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Abstract

We propose the first multistage intervention
framework that tackles fake news in social net-
works by combining reinforcement learning with
a point process network activity model. The
spread of fake news and mitigation events within
the network is modeled by a multivariate Hawkes
process with additional exogenous control terms.
By choosing a feature representation of states,
defining mitigation actions and constructing re-
ward functions to measure the effectiveness of
mitigation activities, we map the problem of fake
news mitigation into the reinforcement learn-
ing framework. We develop a policy iteration
method unique to the multivariate networked
point process, with the goal of optimizing the
actions for maximal total reward under budget
constraints. Our method shows promising per-
formance in real-time intervention experiments
on a Twitter network to mitigate a surrogate fake
news campaign, and outperforms alternatives on
synthetic datasets.

1. Introduction

The recent proliferation of malicious fake news in social
media has been a source of widespread concern. Given
that more than 62% of U.S. adults turn to social media for
news, with 18% doing so often, fake news can have poten-
tial real-world consequences on a large scale (Gottfried &
Shearer, 2016). For example, within the final three months
of the 2016 U.S. presidential election, news stories that fa-
vored either of the two nominees—later proved to be fake—
were shared over 37 million times on Facebook alone, and
over half of those who recalled seeing fake news stories
believed them (Allcott & Gentzkow, 2017). An analysis
by Buzzfeed News shows that the top 20 false election sto-
ries from hoax websites generated nearly 1.5 million more
user engagement activities on Facebook than the top 20 sto-
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ries from reputable major news outlets (Silverman, 2016).
Therefore, there is an urgent call to develop effective recti-
fying strategies to mitigate the impact of fake news.

Policies to counter fake news can be categorized by the
level of manual oversight and the aggressiveness of action
required. Aggressively acting on fake news has various
drawbacks. For example, Facebook’s strategy allows users
to report stories as potential fake news, sends these stories
to fact-checking organizations, and flags them as disputed
in users’ newsfeed (Mosseri, 2016). Such direct action on
the offending news requires a high degree of human over-
sight, which can be costly and slow and also may violate
civil rights. The report-and-flag mechanism is also open
to abuse by adversaries who maliciously report real news.
Given these disadvantages, we consider an alternative strat-
egy: optimizing the performance of real news propagation
over the network. Intuitively, we want people’s exposure to
real news to match their exposure to fake news.

We face several key modeling and computational issues.
For example, how to quantify the uncertainty of user ac-
tivities and news propagation within the network? How
to measure the effect of mitigation incentives and activi-
ties? Is it possible to steer the spontaneous user mitiga-
tion activities by an intervention strategy? To address these
questions, we model the temporal randomness of fake news
and mitigation events (“valid news”) as multivariate point
processes with self and mutual excitations, in which the
control incentivizes more spontaneous mitigation events
by contributing to the exogenous activity of campaigner
nodes. The influence of fake news and mitigation activities
is quantified using event exposure counts (i.e. the number
of times that a user is exposed to fake or real news posts
from other users whom she follows).

Our key contributions are as follows. We present the first
formulation of fake news mitigation as the problem of op-
timal point process intervention in a network. The goal is
to optimize the activity policy of a set of campaigner nodes
to mitigate a fake news process stemming from another set
of nodes. It creates opportunities for designing a variety
of objectives, e.g. minimizing the number of users who
see fake news but were not reached by real news. We give
the first derivation of second-order statistics of random ex-
posure counts in the non-stationary case, which is essen-
tial in policy evaluation and improvement. By defining a
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Figure 1. The framework of point process based intervention for countering fake news. (1-3) Offline learning of value function approx-
imation weight vector using LSTD from transition samples generated from model. (4-7) Real-time intervention loop that uses feature
representation of network state to choose optimal exogenous incentive for mitigator nodes.

state space for the network, formulating actions as exoge-
nous intensity, and defining reward functions, we map the
fake news mitigation problem to an optimal policy prob-
lem in a Markov decision process (MDP), which is solved
by model-based least-squares temporal difference learning
(LSTD) specific to the context of point processes. Further-
more, to the best of our knowledge, we are the first to con-
duct a real-time point process intervention experiment.
Related work. The emergence of social media as a promi-
nent news source in the past few years raises concomitant
concerns about the quality, truthfulness, and credibility of
information presented (Mitra et al., 2017). To reduce the
amount of labor-intensive manual fact-checking, there have
been research efforts devoted to building classifiers to de-
tect factuality of information, predicting credibility level of
posts, and detecting controversial information from inquiry
phrases (Mitra et al., 2017; Zeng et al., 2016; Zhao et al.,
2015). These works mainly focused on extracting linguis-
tic features from texts to determine the credibility of news
and posts. Our focus in this paper, however, is to design
an incentive strategy so that users can spontaneously take
action to mitigate a real-world fake news epidemic.

