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Abstract
No-regret learning has emerged as a powerful
tool for solving extensive-form games. This was
facilitated by the counterfactual-regret minimiza-
tion (CFR) framework, which relies on the in-
stantiation of regret minimizers for simplexes at
each information set of the game. We use an
instantiation of the CFR framework to develop
algorithms for solving behaviorally-constrained
(and, as a special case, perturbed in the Selten
sense) extensive-form games, which allows us to
compute approximate Nash equilibrium refine-
ments. Nash equilibrium refinements are mo-
tivated by a major deficiency in Nash equilib-
rium: it provides virtually no guarantees on how
it will play in parts of the game tree that are
reached with zero probability. Refinements can
mend this issue, but have not been adopted in
practice, mostly due to a lack of scalable algo-
rithms. We show that, compared to standard al-
gorithms, our method finds solutions that have
substantially better refinement properties, while
enjoying a convergence rate that is comparable to
that of state-of-the-art algorithms for Nash equi-
librium computation both in theory and practice.

1. Introduction
No-regret learning algorithms have become a powerful
tool for solving large-scale zero-sum extensive-form games
(EFGs) (Bowling et al., 2015; Brown et al., 2015). This has
largely been facilitated by the counterfactual-regret min-
imization (CFR) algorithm (Zinkevich et al., 2007) and
its newer variants (Lanctot et al., 2009; Sandholm, 2010;
Bowling et al., 2015; Brown and Sandholm, 2015; Brown
et al., 2017; Brown and Sandholm, 2017). This framework
works by defining a notion of regret local to an information
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set, and instantiating a standard regret minimizer at each
information set in order to minimize local regret. Zinke-
vich et al. (2007) prove that this scheme of local regret
minimization leads to a Nash equilibrium in two-player
zero-sum extensive-form games of perfect recall. The
framework works with any regret-minimizing algorithm,
but in practice variants of the regret matching algorithm
have been dominant (Hart and Mas-Colell, 2000; Bowl-
ing et al., 2015; Brown and Sandholm, 2015; Brown et al.,
2015). We investigate the extension of regret-matching+

(RM+) (Tammelin et al., 2015), an even faster regret-
matching algorithm, to more general regret-minimization
problems over (finitely-generated) convex polytopes. We
use these results to instantiate RM+ for linearly constrained
simplexes, which in turn allows us to model and solve
behaviorally-constrained EFGs (which are EFGs with ad-
ditional linear constraints on the simplexes at each infor-
mation set). An important special case of this framework is
behaviorally-perturbed EFGs, which can be used to com-
pute Nash equilibrium refinements.1

Nash equilibrium refinements are motivated by major defi-
ciencies in the Nash equilibrium solution concept: Nash
equilibria provide no guarantees on performance in in-
formation sets that are reached with probability zero in
equilibrium, beyond not giving up more utility than the
value of the game. Thus, if an opponent makes a mistake,
Nash equilibrium is not guaranteed to capitalize on it, but
may instead give back up to all of that utility (Miltersen
and Sørensen, 2010). This is especially relevant when
Nash equilibria are used as a solution concept for play-
ing against imperfect opponents. Equilibrium refinements
ameliorate this issue by introducing further constraints on
behavior in information sets that are reached with proba-
bility zero. We will be interested in equilibrium concepts

1The idea of certain kinds of behavioral perturbations to CFR
has been suggested by Neller and Lanctot (2013). They suggest
that at every information set, with small probability ε, a player
will make a random move. However, they provide no results of
what the refinement consequences are (i.e., what kind of refine-
ment this would lead to), and it is unclear whether the proposed
method actually leads to refinements. In contrast, we establish a
connection to (approximate) EFPEs in this paper. Furthermore,
Neller and Lanctot cite Miltersen and Sørensen (2010) which is
about quasi-perfect equilibrium (where a player assumes she will
not make errors in the future), while the ε modeling of Neller and
Lanctot makes ε errors at future information sets as well.
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that achieve this through the notion of perturbations or
trembling hands (Selten, 1975). At each decision-point, a
player is assumed to tremble with some small probability,
and a Nash equilibrium is then computed in this perturbed
game. A refinement is then a limit point of the sequence of
Nash equilibria achieved as the probability of trembles is
taken to zero. In quasi-perfect equilibria, players take into
account only the trembles of their opponents (van Damme,
1984), whereas in an extensive-form perfect equilibrium
(EFPE), players take into account mistakes made both by
themselves and opponents (Selten, 1975).

