
Coresets for Vector Summarization
with Applications to Network Graphs

Dan Feldman 1 Sedat Ozer 2 Daniela Rus 2

Abstract
We provide a deterministic data summarization
algorithm that approximates the mean p̄ =
1
n

∑
p∈P p of a set P of n vectors in Rd, by a

weighted mean p̃ of a subset of O(1/ε) vectors,
i.e., independent of both n and d. We prove that
the squared Euclidean distance between p̄ and p̃
is at most ε multiplied by the variance of P . We
use this algorithm to maintain an approximated
sum of vectors from an unbounded stream, us-
ing memory that is independent of d, and loga-
rithmic in the n vectors seen so far. Our main
application is to extract and represent in a com-
pact way friend groups and activity summaries
of users from underlying data exchanges. For ex-
ample, in the case of mobile networks, we can
use GPS traces to identify meetings; in the case
of social networks, we can use information ex-
change to identify friend groups. Our algorithm
provably identifies the Heavy Hitter entries in a
proximity (adjacency) matrix. The Heavy Hitters
can be used to extract and represent in a com-
pact way friend groups and activity summaries of
users from underlying data exchanges. We eval-
uate the algorithm on several large data sets.

1. Introduction
The wide-spread use of smart phones, wearable devices,
and social media creates a vast space of digital footprints
for people, which include location information from GPS
traces, phone call history, social media postings, etc. This
is an ever-growing wealth of data that can be used to iden-
tify social structures and predict activity patterns. We wish
to extract the underlying social network of a group of mo-
bile users given data available about them (e.g. GPS traces,
phone call history, news articles, etc.) in order to identify
and predict their various activities such as meetings, friend

1University of Haifa, Israel, 2CSAIL, MIT. Correspondence
to: Dan Feldman <dannyf.post@gmail.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

groups, gathering places, collective activity patterns, etc.
There are several key challenges to achieve these capabil-
ities. First, the data is huge so we need efficient methods
for processing and representing the data. Second, the data
is multi-modal heterogeneous. This presents challenges in
data processing and representation, but also opportunities
to extract correlations that may not be visible in a single
data source. Third, the data is often noisy.

We propose an approach based on coresets to extract under-
lying connectivity information while performing data sum-
marization for a given a large data set. We focus our intu-
ition examples and evaluations on social networks because
of their intuitive nature and access to data sets, although
the method is general and applies to networks of informa-
tion in general. Our approach works on streaming datasets
to represent the data in a compact (sparse) way. Our coreset
algorithm gets a stream of vectors and approximates their
sum using small memory. Essentially, a coreset C is a sig-
nificantly smaller portion (a scaled subset) of the original
and large set D of vectors. Given D and the algorithm A,
where running algorithm A on D is intractable due to lack
of memory, the task-specific coreset algorithm efficiently
reduces the data set D to a coreset C so that running the al-
gorithm A on C requires a low amount of memory and the
result is provable approximately the same as running the
algorithm on D. Coreset captures all the important vectors
in D for a given algorithm A. The challenges are comput-
ing C fast and proving that C is the right scaled subset, i.e.,
running the algorithm on C gives approximately the same
result as running the algorithm on D.

More specifically, the goal of this paper is to suggest a way
to maintain a sparse representation of an n × d matrix, by
maintaining a sparse approximation of each of its rows. For
example, in a proximity matrix associated with a social net-
work, instead of storing the average proximity to each of n
users, we would like to store only the N � n largest en-
tries in each row (known as “Heavy Hitters”), which cor-
respond to the people seen by the user most often. Given
an unbounded stream of movements, it is hard to tell which
are the people the user met most, without maintaining a
counter to each person. For example, consider the special
case N = 1. We are given a stream of pairs (i, val) where
i ∈ {1, · · · , n} is an index of a counter, and val is a real
number that represents a score for this counter. Our goal is

Coresets for Vector Summarization with Applications to Network Graphs

to identify which counter has the maximum average score
till now, and approximate that score. While that is easy to
do by maintaining the sum of n scores, our goal is to main-
tain only a constant set of numbers (memory words). In
general, we wish to have a provable approximation to each
of the n accumulated scores (row in a matrix), using, say,
only O(1) memory. Hence, maintaining an n × n matrix
would take O(n) instead of O(n2) memory. For millions
of users or rows, this means 1 Gigabytes of memory can be
stored in RAM for real-time updates, compared to millions
of Gigabytes. Such data reduction will make it practical to
keep hundreds of matrices for different types of similarities
(sms, phone calls, locations), different types of users, and
different time frames (average proximity in each day, year,
etc). This paper contributes the following: (1) A compact
representation for streaming proximity data for a group of
many users; (2) A coreset construction algorithm for main-
taining the social network with error guarantees; (3) An
evaluation of the algorithm on several data sets.

Theoretical Contribution: These results are based on an
algorithm that computes an ε-coreset C of size |C| =
O(1/ε) for the mean of a given set, and every error param-
eter ε ∈ (0, 1) as defined in Section 2. Unlike previous re-
sults, this algorithm is deterministic, maintains a weighted
subset of the input vectors (which keeps their sparsity), can
be applied on a set of vectors whose both cardinality n and
dimension d is arbitrarily large or unbounded. Unlike ex-
isting randomized sketching algorithms for summing item
frequencies (1-sparse binary vectors), this coreset can be
used to approximate the sum of arbitrary real vectors, in-
cluding negative entries (for decreasing counters), dense
vectors (for fast updates), fractions (weighted counter) and
with error that is based on the variance of the vectors (sum
of squared distances to their mean) which might be arbitrar-
ily smaller than existing errors: sum/max of squared/non-
squared distances to the origin (`2/`1/`∞).

1.1. Solution Overview

We implemented a system that demonstrates the use and
performance of our suggested algorithm. The system con-
structs a sparse social graph from the GPS locations of real
moving smart-phone users and maintains the graph in a
streaming fashion as follows.

Input stream: The input to our system is an un-
bounded stream of (real-time) GPS points, where
each point is represented in the vector format of
(time, userID, longitude, latitude). We maintain an ap-
proximation of the average proximity of each user to all
the other n− 1 users seen so far, by using space (memory)
that is only logarithmic in n. The overall memory would
then be near-linear in n, in contrast to the quadratic O(n2)
memory that is needed to store the exact average proxim-
ity vector for each of the n users. We maintain a dynamic
array of the n user IDs seen so far and assume, without

loss of generality, that the user IDs are distinct and increas-
ing integers from 1 to n. Otherwise we use a hash table
from user IDs to such integers. In general, the system is
designed to handle any type of streaming records in the for-
mat (streamID, v) where v is a d-dimensional vector of
reals, to support the other applications. