterative optimization-based regres-
sion procedure called REPR (Rule-Enhanced Penalized
Regression). Its output models resemble those of Rule-
Fit, but our methodology draws more heavily on exact op-
timization techniques from the field of mathematical pro-
gramming. While it is quite computationally intensive, its
prediction performance appears promising. As in Rule-
Fit, we start with a linear regression model (in this case,
with L1-penalized coefficients to promote sparsity), and
enhance it by synthesizing rules of the form (1). We in-
crementally adjoin such rules to our (penalized) linear re-
gression model as if they were new observation variables.
Unlike RuleFit, we control the generation of new rules us-
ing the classical mathematical programming technique of
column generation. Our employment of column generation
roughly resembles its use in the LPBoost ensemble classi-
fication method of Demiriz et al. (2002).

Column generation involves cyclical alternation between
optimization of a restricted master problem (in our case
a linear or convex quadratic program) and a pricing prob-
lem that finds the most promising new variables to adjoin
to the formulation. In our case, the pricing problem is
equivalent to an NP-hard combinatorial problem we call
Rectangular Maximum Agreement (RMA), which general-
izes the Maximum Mononial Agreement (MMA) problem
as formulated and solved by Eckstein & Goldberg (2012).
We solve the RMA problem by a similar branch-and-bound
method procedure, implemented using parallel computing
techniques.

To make our notation below more concise, we let X de-
note the matrix whose rows are X>

1 , . . . , X
>
m, and also let

y = (y1, . . . , ym) ∈ Rm. We may then express a prob-
lem instance by the pair (X, y). We also let xij denote the
(i, j)th element of this matrix, that is, the value of variable
j in observation i.

2. A Penalized Regression Model with Rules
Let K be a set of pairs (a, b) ∈ Rn × Rn with a ≤ b, con-
stituting a catalog of all the possible rules of the form (1)
that we wish to be available to our regression model. The
set K will typically be extremely large: restricting each
aj and bj to values that appear as xij for some i, which
is sufficient to describe all possible distinct behaviors of
rules of the form (1) on the dataset X , there are still∏n
j=1 `j(`j + 1)/2 ≥ 3n possible choices for (a, b), where

`j = |
⋃m
i=1{xij}| is the number of distinct values for xij .

The predictors f̂ that our method constructs are of the form

f̂(x) = β0 +

n∑
j=1

βjxj +
∑
k∈K

γkrk(x) (2)

for some β0, β1, . . . , βn, (γk)k∈K ∈ R. Finding an f̂ of
this form is a matter of linear regression, but with the re-
gression coefficients in a space with the potentially very
high dimension of 1 +n+ |K|. As is now customary in re-
gression models in which the number of explanatory vari-
ables potentially outnumbers the number of observations,
we employ a LASSO-class model in which all explanatory
variables except the constant term have L1 penalties. Let-
ting β = (β1, . . . , βn) ∈ Rn and γ ∈ R|K|, let fβ0,β,γ( · )
denote the predictor function in (2). We then propose to
estimate β0, β, γ by solving

min
β0,β,γ

{
m∑
i=1

|fβ0,β,γ(Xi)− yi|p + C ‖β‖1 + E ‖γ‖1

}
,

(3)
where p ∈ {1, 2} and C,E ≥ 0 are scalar parameters. For
p = 2 and C = E > 0, this model is essentially the classic
LASSO as originally proposed by Tibshirani (1996).

To put (3) into a more convenient form for our purposes,
we split the regression coefficient vectors into positive and
negative parts, so β = β+ − β− and γ = γ+ − γ−, with
β+, β− ∈ Rn+ and γ+, γ− ∈ R|K|+ . Introducing one more
vector of variables ε ∈ Rm, the model shown as (4) in Fig-
ure 1 is equivalent to (3). The model is constructed so that
εi = |fβ0,β,γ(Xi)− yi| for i = 1, . . . ,m. If p = 1, the
model is a linear program, and if p = 2 it is a convex, lin-
early constrained quadratic program. In either case, there
are 2m constraints (other than nonnegativity), but the num-
ber of variables is 1 +m+ 2n+ 2 |K|.