We compare our algorithm for perturbed EFGs to state-of-
the-art large-scale zero-sum EFG-solving algorithms: the
standard CFR+ algorithm (Tammelin et al., 2015) and the
excessive gap technique (EGT) (Nesterov, 2005a) instanti-
ated with a state-of-the art smoothing function (Nesterov,
2005b; Hoda et al., 2010; Kroer et al., 2015; 2017b). We
find that our perturbed variant of CFR+ converges (in the
perturbed game) at the same rate as those algorithms con-
verge while ours leads to orders of magnitude more refined
strategies. Our algorithm also converges at the same rate
in the unperturbed game, almost until the point where the
imposed behavioral constraints necessarily prevent further
convergence.

2. Related work
No-regret algorithms have a long history in EFG solving.
Gordon (2006) developed the Lagrangian Hedging algo-
rithm, which can be used to find a Nash equilibrium in
EFGs. However, it suffers from a drawback: it requires
projection onto the strategy space at each iteration. Zinke-
vich et al. (2007) developed CFR, which avoids projection
while maintaining the same convergence rate. It has since
been extended in a number of ways. Lanctot et al. (2009)
showed how to incorporate sampling in CFR. Brown and
Sandholm (2015) showed how to achieve greater pruning
in CFR, thereby reducing the iteration costs. CFR+ is
a state-of-the-art variant of CFR (Tammelin et al., 2015),
which has vastly superior practical performance compared
to standard CFR, though it is not known to be stronger
from a theoretical perspective. Gordon et al. (2008) shows
how no-regret algorithms can also be utilized for comput-
ing extensive-form correlated equilibria in EFGs.

Polynomial-time algorithms have been proposed for com-
puting certain equilibrium refinements in two-player zero-
sum perfect-recall EFGs. Miltersen and Sørensen (2010)
develop a linear program (LP) for computing quasi-perfect
equilibria by choosing a sufficiently small perturbation to
realization plans. Farina and Gatti (2017) develop a similar
approach for EFPE computation, but rely on perturbations
to behavioral strategies of players. These approaches rely
on solving modified variants of the sequence-form LP for

computing Nash equilibrium (von Stengel, 1996) in EFGs.
These algorithms are of theoretical interest only and do not
work in practice. They require rational numbers of preci-
sion n log n bits, where n is the number of sequences in the
game. Another issue is that LP algorithms do not scale to
large EFGs even when just finding Nash equilibria, and in
practice CFR-based or EGT-based approaches are used to
achieve scalability. Kroer et al. (2017a) recently showed
how smoothing functions for first-order methods such as
EGT can be extended to games with perturbations.

Johanson et al. (2007) consider robust strategies that arise
from assuming that the opponent will randomize between
playing a Nash equilibrium and a strategy within some
model of opponent behavior. Johanson and Bowling
(2009) consider a similar model-biased Nash equilibrium
approach on games where an independent model is used at
each information set. Ganzfried and Sandholm (2011) de-
velop an opponent modeling approach that adds opponent-
modeled constraints across information sets. Our approach
provides a principled framework for solving model-biased
games that use general constraints on per-information set
behavioral strategies. Constraints across information sets
currently require the much less scalable LP approach.

3. Preliminaries
We briefly introduce several of the basic concepts we use
in the rest of the paper. We denote by R+ and R− the set
of non-negative and non-positive reals, respectively.

3.1. Normal-Form Games

Definition 1. A two-player zero-sum normal-form game
(for the rest of the paper, simply normal-form game or
NFG) is a tuple (A1, A2, u) where A1 represents the finite
set of actions that player 1 can play,A2 represents the finite
set of actions that player 2 can play, and u : A1×A2 → R
is the payoff function for player 1, mapping the pair of ac-
tions (a1, a2) of the players into the payoff for player 1. The
corresponding payoff for player 2 is given by −u(a1, a2).

Usually, the payoff function u is given as a matrix U , called
the payoff matrix of the game. The rows of U represent
the actions {a1,1, . . . , a1,n} = A1 of player 1, while the
columns of U represent the actions {a2,1, . . . , a2,m} = A2

of player 2. At the intersection of the i-th row and the j-th
column is the payoff for the action pair (a1,i, a2,j).
Definition 2. A mixed strategy π for player i ∈ {1, 2} is a
probability mass function over the set Ai.