Steering user activities by adding external incentives to the
exogenous intensity of Hawkes processes was first consid-
ered in (Farajtabar et al., 2014). In (Farajtabar et al., 2016),
a multistage campaigning method to optimally distribute
incentive resources based on dynamic programming was
developed. In these previous works, objective functions
were designed using expected values of exposure counts
rather than the stochastic exposure process, which may re-
duce the accuracy of solutions. Furthermore, it faced the
demanding problem of computing the cost-to-go using the
Hawkes model, while we address this using linear function
approximation. For stationary Hawkes processes, second
order statistics was derived in (Bacry & Muzy, 2014a;b);

however, it is essential to compute both first and second
order statistics for Hawkes processes in the non-stationary
stages due to time sensitivity of the fake news mitigation
task, and we derive it for the first time in this paper. Recent
work has also applied methods in stochastic differential
equations to the context of point processes, to find the best
intensity for information guiding (Wang et al., 2016) and
achieving highest visibility (Zarezade et al., 2017). While
these works consider networks with only a single process,
our work focuses on optimizing a mitigation process with
respect to a second competing process. Finally, it’s notable
that our approach is related to but much more general than
the influence maximization problems (Kempe et al., 2003;
Bharathi et al., 2007) as it allows recurrent activity in social
networks (in contrast to binary infection states), a variety of
objectives (not only maximization), and budget constraints.

Reinforcement learning tackles the problem of finding
good policies for actions to take in MDP where exact so-
lutions are intractable, either due to size or lack of com-
plete knowledge. Large-scale policy evaluation and itera-
tion problems can be tackled by function approximation,
which reduces the solution dimension using feature vector
basis (Sutton & Barto, 1998). By adding control terms to a
multivariate Hawkes process model of random network ac-
tivities, fake news mitigation can be formulated as a policy
optimization problem in an MDP. To address the random-
ness of Hawkes processes, batch reinforcement learning us-
ing samples collected from the trajectory of a fixed behav-
ior policy can be applied (Antos et al., 2007). In particu-
lar, linear Least Squares Temporal Difference (LSTD) uses
a batch of samples to learn a linear approximation of the
value function under a policy with provable convergence
(Bradtke & Barto, 1996). This policy evaluation step al-
ternates with a model-based policy improvement step in a
policy iteration to arrive at successively improved policies.
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2. Preliminaries and Problem Statement
Multivariate Hawkes processes. Hawkes process is
a doubly stochastic point process with self-excitations,
meaning that past events increase the chance of arrivals of
new events (Hawkes, 1971), and has been extensively used
to model activities in social networks (Farajtabar et al.,
2015; Linderman & Adams, 2014; He et al., 2015; Rizoiu
et al.; Lee et al., 2016). Let t, be the time of the ¢-th event,
then the Hawkes process can be represented by the count-
ing process N (t) = >, -, h(t —t) that tracks the number
of events up to time ¢, where h(t) is the standard Heav-
iside function such that h(f) = 1if ¢ > 0 and = 0 if
t < 0. The conditional intensity function of a point process
is defined as the probability of observing an event in an in-
finitesimal window given the history. For Hawkes process
itis given by A(t) = p+ >, ., #(t — to). Here, u > 01is
the exogenous (base) intensity and ¢(t) is the Hawkes ker-
nel that describes how fast the excitement of a past event
decays. In this paper, we employ the standard (stationary)
exponential Hawkes kernel, i.e., ¢(t) = ae “'h(t) with
w > a > 0. In an n-dimensional multivariate Hawkes pro-
cess (MHP), there are n such processes N1 (t), ..., N,(t)
that can also mutually excite one another, and the con-
ditional intensity A(¢) = (Ai(?),..., )\n(t))T € RY is
given by A\(t) = p + fot ®(t — s)dN(s). Here, N(t) :=
(N1(8),..., Na(®)) | € N&, o := (1, ..., pin)7 € R,
and [q)(t)]” = (ZSij (t) = Oéije_Wth(t). We let H(t)
denote the filtration of N (t), generated by the o-algebra
of history {(t¢,i¢)|ty <t} of this point process, where
ip € {1,...,n} is the identity (node) of the ¢-th event.
Network activities. We model the activities of both fake
news and mitigation events as MHP in the network. Ba-
sically, MHP is a networked point process model with
dependent dimensions (nodes), and can capture the un-
derlying dynamics of networks and activities (Blundell
et al., 2012; Xu et al., 2016; Guo et al., 2015). Define
F(t) = (Fl(t),...,Fn(t))T € N7, where F;(t) counts
the number of times user ¢ shares a piece of news from
the fake campaign up to time ¢. Similarly, define M (t) =
(M (), .. .,Mn(t))T € Ny for the mitigation process.
Correspondingly, we have 2 intensity functions: A\ (¢) =
AM@), .., AM@#)T and AF(t) = (M(#),...,AE@)T
and two sets of exogenous intensities 1 and ;%"