Because of this potentially unwieldy number of variables,
we propose to solve (4) by using the classical technique
of column generation, which dates back to Ford & Fulker-
son (1958) and Gilmore & Gomory (1961); see for example
Section 7.3 of Griva et al. (2009) for a recent textbook treat-
ment. In brief, column generation cycles between solving
two optimization problems, the restricted master problem
and the pricing problem. In our case, the restricted master
problem is the same as (4), but with K replaced by some
(presumably far smaller) K ′ ⊆ K. We initially choose
K ′ = ∅. Solving the restricted master problem yields op-
timal Lagrange multipliers ν ∈ Rm+ and µ ∈ Rm+ (for the
constraints other than simple nonnegativity). For each rule
k ∈ K, these Lagrange multipliers yield respective reduced
costs rc[γ+k ], rc[γ−k ] for the variables γ+k , γ−k that are in the
master problem, but not the restricted master. One then
solves the pricing problem, whose job is to identify the
smallest of these reduced costs. The reduced cost rc[v] of a
variable v indicates the rate of change of the objective func-
tion as one increases v away from 0. If the smallest reduced
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min

m∑
i=1

εpi + C

n∑
j=1

(β+
j + β−j ) + E

∑
k∈K

(γ+k + γ−k )

s. t. β0 +X>
i (β+ − β−) +

∑
k∈K

rk(Xi)(γ
+
k − γ

−
k )− εi ≤ yi, i = 1, . . . ,m

−β0 −X>
i (β+ − β−)−

∑
k∈K

rk(Xi)(γ
+
k − γ

−
k )− εi ≤ −yi, i = 1, . . . ,m

ε ≥ 0 β+, β− ≥ 0 γ−, γ+ ≥ 0

(4)

Figure 1. Formulation of the REPR master problem, with scalar parameters p ∈ {1, 2}, C ≥ 0, and E ≥ 0. The decision variables are
ε ∈ Rm, β0 ∈ R, β+, β− ∈ Rn, and γ+, γ− ∈ R|K|. The input data are X = [X1 · · ·Xm]> ∈ Rm×n and y ∈ Rm.

cost is nonnegative, then clearly all the reduced costs are
nonnegative, which means that the current restricted master
problem yields an optimal solution to the master problem
by setting γ+k = γ−k = 0 for all k ∈ K\K ′, and the process
terminates. If the smallest reduced cost is negative, we ad-
join elements to K ′, including at least one corresponding
to a variable γ+k or γ−k with a negative reduced cost, and
we repeat the process, re-solving the expanded restricted
master problem.

In our case, the reduced costs take the form

rc[γ+k ] = E −
m∑
i=1

rk(xi)νi +

m∑
i=1

rk(xi)µi

rc[γ−k ] = E +

m∑
i=1

rk(xi)νi −
m∑
i=1

rk(xi)µi

and hence we have for each k ∈ K that

min
{

rc[γ+k ], rc[γ−k ]
}

= E −

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣ . (5)

Therefore, the pricing problem may be solved by maximiz-
ing the second term on the right-hand side of (5), that is,
finding

z∗ = max
k∈K

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣ , (6)

and the stopping condition for the column generation pro-
cedure is z∗ ≤ E. This problem turns out to be equivalent
to the RMA problem, whose formulation and solution we
now describe.

3. The RMA Problem
3.1. Formulation and Input Data

Suppose we have m observations and n explanatory vari-
ables, expressed using a matrix X ∈ Rm×n as above.
Each observation i ∈ {1, . . . ,m} is assigned a nonega-
tive weight wi ∈ R+. For any set S ⊆ {1, . . . ,m},

let w(S) =
∑
i∈S wi. We also assume we are given

a partition of the observations into two subsets, a “pos-
itive” subset Ω+ ⊂ {1, . . . ,m} and a “negative” subset
Ω− = {1, . . . ,m}\Ω+.

Given two vectors a, b ∈ Rn, let B(a, b) denote the “box”
{x ∈ Zn | a ≤ x ≤ b}. Given the input data X , the cov-
erage CvrX(a, b) of B(a, b) consists of the indices of the
observations from X falling within B(a, b), that is,

CvrX(a, b) = {i ∈ {1, . . . ,m} | a ≤ Xi ≤ b} .