When players play according to mixed strategies π1 and π2
respectively, the expected payoff is given by

Eπ1,π2(u) =
∑
a1∈A1

∑
a2∈A2

π1(a1)π2(a2)u(a1, a2). (1)
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3.2. Generalized Normal-Form Games

Telgarsky (2011) and Abernethy et al. (2011) propose a
generalization of the concept of normal-form games, which
conveniently allows us to remove all expectation operators,
making the notation lighter and more legible. In this gener-
alization, players select deterministic strategies from a con-
vex compact set. For a normal-form game, this set is the
space of all mixed strategies.
Definition 3. A two-player zero-sum generalized normal-
form game Γ = (X ,Y, u) is a tuple defined by a pair of
convex and compact action spaces X ⊆ Rn, Y ⊆ Rm,
one for each player, as well as a biaffine utility function
u : X ×Y → R. The utility function u(x, y) maps the pair
of actions (x, y) ∈ X × Y of the players into the payoff
for player 1, while the corresponding payoff for player 2 is
given by −u(x, y).
Observation 1. Any normal-form game can be mapped
to an instance of a generalized normal-form game. Given
Γ = (A1, A2, u), where |A1| = n and |A2| = m, the set of
all mixed strategies for player 1 forms the n-dimensional
simplex X = ∆n, while the set of all mixed strategies for
player 2 forms the m-dimensional simplex Y = ∆m. Let
U be the payoff matrix associated with Γ. Using Equa-
tion 1, we conclude that Γ is equivalent to the generalized
two-player zero-sum normal-form game Γ∗ = (X ,Y, u∗),
where u∗(x, y) = x>Uy for all (x, y) ∈ X × Y .

3.3. Extensive-Form Games

Definition 4. A two-player zero-sum extensive-form game
with imperfect information and perfect recall Γ is a tuple
(H,Z,A, P, fc, I1, I2, u) composed of:

• H: a finite set of possible sequences (or histories) of
actions, such that the empty sequence ∅ ∈ H , and
every prefix z of h in H is also in H .

• Z ⊆ H: the set of terminal histories, i.e. those se-
quences that are not a proper prefix of any sequence.

• A: a function mapping h ∈ H \ Z to the set of avail-
able actions at non-terminal history h.

• P : the player function, mapping each non-terminal
history h ∈ H \Z to {1, 2, c}, representing the player
who takes action after h. If P (h) = c, the player is
chance.

• fc: a function assigning to each h ∈ H \ Z such that
P (h) = c a probability mass function over A(h).

• Ii, for i ∈ {1, 2}: partition of {h ∈ H : P (h) = i}
with the property that A(h) = A(h′) for each h, h′

in the same set of the partition. For notational conve-
nience, we will writeA(I) to meanA(h) for any of the
h ∈ I , where I ∈ Ii. Ii is the information partition of
player i, while the sets in Ii are called the information
sets of player i.

• u: utility function mapping z ∈ Z to the utility (a
real number) gained by player 1 when the history is
reached. The corresponding utility for player 2 is
given by −u(z).

We further assume that all players can recall their previous
actions and the corresponding information sets.

In the rest of the paper, we will use the more relaxed term
extensive-form game, or EFG, to mean a two-player zero-
sum extensive-form game with imperfect information and
perfect recall.
Observation 2. Extensive-form games can be represented
as generalized NFGs, for example, via the normal form rep-
resentation or sequence form representation (Romanovskii,
1962; Koller et al., 1996; von Stengel, 1996).

3.4. Regret and Regret Minimization

Suppose there exists an iterative algorithm which, at each
step t = 1, . . . , T , computes a strategy xt ∈ X for player
1, and plays a (generalized) normal-form game (X ,Y, u)
against player 2 using such strategy. Let yt be the strategy
used by player 2 at step t. The average external regret of
player 1 up to step T against action x̂ ∈ X is

R̄T1 (x̂) =
1

T

T∑
t=1

u(x̂, yt)− u(xt, yt).

The case for player 2 is symmetrical. A regret-minimizing
scheme is a function that assigns, for each sequence of
past actions x1, y1, . . . , xt−1, yt−1, an action xt such that
lim supT→∞maxx̂∈X R̄T1 (x̂) ≤ 0.

Regret-matching (RM) (Hart and Mas-Colell, 2000) is a
regret-minimizing scheme for normal-form games, based
on Blackwell’s approachability theorem (Blackwell, 1956).
The following theorem, a proof of which is given by Cesa-
Bianchi and Lugosi (2006), characterizes the convergence
rate of RM.
Theorem 1. Given a normal-form game (A1, A2, u), the
maximum average external regret for player 1 at iteration
T , when player 1 plays according to the regret-matching
algorithm, is

max
x̂

R̄T1 (x̂) ≤ γ
√
|A1|√
T

,

where γ .
= maxx,y u(x, y)−minx,y u(x, y).