Goal. Given that both F'(t) and M (t) are modeled by the
Hawkes processes, our goal is to find the optimal mitiga-
tion campaign by imposing interventions to users such that
the mitigation effect (rigorously defined in sec. 3.1) can be
maximized or equivalently the fake news be rectified under
budget constraints. To this end, we measure the influence
of fake news and mitigation activities using event expo-
sures, describe the mechanism of mitigation interventions,
and quantify the effect of interventions mathematically.

Event exposure. Event exposure is a quantitative measure
of campaign influence, and is represented as a counting
process, £(t) = (&1(t), ... ,En(t))T. Here, &;(t) records
the number of times user ¢ is exposed (she or one of her
neighbors performs an activity) to a campaign N (¢) by time
t. Let B be the adjacency matrix of the user network, i.e.,
bi; = 1 if user i follows user j. Assume b;; = 1 for all
i. Then the exposure process is given by £(t) = BN (¢).
We define F(t) = BF(t) and M(t) = BM (t) as the fake
news and mitigation processes, respectively.

Intervention. Suppose we can perform intervention by
incentivizing a subset of users in the k-th stage during
time [7x, Tk+1) for &k = 0,1,.... For simplicity we con-
sider uniform time duration 7411 — 7, = Ag for all &,
since generalization to nonuniform time durations is triv-
ial. In order to steer the mitigation activities to counter
the fake news (criteria given below) at these stages, we im-
pose an additional constant intervention u¥ > 0 to the ex-
ogenous intensity y; during time |7y, 75x+1) for each stage
k = 0,1,.... The mitigation activity intensity at the k-
th stage is A\M(t) = p+ uF + fot O(t — s)dM (s) for
t € [rk,7Tk+1). Note that the intervention itself exhibits
a stochastic nature: adding u} to j; is equivalent to in-
centivizing user % to increase her activity rate but it is still
uncertain when she will perform an activity, which appro-
priately mimics the randomness in the real world.

Reward function. For each stage k, z* (defined later) is
the state of the whole MDP that encodes all the information
from previous stages and u* is the current control imposed
at this stage. Let MJ(t;2%,u*) == 3, bi; f:k dM;(s)
be the number of times user 7 is exposed to the mitiga-
tion campaign by time ¢ € |7y, 7j+1) within stage k, then
the goal is to steer the expected total number of exposure
ME(t; 2% u*) using u¥, 5.t. the sum of reward functions
R(2*, u*) (rigorously defined in sec. 3.1) is maximized.

Problem statement. By observing the counting pro-
cess in previous stages (summarized in a sequence of z*)
and taking the future uncertainty into account, the con-
trol problem is to design a policy 7 such that the con-
trols «* = m(2*) can maximize the total discounted ob-
jective E[> 7 v*RF], where v € (0,1] is the discount
rate and RF is the observed reward at stage k. In addi-
tion, we may have constraints on the amount of control,
such as a budget constraint on the sum of all interventions
to users at each stage, or a cap over the amount of inten-
sity a user can handle. A feasible set or an action space
over which we find the best intervention is represented as
U :={ueR"u"c" < Ck,0<u<ak} Here, I is the
price per unit increase of exogenous intensity of user ¢ and
C. € Ry is the total budget at stage k. Also, o¥ is the cap
on the amount of activities of the user <.
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3. Proposed Method

In this section, we present the formulation of reward func-
tions in terms of event exposures of fake news and miti-
gation activities. Then we derive the key statistics of the
MHP required for reward function evaluation, followed by
the policy iteration scheme to find the optimal intervention.