The rectangular maximum agreement (RMA) problem is

max
∣∣w(Ω+ ∩ CvrX(a, b)

)
− w

(
Ω− ∩ CvrX(a, b)

)∣∣
s.t. a, b ∈ Rn,

(7)
with decision variables a, b ∈ Rn. Essentially implicit
in this formulation is the constraint that a ≤ b, since if
a 6≤ b then CvrX(a, b) = ∅ and the objective value is
0. The previously mentioned MMA problem is the spe-
cial case of RMA in which all the observations are bi-
nary, X ∈ {0, 1}m×n. Since the MMA problem is NP-
hard (Eckstein & Goldberg, 2012), so is RMA.

If we take K to be the set of all possible boxes on Rn, the
pricing problem (6) may be reduced to RMA by setting

(∀ i = 1, . . . ,m) : wi = |νi − µi| (8)

Ω+ = {i ∈ {1, . . . ,m} | νi ≥ µi } , (9)

and thus Ω− = {i ∈ {1, . . . ,m} | νi < µi }.

3.2. Preprocessing and Restriction to N

Any RMA problem instance may be converted to an equiv-
alent instance in which all the observation data are integer.
Essentially, for each coordinate j = 1, . . . , n, one may sim-
ply record the distinct values of xij and replace each xij
with its ordinal position among these values. Algorithm 1,
with its parameter δ set to 0, performs exactly this proce-
dure, outputing a equivalent data matrix X ∈ Nm×n and
a vector ` ∈ Nn whose jth element is `j = |

⋃m
i=1{xij}|
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Algorithm 1 Preprocessing discretization algorithm
1: Input: X ∈ Rm×n, δ ≥ 0
2: Output: X ∈ Nm×n, ` ∈ Nn
3: ProcessData
4: for j = 1 to n do
5: `j ← 0
6: Sort x1j , . . . , xmj and set (k1, . . . , km) such that

xk1j ≤ xk2j ≤ · · · ≤ xkmj
7: x̄k1,j ← 0
8: for i = 1 to m− 1 do
9: if xki+1j − xkij > δ · (xkmj − xk1j) then

10: `j ← `j + 1
11: end if
12: x̄ki+1j ← `j
13: end for
14: `j ← `j + 1
15: end for
16: return (X, `)

as defined in the previous section. Algorithm 1’s output
values x̄ij for attribute j vary between 0 and `j − 1.

The number of distinct values `j of each explanatory vari-
able j directly influences the difficulty of RMA instances.
To obtain easier instances, Algorithm 1 can combine its
“integerization” process with some binning of nearby val-
ues. Essentially, if the parameter δ is positive, the algorithm
bins together consecutive values xij that are within relative
tolerance δ, resulting in a smaller number of distinct values
`j for each explanatory variable j.

Some datasets contain both categorical and numerical data.
In addition to Algorithm 1, we also convert each k-way
categorical attribute into k − 1 binary attributes.

Within the context of our REPR regression method, we set
the RMA weight vector and data partition as in (8)-(9), in-
tegerize the data X using Algorithm 1 with some (small)
parameter value δ, solve the RMA problem, and then trans-
late the resulting boxes back to the original, pre-integerized
coordinate system. We perform this translation by expand-
ing box boundaries to lie halfway between the boundaries
of the clusters of points grouped by Algorithm 1, except
when the lower boundary of the box has the lowest pos-
sible value or the upper boundary has the largest possible
value. In these cases, we expand the box boundaries to
−∞ or +∞, respectively. More precisely, for each obser-
vation variable j and v ∈ {0, . . . , `j − 1}, let xmin

j,v be the
smallest value of xij assigned to the integer value v by Al-
gorithm 1, and xmax

j,v be the largest. If â, b̂ ∈ Nn, â ≤ b̂
describe an integerized box arising from the solution of the
preprocessed RMA problem, we choose the corresponding
box boundaries a, b ∈ Rn in the original coordinate system

to be given by, for j = 1, . . . , n,

aj =

{
−∞, if âj = 0
1
2 (xmax

j,âj−1 + xmin
j,âj

), otherwise

bj =

{
+∞, if b̂j = `j − 1
1
2 (xmax

j,b̂j
+ xmin

j,b̂j+1
), otherwise.