Regret-matching+ is an extension of RM, and converges
significantly faster in practice. Tammelin et al. (2015;
Lemma 2) proved that the convergence rate of RM+ is the
same as that of RM above.

3.5. Nash Equilibria and Refinements

We now review the needed solution concepts from game
theory. We mostly focus on generalized normal-form
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games, allowing a compact presentation of concepts
pertaining both normal-form games and extensive-form
games.

Definition 5 (Approximate best response). Given a gener-
alized normal-form game (X ,Y, u) and a strategy y ∈ Y ,
we say that x ∈ X is an ε-best response to y for player 1 if
u(x, y) + ε ≥ u(x̂, y) for all x̂ ∈ X . Symmetrically, given
x ∈ X , we say that y ∈ Y is an ε-best response to x for
player 2 if −u(x, y) + ε ≥ −u(x, ŷ) for all ŷ ∈ Y .

Definition 6 (Approximate Nash equilibrium). Given a
generalized normal-form game (X ,Y, u), the strategy pair
(x, y) ∈ X × Y is a ε-Nash equilibrium for the game if x
is an ε-best response to y for player 1, and y is an ε-best
response to x for player 2.

Definition 7 (Nash equilibrium). Given a generalized
normal-form game (X ,Y, u), a Nash equilibrium for the
game is a 0-Nash equilibrium.

There exists a well-known relationship between regret and
approximate Nash equilibria (Definition 6), as summarized
in the next theorem.

Theorem 2. In a zero-sum game, if the average external
regrets of the players up to step T are such that

R̄T1 (x̂) ≤ ε1, R̄T2 (ŷ) ≤ ε2
for all actions x̂ ∈ X , ŷ ∈ Y , then the strategy pair

(x̄T , ȳT )
.
=

(
1

T

T∑
i=1

xi,
1

T

T∑
i=1

yi

)
∈ X × Y

is an (ε1 + ε2)-Nash equilibrium.

Theorem 2 basically says that if there exists an iterative al-
gorithm able to progressively propose strategies so that the
maximum average external regret go to zero, then recover-
ing a Nash equilibrium is straightforward, and just a matter
of averaging the individual strategies proposed.

We now turn to the class of perturbed games (Selten, 1975).
Intuitively, a perturbation restricts the set of playable strate-
gies by enforcing a lower bound on the probability of play-
ing each action. We recall the definition and some of the
properties of game perturbations, starting from the normal-
form case. We focus on player 1, but remark that the same
definitions hold symmetrically for player 2 as well.

Definition 8. Let Γ = (A1, A2, u) be an NFG and let
Γ∗ = (∆|A1|,∆|A2|, u

∗) be its generalized NFG repre-
sentation (see Observation 1). A perturbation is a func-
tion p : A1 ∪ A2 → R+ such that

∑
a∈A1

p(a) < 1 and∑
a∈A2

p(a) < 1. The corresponding perturbed NFG Γp is
the generalized NFG where each action a must be played
with probability at least p(a). Formally, Γp = (X̃p, Ỹp, u∗)
where X̃p =

{
x ∈ ∆|A1| : xa ≥ p(a)∀a ∈ A1

}
. Ỹp is de-

fined analogously.

In the case of extensive-form games, a perturbation for
player 1 assigns a lower-bound on each action playable by
the player. More precisely:
Definition 9. Let Γ = (H,Z,A, P, fc, I1, I2, u) be an
extensive-form game. A perturbation is a function p map-
ping each pair (I, a) where I ∈ I1 ∪ I2 and a ∈ A(I) to a
non-negative real, such that∑

a∈A(I)

p(I, a) < 1 ∀ I ∈ I1 ∪ I2.

The corresponding perturbed EFG Γp is the analogous
game where each action a at each information set I has
to be played with probability at least p(I, a).

Perturbations play an important role in equilibrium refine-
ment, as they form the basis for the concept of equilibrium
perfection (Selten, 1975). In this paper we only focus on
the case of extensive-form perfect equilibria (EFPEs).
Definition 10. A strategy pair (x, y) ∈ X ×Y is an EFPE
of Γ if it is a limit point of a sequence {(xp, yp)}p→0 where
(xp, yp) is a Nash equilibrium of the perturbed game Γp.

Intuitively, an EFPE is an equilibrium refinement that takes
into account an imperfect ability to deterministically com-
mit to a single action.