3.1. Fake news mitigation

As we discussed above, the total reward of policy 7 is de-
fined by the value function

oo
VT(a") =E [Z +*R¥

k=0
for the initial state 2° of fake and mitigation processes,
where the observed reward R quantifies the effect of mit-
igation activities M (¢) in each stage and v € (0, 1] is the
discount rate. In this paper, we consider two types of re-
ward functions R(z, u):

(1)

1) Correlation Maximization: One possible way is to re-
quire correlation between mitigation exposures and fake
news exposures: people exposed more to fake news should
also be exposed more to the true news, to counter the fake
news campaign. Therefore, we can form the reward func-
tion R in stage k as follows:

1, . .
R(z" u?) = = MF (a5 2% 0P T F (ryp0; 2%, ub).
n

2) Difference Minimization: Suppose the goal is to mini-
mize the number of unmitigated fake news events, then we
can form a reward function R in stage k as the least squares
of unmitigated numbers:

-1 .
R(xk,uk) = 7“Mk(7k+1;xk,uk) —fk(TkH;xk,uk)‘

These are two sample realizations of the MHP-MDP based
intervention one can formulate, among many others. To
solve the policy optimization problem argmax_V™(z?)
for V™ defined in (1), we need to evaluate the value func-
tion V™ for any given policy m, which requires the first
and second order statistics (moments) of any multivariate
Hawkes processes N (t), as we derive next.

3.2. Second order statistics of non-stationary MHP

For an n-dim MHP N (¢) with standard exponential kernel
®(t), the following proposition provides closed-form solu-
tion of the mean intensity 7(¢) := E[A(¢)] for both constant
and time-varying exogenous intensity z(t):

Proposition 1 (Theorem 3 (Farajtabar et al., 2014; 2016)).
Let N(t) be an n-dimensional MHP defined in sec. 2
with exogenous intensity (1(t) and Hawkes kernel ®(t) =
Ae™“th(t), then the mean intensity n(t) is given by

n(t) = [e(A_”I)t +w(A—wl)™! (e(A_“’I)t — I)] wu(t).
(2)

Let A(t) = fot A(s) ds be the compensator of N(t), then
by Doob-Meyer’s decomposition theorem N (t) — A(t) is
a zero mean martingale. This implies that the first order
statistics E[ N (¢)] can be obtained by E[N (¢)] = E[A(¢)]
E[fy A(s)ds] = [ E[A(s)]ds = [y n(s) ds using eq. (2).

To evaluate the reward function R defined previously,
we need to derive second order statistics of multivariate
Hawkes process N (t) in its non-stationary stage. The fol-
lowing theorem states the key ingredients for the second
order statistics. The proof is provided in the appendix.

Theorem 2. Let N(t) be an n-dim MHP with exogenous

intensity p and Hawkes kernel ® defined in sec. 2, then the
second order statistics of N (t) for t,t' > 0 is given by

E [dN(t) dN(t’)T} = G, 1)TS(#) dtdt'+
S(t—)S()dtdt’ +n(t)n)" dtdt’

where 1)(t) = E[\(t)] is given in (2), X(t) = diag([n;(¢)])
is diagonal, and G is the unique solution of

G, t)y=GH', t)x®(t)+ Pt —t')—d6(t—t). 4
Moreover G(t',1) TS (') = S(t)G(t,t') for all t, ' > 0.

3)

Based on Theorem 2, we can compute second order statis-
tics such as E[V; (¢)N;(¢')] for all 4, j and ¢,t" > 0.

3.3. State Representation

Hawkes process is non-Markovian and one needs com-
plete knowledge of the history to characterize the entire
process. However, when the standard exponential kernel
®(t,s) = Ae “(=9)h(t — 5) is employed, the effect of
history up to time 73, on the future ¢ > 74 can be cleverly
summarized by one scalar per dimension (Simma & Jor-
dan, 2012; Farajtabar et al., 2016). For 1 < ¢ < n, define
yf = )\ffl(m) — uffl — i, (and yé = 0 by convention),
then the intensity due to events of all previous k stages can
be written as [ Ae=«("=*) dAN(s) = yFe (=) In
other words, y’€ is sufficient to encode the information of
activities in the past k stages that are relevant to future.
Note that we have two separate y%, and y% to track the dy-
namics of both mitigation and fake processes.

Also, in order to tackle objectives over multiple stages, we
add aggregated number of events at L previous A y-time
intervals over all dimensions. Define a vector z*¥ € R"

where zé“l_l)n_m» = :::l(i;lmf dN;(s) for1 < i < n

and 1 <[ < L. In other words, ZZ—l)m-i records the num-
ber of events of ¢-th dimension in the [-th interval of length
Ay prior to time 7. For example, choosing Ay = A7 and
setting . = 2 means that events from the two most recent
stages are counted. Similarly, we have two separate 2%, and
2% corresponding to the two processes. Now, the state vec-
tor 2% € R27E+27 is the concatenation of the above four
vectors oF = [yk s yk; 2k 2R,
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Algorithm 1 LSTD policy iteration in point processes

Algorithm 2 Real-time fake news mitigation

Input: set of samples S, feature v(+), discount
repeat
Initialize A™ = 0 and b™ = 0.
for each state x € S do
AT A7+ (@) () — yh(a’))T
b™ < b + (x)r”
end for
wT — (Aﬂ')flbﬂ'
for each state x € S do
7(z) + argmax{E[R(z, u)]| +YE[V™ (2')|u, w™]}
u

end for
until |Aw™| < 0.1
return w”™

3.4. Least Squares Temporal Difference
The optimal value function satisfies the Bellman equation:

V™ (x) = E[R(z, w(x))] + vE[V7 ()], 5)

where 7’ is the next state after taking action based on
policy m at state x. Least squares temporal difference
learning (LSTD) is a sample-efficient procedure for policy
evaluation, which subsequently facilitates policy improve-
ment. The value function is approximated by V7 (z) =
ZdD=1 wiq(x), where 1)q is the d-th feature of state x
and w]; is its coefficient for policy 7. This can be com-
pactly represented as V7 (z) = ¢ (x) T w™, where 1(z) =
(¢1(z),...,¥p(x))T. The following presents our choice
of features, and explains the policy evaluation and improve-
ment steps inspired by LSTD(0) (Sutton & Barto, 1998).

Features. The number of events in a few recent consecu-
tive intervals of point processes have been used as a reliable
feature to parameterize point processes (Parikh et al., 2012;
Qin & Shelton, 2015; Lian et al., 2015). Following their
work we take L prior intervals of length Ay for each di-
mension of the fake news process and record the number of
events in that period as one feature. wggl—l)n—i-i = 25—1)7z+i
forl < ¢ <mnand1l <[ < L. This will count for nL
features. Similarly we take nL features from the mitiga-
tion process. Finally, we add a last feature 1%, ;| = 1 as
the bias term. Therefore, ¥ = [2%,; 2%; 1] and the feature
space has dimension D = 2nL + 1.

Policy Evaluation. Substituting the approximation into the
Bellman equation, we have:

¢(z)"w™ = E[R(z,7(z))] + 1E[p(z") TJw™.  (6)

To find the best fit of w™ we have to consider all possible
x; however, since the state space is infinite-dimensional,
enumerating all states is impossible and we utilize a set S
of samples S = {z1,...,z5}.

Input: network A, learned w™, feature v(-), discount -y
repeat
Observe state = of the network activities
u = argmax, {E[R(z,a)] + vE[V™(2')|a, w™]}
Add u to base exogenous intensity p and generate mit-
igation event times {¢;} using point process model
Create posts at times {¢;} using campaigner accounts
until end of campaign

Let ¢(zs) = s € RP, E[y(a))] = ¢, € RP, and
rT = E[R(zs,m(zs))] € R. Then define matrices of
current features ¥ = [ ;...;9d]7T € RY*D and next

features ¥/ = [d)’lT; . ;w’g]T € R%*P | the rewards
™ = [rT,...,r5]T € R and the sample value func-
tions as v™ = [V™(21),...,V™(z5)]T € R Ap-

pendix C presents how we leverage the first and second
order statistics of Hawkes process to find E[R(z, )] and
E[V™(z")]. Given the above definition, the Bellman opti-
mality of eq. (6) can be written in matrix format:

0" = Vw™ =" 440w E T, @)

where 1™ is the Bellman optimality operator. A way to
find a good estimate is to force the approximate value func-
tion to be a fixed point of the optimality equation under
the Bellman operator, ie., T70™ ~ ©™. (Lagoudakis &
Parr, 2003). For that, the fixed point has to lie in the
space of approximate value functions, spanned by the ba-
sis functions W. o™ lies in that space by definition, but
T™9™ may have an orthogonal component and must be pro-
jected. This is achieved by the orthogonal projection oper-
ator (U(UTW)~1WT). Therefore the approximate value
function ©™ must be invariant under one application of the
Bellman operator 7™ followed by orthogonal projection:

0" = (T TO) e T (T, ®)

By substituting the linear approximation Yw™ = v™ into
the above equation and some manipulations, we get a
D x D linear systems of equations A"w”™ = b™, where
A™ =0T (U —~4¥') and b™ = ¥ T+7, and whose solution
is the fitted coefficients w™. It has been shown that the esti-
mated w™ converges to the best w* as the available number
of samples tends to infinity (Bradtke & Barto, 1996). Ap-
pendix B presents a detailed derivation.

Policy Improvement. The second part of the algorithm
implements policy improvement, i.e., getting an improved
policy 7’ via one-step look-ahead as follows:

7' (z) = argmax E[R(z, u) + vV (2)]. )

LSTD(0) alternates between the policy improvement and
policy evaluation iteratively until w™ converges (Bradtke
& Barto, 1996). Alg. 1 summarizes this procedure.
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Figure 2. Empirical and theoretical second order moments of a Hawkes process, E[dN;(¢) AN, (t')] for 4 random pairs (4, j) and ¢’ = 0

and varying ¢ from O to 2.

LSTD in Hawkes context. LSTD is particularly suitable
to the problem we are interested in. It learns the value
function V™ (x), and as such, policy improvement can be
challenging without knowing the model. Because of this,
methods that aim to learn the Q-function Q™ (z, u), such as
LSPI (Lagoudakis & Parr, 2003), are widely applied. The
downside of Q-function based methods is that they typi-
cally require more samples than learning the value func-
tion. Yet, in our setup, learning the value function is suffi-
cient, by writing the action-value function as Q™ (z,u) =
E[R(z,u)+ V™ ()], and observing that the learned model
of the multivariate Hawkes process enables analytical com-
putation of the expectation (see Appendix C for details):

E[V™(2")]
n L-—1
- P k—1 e k—1
- Z Z Win4i?M,(1-1)n+i T WnL+in+i?F,(1-1)n-ti
=1 [=1

n

+ Z wiB[25y 3] + wor i Bl2f ] + wp i,
i=1

1
E[R(z,u)] = ~E[},]" BTBE[z}], % correlation

1 T 1 T
E[R(z,u)] = —ﬁE[zﬂ BTBz]’i{]—ﬁE[zf% BB zk]

2
+ ZE[2%]" BTBE[2%]. % difference
n

We require much fewer samples to learn V™ (x) compared
to learning an approximate Q™ (x,u), and in particular
compared to LSPI we avoid explicitly discretizing the con-
tinuous action space from which the action w is chosen.

We further remark that the policy improvement step
finds the optimal action u at any state x by computing
argmax, E[R(z,u) + V™ (2)], where the action u to be
optimized appears in the calculation of both the expected
current reward and the expected value at the next state. This
optimization problem is convex under our choice of reward
functions and the form of the Hawkes conditional intensity.

After learning the optimal policy (implicit by w™ of the
linearly-approximated value function) we start at the real-
time intervention part. By observing the state we find the
optimal intervention intensity by simply solving eq. (9).
Alg. 2 summarizes the real-time mitigation procedure.

4. Experiments

We evaluate our fake news mitigation framework by both
simulated and real-time real-world experiments and show
our approach, Least-squares Temporal Difference (LTD),
significantly outperforms several state-of-the-art methods
and alternatives: CEC (an approximate dynamic program-
ming), OPL (an open loop optimization), CLS (a centrality
based measure), EXP (an exposure based centrality mea-
sure), and RND (the random policy). Their details are given
in appendix D. Before explaining the intervention results
we verify the theoretical second order statistics in Fig. 2
whose details can be found in appendix E. Furthermore, we
examine convergence properties and representative power
of linear features in Fig. 5 with the details postponed to
appendix F due to space limitations.

4.1. Synthetic Experiments

Setup. For all except the experiment over network size,
the networks were generated synthetically with n = 300
nodes. Endogenous intensity coefficients were set as a;; ~
U0, 0.5]. To mimic real world networks, sparsity was set to
0.02, i.e., each edge was kept with probability 0.02. The in-
fluence matrix was scaled appropriately such that the spec-
tral radius is a random number smaller than one to ensure
the stability of the process. The Hawkes kernel parameter
was set to w = 1, which means loosing roughly 63 % of in-
fluence after 1 unit of time (minutes, hours, etc). Both fake
news and mitigation processes obey these network settings.
Among n nodes, we assume 20 nodes create fake news and
another 20 nodes can be incentivized (via the exogenous
intensity) to spread true news. Each stage has length of
Ap = 1. The discount factor was set to v = 0.7. For deter-
mining features, we set L = 2 and we choose Ay = A for
simplicity. The upper bound for the intervention intensity
was chosen by «; ~ U][0,0.5]. The price of each person
was ¢ = 1, and the total budget at stage k was randomly
generated as Cj, ~ (n x U[0,0.5]). 1000 randomly sam-
pled states were used for the LSTD algorithm. To evaluate
a policy (learnt by an algorithm) we simulated the network
under that policy 50 times and take the discounted total re-
ward averaged over these 50 runs as an empirical valuation
of the policy. Furthermore, each single run was simulated
for 10 consecutive stages; from the eleventh stage onward,
the objectives contribute 0.02 of the total reward and can
be safely discarded. For all experiments, the above settings
are assumed unless it is explicitly mentioned otherwise.
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Figure 5. Convergence of linear approximated value function

Intervention results. Fig. 3 demonstrates the performance
of different methods. Performance of a policy is quanti-
fied as the ratio of the total reward achieved by running the
policy, over the total reward achieved by the random pol-
icy (RND). This allows us to compare the effectiveness of
the algorithms over a variety of settings. All the results
reported are averages over 10 runs with random networks
generated according to the above setup. Overall, it is clear
that LTD is almost consistently the best. It improves over
the random policy by roughly 20 percent. CEC is the sec-
ond best and shows the effectiveness of multi-stage and
closed loop intervention. This validates our intuition that
although CEC computes the reward from both fake news
and mitigation processes, the lack of explicit features cor-
responding to previous events in its value function prevents
it from learning the reason for the reward. Roughly, OPL
is the third best algorithm, due to its negligence of the state
and the actual events that occurred. Next, comes the EXP
algorithm followed by the CLS. The poor performance of
these (compared to others) shows that structural properties
are not sufficient to tackle the fake news mitigation prob-
lem. EXP is roughly better than CEC because it heuristi-
cally takes into account the fake news exposure.

Fig. 3-a shows the performance with respect to increasing

network size. The difference between alternative methods
and the gap between LTD and others increase with the net-
work size. Furthermore, the performance of all methods
show an increase over random policy when the problem
size gets larger. This illustrates the fact that efficient distri-
bution of budget matters more when confronted with prob-
lems of increasing complexity and size.

Fig. 3-b shows the performance with respect to increas-
ing the mitigation campaign size. Larger campaigns imply
greater flexibility of intervention, which can be exploited
by clever algorithms to achieve higher performance.

Fig. 3-c shows the performance with respect to increasing
sparsity of the network. Interestingly, the performance of
all the algorithms move towards to the random policy as
the network becomes denser. This can be understood by
considering a complete graph, so that no matter how and to
whom we distribute the mitigation budget, all the nodes are
exposed to the mitigation campaign almost equally. How-
ever, since real social networks are usually sparse, the ef-
fectiveness of the proposed method stands out.

Finally, Fig. 3-d shows the performance with respect to the
length of an stage. Longer stage lengths increase the po-
tential for a good policy to attain higher reward than a ran-
dom policy, and this is reflected by the sharp increase and
larger performance gap between LTD and others for longer
lengths. We observe the same patterns for the distance min-
imization in Fig. 4 problem and avoid repeating them.