Overall, our procedure is equivalent to solving the pricing
problem (6) over some set of boxes K = Kδ(X). For
δ = 0, the resulting set of boxesK0(X) is such that the cor-
responding set of rules {rk | k ∈ K0(X)} comprises ev-
ery box-based rule distinguishable on the dataset X . For
small positive values of δ, the set of boxes Kδ(X) ex-
cludes those corresponding to rules that “cut” between very
closely spaced observations.

3.3. Branch-and-Bound Subproblems

In this and the following two subsections, we describe the
key elements of our branch-and-bound procedure for solv-
ing the RMA problem, assuming that the data X have al-
ready been preprocessed as above. For brevity, we omit
some details which will instead be covered in a forthcom-
ing publication. For general background on branch-and-
bound algorithms, Morrison et al. (2016) provide a recent
survey with numerous citations.

Branch-and-bound methods search a tree of subproblems,
each describing some subset of the search space. In our
RMA method, each subproblem P is characterized by
four vectors a(P ), a(P ), b(P ), b(P ) ∈ Nn, and represents
search space subset consisting of vector pairs (a, b) for
which a(P ) ≤ a ≤ a(P ) and b(P ) ≤ b ≤ b(P ). Any valid
subproblem conforms to a(P ) ≤ a(P ), b(P ) ≤ b(P ),
a(P ) ≤ b(P ), and a(P ) ≤ b(P ). The root problem R
of the branch-and-bound tree is R = (0, ` − 1,0, ` − 1),
where where ` ∈ Nn is as output from Algorithm 1, and
0 and 1 respectively denote the vectors (0, 0, . . . , 0) ∈ Nn
and (1, 1, . . . , 1) ∈ Nn.

3.4. Inseparability and the Bounding Function

In branch-and-bound methods, the bounding function pro-
vides an upper bound (when maximizing) on the best pos-
sible objective value in the region of the search space corre-
sponding to a subproblem. Our bounding function is based
on an extension of the notion of inseparability developed
by Eckstein & Goldberg (2012). Consider any subproblem
P = (a, a, b, b) and two observations i and i′. If xij = xi′j
or aj ≤ xij , xi′j ≤ bj for each j = 1, . . . , n, then
xi, xi′ ∈ Nn are inseparable with respect to a, b ∈ Nn,
in the sense that any box B(a, b) with a ≤ a and b ≥ b
must either cover both of xi, xi′ or neither of them.

Inseparability with respect to a, b is an equivalence relation,
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β(a, a, b, b) = max


∑

C∈E(a,b)

[
w(C ∩ CvrX(a, b) ∩ Ω+)− w(C ∩ CvrX(a, b) ∩ Ω−)

]
+
,∑

C∈E(a,b)

[
w(C ∩ CvrX(a, b) ∩ Ω−)− w(C ∩ CvrX(a, b) ∩ Ω+)

]
+

 . (10)

Figure 2. The RMA bounding function.

and we denote the equivalence classes it induces among the
observation indices 1, . . . ,m by E(a, b). That is, observa-
tion indices i and i′ are in the same equivalence class of
E(a, b) if xi and xi′ are inseparable with respect to a, b.

Our bounding function β(a, a, b, b) for each subproblem
P = (a, a, b, b) is shown in (10) in Figure 2. The reasoning
behind this bound is that each possible box in the set speci-
fied by (a, a, b, b) must either cover or not cover the entirety
of each C ∈ E(a, b). The first argument to the “max” op-
eration reflects the situation that every equivalence class C
with a positive net weight is covered, and no classes with
negative net weight are covered; this is the best possible
situation if the box ends up covering a higher weight of
positive observations than of negative. The second “max”
argument reflects the opposite situation, the best possible
case in which the box covers a greater weight of negative
observations than of positive ones.

3.5. Branching

The branching scheme of a branch-and-bound algorithm
divides subproblems into smaller ones in order to im-
prove their bounds. In our case, branching a subproblem
P = (a, a, b, b) involves choosing an explanatory variable
j ∈ {1, . . . , n} and a cutpoint v ∈ {aj , . . . , bj − 1} ∈ Nn.