4. Generalized Normal-Form Games over
Finitely-Generated Convex Polytopes

In this section, we show how to adapt a regret-minimization
algorithm to handle generalized normal-form games played
on finitely-generated convex polytopes. The key insight
is that when the action space is a finitely-generated con-
vex polytope, the generalized game can be cast back
as a normal-form game, i.e. a generalized normal-form
game played over simplexes, and “solved” by a regret-
minimization algorithm; subsequently, the solution for the
normal-form game gets mapped back into the polytope.
This is achieved by constructing new simplex action spaces
for the players, where each point in a simplex denotes a
convex combination of weights on the vertices of that play-
ers’ finitely-generated convex polytopal action space.
Theorem 3. Let Γ = (X ,Y, u) be a generalized normal-
form game played on the finitely-generated convex poly-
topes X and Y . There exists a regret-minimizing scheme
for player 1 in Γ.

Proof. Let {b1, . . . , bn} be a convex basis for X , and
{c1, . . . , cm} be a convex basis for Y; also, let B = (b1 |
· · · | bn) and C = (c1 | · · · | cm) be the basis matrices for
X and Y , respectively. We construct a generalized normal-
form game Γ∗ = (∆n,∆m, u

∗), where

u∗(x, y)
.
= u(Bx,Cy)
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for all x ∈ ∆n, y ∈ ∆m. Of course Bx ∈ X , Cy ∈ Y
for all x and y, so the definition is valid. Let f∗ be any of
regret-minimizing schemes for normal-form games (e.g.,
RM or RM+). We construct a regret-minimizing scheme f
for Γ such that, at each iteration t = 1, 2, . . . ,

f(x1, y1, . . . , xt−1, yt−1) = Bf∗(x∗1, y
∗
1 , . . . , x

∗
t−1, y

∗
t−1),

where x∗, y∗ denotes the coordinates of x, y with respect to
the basis of X ,Y , respectively; note that this definition is
well-defined since the coordinates are guaranteed to belong
to ∆n,∆m

2. The regret induced by this scheme is

R̄T1 (x̂) =
1

T

T∑
t=1

u(x̂, yt)− u(xt, yt)

=
1

T

T∑
t=1

u∗(x̂∗, y∗t )− u∗(x∗t , y∗t ).

Notice that the last expression is exactly the average re-
gret for player 1 up to iteration T against action x̂∗ in
Γ∗. Since f∗ is a regret-minimizing scheme, the aver-
age regret against any action converges to zero, mean-
ing that lim supT→∞ R̄T1 (x̂) ≤ 0 for each x̂, i.e.
lim supT→∞maxx̂∈X R̄T1 (x̂) ≤ 0. This proves that f is a
regret-minimizing scheme for Γ, concluding the proof.

Another way to think about the construction above is that at
each iteration, we compute the regret for not playing each
of the “strategies” forming the vertices of the polytope, and
updating the next strategy by taking a convex combination
of the vertices, in a way proportional to the regret against
them.

Algorithm 1 represents an instantiation of the construc-
tion given in the proof of Theorem 3, where the regret-
minimizing scheme for the normal-form game was cho-
sen to be RM+. A careful analysis of the construction
also reveals that the convergence bound for RM+ carries
over, as expressed by Theorem 4. At time t, RM+ projects
the cumulative regret rt−1 onto the non-negative orthant
Rn+; the projection is equal to the vector [rt−1]+, where
[a]+i

.
= max{0, ai}.

Theorem 4. Given a generalized normal-form game
(X ,Y, u) with finitely generated X and Y , the maximum
average external regret for player 1 at iteration T , when
player 1 plays according to Algorithm 1, is bounded by

max
x̂∈X

R̄T1 (x̂) ≤ γ
√
|X |√
T

where γ .
= maxx,y u(x, y) − minx,y u(x, y), and |X | de-

notes the number of vertices of X .
2Passage to coordinates might not be unique. In this case, any

coordinate vector will do, as long as the choice is deterministic.

Algorithm 1 RM+ algorithm for generalized normal-form
games played over finitely-generated convex polytopes.

1: procedure REGRET-MATCHING+(Γ)
. Γ = (X ,Y, u), and B is a fixed convex basis for X
. note: this reflects the point of view of player 1

2: r0 ← (0, . . . , 0)> ∈ Rn
3: x̄← (0, . . . , 0)> ∈ Rn
4: for t = 1, 2, 3, . . . do
5: if rt−1 ∈ Rn− then
6: xt ← any action ∈ X̃p
7: else

8: Λt−1 ←
n∑
i=1

[rt−1]+i

9: xt ← B
[rt−1]+

Λt−1
10: play action xt
11: observe yt ∈ Y played by opponent

12: rt ←

rt−1 +

u(b1, yt)− u(xt, yt)
...

u(bn, yt)− u(xt, yt)