4.2. Real experiments

In this section we explain our real-time intervention results.
To the best of our knowledge, we are the first to employ
a real-time experiment to evaluate a point process based
social network intervention strategy.
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Figure 6. Results of fake news mitigation on Twitter network

Setup. Using five Twitter accounts, each of which made
five posts on machine learning topics at random times per
day for a span of two months (Nov.-Dec. 2016), we ac-
cumulated a network of 1894 real users with 23407 di-
rected edges in total. We used this historical data to learn
the network parameters {c;;, '} using maximum likeli-
hood (similar to related work (Zhou et al., 2013; Fara-
jtabar et al., 2014)) with one hour as the time resolution
and the kernel decay parameter w set to 0.1. As illus-
trated in Fig.1 the optimal policy was learned using LSTD
and policy improvement. Then the real-time experiment
starts: Two of the accounts, interpreted as the source of
fake news, continued to behave using the same random-
ized policy as they did in the data collection stage, while
the posting times of the other three accounts were gener-
ated from (u1,us,u3)”, produced by our LTD strategy or
a competitor strategy. Each policy was run for 10 stages of
length 12 hours. Therefore, Ax = Ay = 12. Since both
fake news and mitigation accounts were tweeting random
posts on machine learning, we assume negligible bias in
the content that can confound the performance. At the end
of each stage, all retweets—by users within the network—
of the posts made during the two most recent stages were
used to construct the feature vector and compute the value
function, which was used to find the optimal intervention
for the next stage. The methods CEC and OPL belong to
the same category, and it has been shown that CEC outper-
forms OPL in (Farajtabar et al., 2016). Furthermore, EXP
and CLS also belong to similar families and our synthetic
experiments confirm the superiority of the former. So, to
save time in real interventions, we only test CEC from the
first and EXP from the second pair, and compare them with
the random policy (RND) and with our algorithm (LTD).

Real-time intervention results. Fig. 6 shows the perfor-
mance of our results compared to competitors. The results
show that our approach outperforms the other three base-
lines by a reasonable margin. As expected CEC is the sec-
ond best algorithm with a margin of 5 for the correlation
maximization objective. It translates to increase in amount
of correlation equal to 5, which is a noticeable amount.
Furthermore, in the difference minimization task, our ap-
proach reached around 7 in difference. This means that we
decreased the difference in exposure to the two processes to
less 2.6 per user, which is considerable improvement. For
both tasks, LTD made more mitigation posts over all day-
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Figure 7. Rank correlation for prediction

time phases than it did over all nighttime phases, whereas
the competitor strategies did the opposite. This could be
a reason for its better performance. One surprising fact is
that the number of retweets by users outside the network,
which was not used for our features, can exceed the num-
ber of retweets by users within the network. This is because
the “hashtag” feature on Twitter allows posts to be seen by
a much larger set of users, who do not necessarily follow
the source accounts. In addition to retweets, users can also
“like” a post, indicating that they were exposed to fake or
real news; while we measured this, we did not include it in
the reward. Future experiments can use these two observa-
tions to widen the experimental scope and more accurately
measure the effectiveness of a mitigation strategy. Despite
having these limitations, our experiment serves as a proof-
of-concept for the applicability of point process based in-
tervention in networks, and—to the best of our knowledge—
is the first to verify the superiority of a method in a real-
time, real-world intervention setting.

Prediction evaluation results. The previous part describes
the more interesting evaluation scheme of real-time inter-
vention in a social media platform. In this part, we used
historical real data to mimic this procedure. We extracted
12 full 10-stage trajectory of events from the 2-month ran-
dom policy historical data. For any of these 10 pairs, the
methods were evaluated according to how well they predict
the relative ordering among these 12 trajectories (with re-
spect to the objective function). To evaluate each method,
we created a sorted list of these 12 trajectories according
to increasing objective, and created a second list sorted
by increasing closeness to the intervention method. This
closeness is the mean squared error between the prescribed
intervention and actual intensity, which we inferred using
maximum likelihood. Then, by computing the rank corre-
lation of the two sorted lists, and repeating for each of the
five methods, we can find out how well they perform on the
prediction task. A better predictor is expected to be a better
mitigation strategy. Fig. 7 shows the performance.

A short discussion is presented in appendix G.
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