There are three possible cases, the first of which is when
bj < aj and v ∈ {bj , . . . , aj − 1}. In this case, our scheme
creates three children based on the disjunction that either
bj ≤ v − 1 (the box lies below v), aj ≤ v ≤ bj (the box
straddles v), or aj ≥ v+ 1 (the box lies above v). The next
case is that v ∈

{
aj , . . . ,min{aj , bj} − 1

}
, in which case

the box cannot lie below v and we split P into two chil-
dren based on the disjunction that either aj ≤ v (the box
straddles v) or aj ≥ v + 1 (the box is above v). The third
case occurs when v ∈

{
max{aj , bj}, . . . , bj−1

}
, in which

case we split P into two children based on the disjunction
that either bj ≤ v (the box is does not extend above v) or
bj ≥ v+ 1 (the box extends above v). If no v falling under
one of these three cases exists for any dimension j, then the
subproblem represents a single possible box, that is, a = a
and b = b. Such a subproblem is a terminal node of the
branch-and-bound tree, and in this case we simply compute
the RMA objective value for a = a = a and b = b = b as
the subproblem bound.

When more than one possible variable-cutpoint pair (j, v)
exists, as is typically the case, our algorithm must se-
lect one. We use two related procedures for branch-
ing selection: strong branching and cutpoint caching. In
strong branching, we simply experiment with all applicable
variable-cutpoint pairs (j, v), and select one that the max-
imizes the minimum bound of the resulting two or three
children. This is a standard technique in branch-and-bound
algorithms, and involves evaluating the bounds of all the
potential children of the current search node. To make this
process as efficient as possible, we have developed special-
ized data structures for manipulating equivalence classes,
and we analyze the branching possibilities in a particular
order. In cutpoint caching, some subproblems use strong
branching, while others select from a list of cutpoints that
were chosen by strong branching for previously processed
search nodes. The details of these procedures will be cov-
ered in a forthcoming companion publication.

4. Full Algorithm and Implementation
The pseudocode in Algorithm 2 describes our full REPR
column generation procedure for solving (4), using the
RMA preprocessing and branch-and-bound methods de-
scribed above to solve the pricing problem. Several points
bear mentioning: first, the nonnegative scalar parameter θ
allows us to incorporate a tolerance into the column gen-
eration stopping criterion, so that we terminate when all
reduced costs exceed −θ instead of when all reduced costs
are nonnegative. This kind of tolerance is customary in
column generation methods. The tolerance δ, on the other
hand, controls the space of columns searched over. Further-
more, our implementation of the RMA branch-and-bound
algorithm can identify any desired number t ≥ 1 of the best
possible RMA solutions, as opposed to just one value of k
attaining the maximum in (11). This t is also a parameter to
our procedure, so at each iteration of Algorithm 2 we may
adjoin up to t new rules to K ′. Adding multiple columns
per iteration is a common technique in column generation
methods. Finally, the algorithm has a parameter S specify-
ing a limit on the number of column generation iterations,
meaning that at the output model will contain at most St
rules.

We implemented the algorithm in C++, using the GuRoBi
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Algorithm 2 REPR: Rule-enhanced penalized regression
1: Input: data X ∈ Rm×n, y ∈ Rm, penalty parameters
C,E ≥ 0, column generation tolerance θ ≥ 0, integer
t ≥ 1, aggregation tolerance δ ≥ 0, iteration limit S

2: Output: β0 ∈ R, β ∈ Rn,K ′ ⊂ Kδ(X), γ ∈ R|K
′|

3: REPR
4: K ′ ← ∅
5: for s = 1, . . . , S do
6: Solve the restricted master problem to obtain opti-

mal primal variables (β0, β
+, β−, γ+, γ−) and dual

variables (ν, µ)
7: Use the RMA branch-and-bound algorithm, with

preprocessing as in Algorithm 1, to identify a t-best
solution k1, . . . , kt to

max
k∈Kδ(X)

∣∣∣∣∣
m∑
i=1

rk(xi)(νi − µi)

∣∣∣∣∣ , (11)

with k1, . . . , kt having respective objective values
z1 ≥ z2 ≥ · · · ≥ zt

8: if z1 ≤ E + θ break
9: for each l ∈ {1, . . . , t} with zl > E + θ do

10: K ′ ← K ′ ∪ {kl}
11: end for
12: end for
13: return (β0, β := β+ − β−,K ′, γ := γ+ − γ−)

commercial optimizer (Gurobi Optimization, 2016) to
solve the restricted master problems. We implemented
the RMA algorithm using using the PEBBL C++ class li-
brary (Eckstein et al., 2015), an open-source C++ frame-
work for parallel branch and bound. PEBBL employs MPI-
based parallelism (Gropp et al., 1994). Since solving the
RMA pricing problem is by far the most time-consuming
part of Algorithm 2, we used true parallel computing only
in that portion of the algorithm. The remainder of the al-
gorithm, including solving the restricted master problems,
was executed in serial and redundantly on all processors.

5. Preliminary Testing of REPR
For preliminary testing of REPR, we selected 8 datasets
from the UCI repository (Lichman, 2013), choosing small
datasets with continuous response variables. The first four
columns of Table 1 summarize the number of observations
m, the number of attributes n, and the maximum number
of distinguishable box-based rules |K0(X)| for these data
sets.

In our initial testing, we focused on the p = 2 case in which
fitting errors are penalized quadratically, and set t = 1, that
is, we added one model rule per REPR iteration. We set the
iteration limit S to 100 and effectively set the termination

REPR RMA
Dataset m n |K0(X)| Time Nodes
SERVO 167 10 9.8e05 0:00:11 3.6e2
CONCRETE 103 9 2.7e29 0:29:51 3.0e5
MACHINE 209 6 2.5e15 0:03:07 5.6e4
YACHT 308 6 2.6e10 0:00:36 5.3e2
MPG 392 7 3.3e19 13:09:58 2.4e6
COOL 768 8 1.1e10 0:04:48 3.7e3
HEAT 768 8 1.1e10 0:03:42 3.9e3
AIRFOIL 1503 5 1.0e11 2:13:04 5.1e3

Table 1. Summary of experimental datasets. The last two columns
respectively show REPR’s average run time for an 80% sample of
the dataset (on a 16-core workstation, in hh:mm:ss format) and the
average resulting number of RMA search nodes per RMA invo-
cation.

tolerance θ so that REPR terminated when

z1 ≤ max
{

0, E ·
(
|E[y]| − 0.1σ[y]

)}
+ 0.001,

where E[y] denotes the sample mean of the response vari-
able and σ[y] its sample standard deviation. We found this
rule of thumb to work well in pracice, but it likely merits
further study. We also chose C = 1 and E = 1. We used
δ = 0 for SERVO, YACHT, and MPG, and δ = 0.005 for
the remaining datasets.

With the fixed parameters given above, we tested REPR
and some competing regression procedures on ten differ-
ent randomly-chosen partitions of each dataset; each parti-
tion consists of 80% training data and 20% testing data.
The competing procedures are RuleFit, random forests,
LASSO, and classical linear regression. The penalty pa-
rameter in LASSO is the same as the value of C chosen for
REPR. To implement RuleFit and random forests, we used
their publicly available R packages. Table 2 shows the aver-
ages of the resulting mean square errors and Table 3 shows
their standard deviations. REPR has the smallest average
MSE for 5 of the 8 datasets and has the second smallest av-
erage MSE on the remaining 3 datasets, coming very close
to random forests on MPG. For the standard deviation of
the MSE, which we take as a general measure of predic-
tion stability, REPR has the lowest values for 6 of the 8
datasets. The box plots in Figures 3 and 4 visualize these
results in more detail for HEAT and MACHINE, respec-
tively. Figure 5 displays the average MSEs in a bar-chart
format, with the MSE of REPR normalized to 1.

Figures 6-9 give more detailed information for specific
datasets. Figure 6 and 7 respectively show how REPR’s
prediction MSEs for HEAT and CONCRETE evolve with
each iteration, with each data point averaged over the 10
different REPR runs; the horizontal lines indicate the aver-
age MSE level for the competing procedures. MSE gener-
ally declines as REPR adds rules, although some diminish-
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Method Dataset: SERVO CONCRETE MACHINE YACHT MPG COOL HEAT AIRFOIL
REPR 0.08228 0.00447 0.37128 0.00630 0.01380 0.00218 0.00220 0.00030
RuleFit 0.10053 0.00736 0.97250 0.00571 0.01430 0.00094 0.01063 0.00032
Random forests 0.24305 0.01348 0.55456 0.13343 0.01348 0.00302 0.00544 0.00083
Lasso 0.67362 0.00573 0.48776 0.74694 0.01981 0.01757 0.01694 0.00150
Linear regression 0.67723 0.00573 0.48776 0.74455 0.02073 0.01708 0.01581 0.00149

Table 2. Average MSE over the experimental datasets. The smallest value in each column is bolded.

Method Dataset: SERVO CONCRETE MACHINE YACHT MPG COOL HEAT AIRFOIL
REPR 0.03196 0.00220 0.14625 0.00186 0.00213 0.00091 0.00043 0.00006
RuleFit 0.05173 0.00188 0.65957 0.00287 0.00430 0.00007 0.01453 0.00011
Random forests 0.07554 0.00521 0.31717 0.04922 0.00403 0.00044 0.00055 0.00006
Lasso 0.15302 0.00255 0.24303 0.10380 0.00300 0.00270 0.00145 0.00010
Linear regression 0.15814 0.00255 0.24303 0.09806 0.00251 0.00251 0.00192 0.00010

Table 3. Standard deviation of MSE over the experimental datasets. The smallest value in each column is bolded.

ing returns are evident for CONCRETE. Interestingly, nei-
ther of these figures shows appreciable evidence of overfit-
ting by REPR, even when large numbers of rules are incor-
porated into the model. Figures 8 and 9 display testing-set
predictions for specific (arbitrarily chosen) partitions of the
MACHINE and CONCRETE datasets, respectively, with
the observations sorted by response value. REPR seems
to outperform the other methods in predicting extreme re-
sponse values, although it is somewhat worse than the other
methods at predicting non-extreme values for MACHINE.

The last two columns of Table 1 show, for a 16-core Xeon
E5-2660 workstation, REPR’s average total run time per
data partition and the average number of search node per
invocation of RMA. The longer runs could likely be accel-
erated by the application of more parallel processors.
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Figure 3. MSE box plots of for the HEAT data set.
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Figure 4. MSE box plots of for the MACHINE data set.

6. Conclusions and Future Research
The results presented here suggest that REPR has sig-
nificant potential as a regression tool, at least for small
datasets. Clearly, it should be tested on more datasets and
larger datasets.

Here, we have tested REPR using fixed values of most of
its parameters, and we expect we should be able to improve
its performance by using intelligent heuristics or cross-
validation procedures to select key parameters such as C
andE. Improved preprocessing may also prove helpful: ju-
dicious normalization of the input data (X, y) should assist
in finding good parameter choices, and we are also working
on more sophisticated discretization technique for prepro-
cessing the RMA solver input, as well as branch selection
heuristics that are more efficient for large `j .
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Figure 5. Comparison the average MSEs, with the MSE of REPR
normalized to 1. The random forest value for YACHT is trun-
cated.
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Figure 6. MSE as a function of iterations for the HEAT dataset.

It would be interesting to see how well REPR performs if
the pricing problems are solved less exactly. For example,
one could use various techniques for truncating the branch-
and-bound search, such as setting a limit on the number of
subproblems explored or loosening the conditions for prun-
ing unpromising subtrees. Or one could use, perhaps selec-
tively, some entirely heuristic procedure to identify rules to
add to the restricted master problem.

For problems with large numbers of observations m, it
is conceivable that solving the restricted master problems
could become a serial bottleneck in our current implemen-
tation strategy. If this phenomenon is observed in practice,
it could be worth investigating parallel solution strategies
for the restricted master.
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Figure 7. MSE as a function of iterations for the CONCRETE
dataset.
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Figure 8. Sorted predictions for the MACHINE data set.
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Figure 9. Sorted predictions for the CONCRETE data set.
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