+

13: x̄← t− 1

t
x̄+

1

t
xt

. x̄ contains the average strategy for player 1

5. Behavioral Constraints and Perturbations
Behavioral constraint are linear constraints on the sim-
plexes at each information set. In order to obtain a regret
minimizer for a behaviorally-constrained EFG, we could
try to cast the game as a generalized NFG by means of
the normal-form or sequence form representation (see Ob-
servation 2). However, the number of vertices of this rep-
resentation is exponential, and therefore it does not work
well with Theorem 4. Counterfactual Regret (CFR, Zinke-
vich et al. 2007) solves this problem, by defining a regret-
minimizing scheme that runs in polynomial time in the size
of the game. Intuitively, CFR minimizes a variant of in-
stantaneous regret, called immediate counterfactual regret,
at each information set separately, and later combines the
strategies computed at each information set. It requires
simplex regret minimizers for each information set. If we
have a finite number of them, each information set can be
modeled as a finitely-generated convex polytope. We can
then use Theorem 4 to get regret minimizers for each infor-
mation set. Perturbations can be handled as a special case.

Theorem 5 below shows that CFR+ instantiated with such
regret minimizers for each behaviorally-constrained infor-
mation set converges to an equilibrium of the constrained
EFG. For this approach to be practical, we need the set
of vertices for each information set to be of manageable
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size, as reflected in the dependence on maxI∈I
√
|QI | in

Theorem 5, where |QI | is the number of vertices in the
behaviorally-constrained simplex at information set I .

Theorem 5. Let (H,Z,A, P, fc, I1, I2, u) be an
extensive-form game; let QI ⊆ ∆|A(I)| represent the
behaviorally-constrained strategy space at information set
I , for all I ∈ I1 ∪ I2. The maximum average external
regret for player 1 in the constrained game at iteration T ,
when player 1 plays according to CFR+, is bounded by

R̄T1 ≤ γ|I1|
√

maxI∈I1 |QI |√
T

,

where γ .
= maxx,y u(x, y)−minx,y u(x, y).

6. Perturbed Normal-Form Games
Section 4 established that, in general, the problem of find-
ing an approximate Nash equilibrium for player 1 in the
generalized normal-form game Γ = (X ,Y, u), where X is
a convex polytope generated by n vectors, can be solved
via regret-matching.

We now specialize this result for the specific case of per-
turbed normal-form games. The following holds:

Proposition 6. Let Γ = (A1, A2, u) be a normal-form
game, where A1 = {a1, . . . , an}, and let p be a perturba-
tion for player 1. Let Γp = (X̃p, Ỹp, u∗) be the generalized
normal-form game corresponding to the perturbation (Def-
inition 8). Then the perturbed action space X̃p is a finitely
generated convex polytope of dimension n, a basis of which
is given by the columns of the following invertible matrix:

Bp
.
=


τp + p(a1) p(a1) · · · p(a1)
p(a2) τp + p(a2) · · · p(a2)

...
...

. . .
...

p(an) p(an) · · · τp + p(an)


where τp

.
= 1− p(a1)− · · · − p(an).

This means that Algorithm 1 is applicable and provides a
regret-minimizing scheme. We remark that when comput-
ing the instantaneous regrets (Algorithm 1, Line 12), it is
important to remember these values have to be computed
against the basis {b1, . . . , bn} of X̃p. However, comput-
ing the (expected) utility of the game when player 1 plays
according to a mixed strategy is usually more expensive
than the same task when player 1 plays a deterministic ac-
tion. For this reason, we express the instantaneous regret
calculation against {b1, . . . , bn} in terms of instantaneous
regrets against the pure actions {e1, . . . , en} in the unper-
turbed game. In particular, by using the fact that the utility

function is biaffine, we can write, for each i ∈ {1, . . . , n},

u(bi, yt) = u

τpei +

n∑
j=1

p(aj)ej , yt


= τpu(ei, yt) +

n∑
j=1

p(aj)u(ej , yt),

so that, by introducing φt,i
.
= u(ei, ut)− u(xt, yt) and the

corresponding vector φt
.
= (φt,1, . . . , φt,n)>, we have

rt = rt−1 + τpφt + 1

p(a1)
...

p(an)


>

φt.

This allows us to compute the regret update in terms of
the instantaneous regret against {e1, . . . , en} in the unper-
turbed game, without introducing any overhead from an
asymptotic point of view.

The maximum average external regret for player 1 at itera-
tion T is given by Theorem 4; in this case |X̃p| = |A1|.

7. Perturbed Extensive-Form Games
As discussed in Section 5, it is possible to use CFR in con-
junction with any regret-minimizing scheme for general-
ized NFGs, in order to define a regret-minimizing scheme
able to support any behaviorally-perturbed EFG (thus in-
cluding the restricted case of perturbed EFGs). In Algo-
rithm 2, we propose an implementation of CFR+, i.e. CFR
instantiated with the RM+ algorithm able to handle per-
turbed EFGs. Algorithm 2 assumes that we are given a
perturbation p of the extensive-form game, X Ip denotes the
perturbed simplex for information set I , and τp(I) is as in
Proposition 6.

The following theorem characterizes the convergence guar-
antee of the proposed algorithm.
Theorem 7. Let (H,Z,A, P, fc, I1, I2, u) be an exten-
sive-form game; let p be the perturbation applied to the
game. The maximum average external regret for player 1
in the perturbed game at iteration T , when player 1 plays
according to Algorithm 2, is bounded by

R̄T1 ≤ γ|I1|
√

maxI∈I1 |A(I)|√
T

,

where γ .
= maxx,y u(x, y)−minx,y u(x, y).

Proof. Follows as a corollary of Theorem 5.

Notice that the bound provided by Theorem 5 is the
same provided by the original CFR algorithm proposed
by Zinkevich et al. (2007). In other words, our modifica-
tion does not impair the convergence and speed guarantees
given by the original algorithm.
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Algorithm 2 Regret minimization algorithm for perturbed
extensive-form games.

1: procedure REGRET-MATCH+-INFOSET(I, t)
. we assume A(I) = {a1, . . . , an}.

2: if rIt−1 ∈ Rn− then
3: xIt ← any action ∈ X̃ Ip
4: else

5: ΛI ←
n∑
i=1

[
rIt−1

]+
i

6: xIt ←

p(I, a1)
...

p(I, an)

+ τp(I)

[
rIt−1

]+
ΛI

1: procedure TRAVERSE(h, i, t, π1, π2)
. assume h belongs to information set I

2: if h ∈ Z then
3: return u(h)

4: if P (h) = c then . chance node
5: sample a ∼ fc(h)
6: return TRAVERSE(ha, t, π1, π2)
7: else if P (h) = 2 then

8: vIt ←

TRAVERSE(ha1, t, π1, y
I
t,1π2)

...
TRAVERSE(han, t, π1, y

I
t,nπ2)


9: else . player 1’s turn

10: REGRET-MATCH-INFOSET(I, t)

11: vIt ←

TRAVERSE(ha1, t, x
I
t,1π1, π2)

...
TRAVERSE(han, t, x

I
t,nπ1, π2)


12: v̄ ← (xIt )

>vIt
13: φIt ← π2(vIt − 1 v̄)

14: rIt ←

rIt−1 + τp(I)φIt + 1

p(I, a1)
...

p(I, an)


>

φIt


+

15: x̄I ← x̄I + π1x
I
t

16: return v̄
1: procedure CFR+(Γ) . Γ = (H,Z,A, P, fc, I1, I2, u)

2: for all I ∈ I1 do
3: rI0 ← (0, . . . , 0)> ∈ R|A(I)|

4: x̄I ← (0, . . . , 0)> ∈ R|A(I)|

5: for t = 1, 2, 3, . . . do
6: play according to strategy xt
7: observe strategy yt played by opponent
8: TRAVERSE(∅, t, 1, 1)
9: for all I ∈ I1 do

10: x̄I ←
(
x̄I/
∑|A(I)|
i=1 x̄Ii

)
. x̄ contains the average strategy for player 1.

8. Experimental Evaluation
We conducted experiments to investigate the practical per-
formance of our perturbed-regret-minimization approach
when used to instantiate the CFR and CFR+ algorithms for
computing approximate EFPE in EFGs. We compare these
algorithms to state-of-the-art Nash-equilibrium-finding al-
gorithms: EGT (Nesterov, 2005a) on an unperturbed poly-
tope using the state-of-the-art smoothing technique by
Kroer et. al. (Kroer et al., 2017b), CFR (Zinkevich et
al., 2007) and CFR+ (Tammelin et al., 2015). We con-
ducted the experiments on Leduc hold’em poker (Southey
et al., 2005), a widely-used benchmark in the imperfect-
information game-solving community. In our variant,
Leduc k, the deck consists of k pairs of cards 1 . . . k, for
a total deck size of 2k. We experiment on the standard
Leduc game where k = 3 and a larger game where k = 5.
Each player initially pays one chip to the pot, and is dealt
a single private card. After a round of betting, a com-
munity card is dealt face up. After a subsequent round
of betting, if neither player has folded, both players re-
veal their private cards. If either player pairs their card
with the community card they win the pot. Otherwise,
the player with the highest private card wins. In the event
that both players have the same private card, they draw and
split the pot. We consider k ∈ {3, 5}. We test our ap-
proach on games subject to different uniform perturbations
p(I, a) = ξ for all information sets I and actions a ∈ A(I),
for ξ ∈ {0.1, 0.05, 0.01, 0.005, 0.001}.
Figure 1 reports on convergence to Nash equilibrium. The
x-axis shows the number of tree traversals performed. We
use tree traversals rather than iterations because EGT re-
quires more tree traversals than CFR+ per iteration. The
y-axis shows the sum of player regrets in the full (unper-
turbed) game. For both Leduc 3 and 5, we find that the
ξ perturbations have only a small effect on overall conver-
gence rate until convergence within the perturbed polytope,
at which point the regret in the unperturbed game stops
decreasing, as expected. Until bottoming out, the conver-
gence is almost identical for all CFR+ algorithms. This
shows that our approach can be utilized in practice: there
is no substantial loss of convergence rate. Later in the run
once the perturbed algorithms have bottomed out, there is a
tradeoff between exploitability in the full game and refine-
ment (i.e., better performance in low-probability informa-
tion sets).

The second set of experiments, Figure 2, investigates the
improvement that our perturbation approach achieves com-
pared to standard Nash equilibrium solutions in terms of
equilibrium refinement. Our measure of refinement is the
maximum regret at any information set, conditioned on
reaching that information set. As discussed, convergence
to a Nash Equilibrium does not guarantee that this mea-
sure goes to zero. Again, the x-axis shows the number
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Figure 1. Regret in Leduc 3 and Leduc 5 as a function of the num-
ber of iterations for EGT and CFR+ with various ξ perturbations
(denoted in parentheses). Both axes are on a log scale.

of tree traversals performed. The y-axis shows the max-
imum regret at any individual information set. Both un-
perturbed CFR+ and EGT perform badly in both games
with respect to this measure of refinement. In Leduc 5,
both have maximum regret two orders of magnitude worse
than the perturbed approach. In Leduc 3, EGT still does as
poorly. CFR+ does slightly better, but is still worse than
our stronger refinements by more than an order of magni-
tude. The maximum regret one can possibly cause in an
information set in either Leduc game is 23, so CFR+ and
unperturbed EGT also do poorly in that sense.

In contrast to this, we find that our ξ-perturbed solution
concepts converge to a strategy with low regret at every in-
formation set. The choice of ξ is important: for ξ = 0.001,
the smallest perturbation, we see that it takes a long time to
converge at low-probability information sets, whereas we
converge reasonably quickly for ξ = 0.01 or ξ = 0.005; for
ξ = 0.1 and ξ = 0.05 the perturbations are too large, and
we end up converging with relatively high regret (due to
being forced to play every action with probability ξ). Thus,
within this set of experiments, ξ ∈ [0.005, 0.01] seems to
be the ideal amount of perturbation.

9. Discussion
We extended the RM and RM+ regret minimization al-
gorithms to finitely-generated convex polytopes, and spe-
cialized our results to linearly-constrained simplexes and
behaviorally-perturbed EFGs. We then showed how this
allows us to compute an approximate EFPE. Our experi-
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Figure 2. Maximum regret at any individual information set in
Leduc 3 and Leduc 5, as a function of the number of iterations,
for standard EGT as well as with various ξ perturbations (denoted
EGT(ξ)) and CFR+. The y-axis is on a log scale.

ments showed that this approach leads to much stronger
strategies for information sets reached with low probability,
while maintaining the strong convergence rate of CFR+.

Our experiments raise an interesting question. Across both
games, we see that the maximum information set regret
goes down much faster for larger amounts of perturbation,
but then it bottoms out earlier than for smaller perturbations
(as expected). To get the best of both large and small per-
turbations, it may be possible to decrease the perturbations
over time, leading to faster convergence rate, while never
bottoming out. However, this has a number of challenges
associated with it. Most importantly, we need a variant of
RM or RM+ that can handle a slowly expanding feasible
set within the simplex. This would also require decreas-
ing the perturbations at the correct rate; if decreased too
quickly, it is unlikely that we will converge to a refinement,
and if decreased too slowly, we might still bottom out.

The CFR algorithms have been shown to work well with a
number of other techniques, notably sampling (Lanctot et
al., 2009) and abstraction (Lanctot et al., 2012; Kroer and
Sandholm, 2016). It would be both theoretically and prac-
tically interesting to see how well our refinement approach
works in conjunction with these techniques.
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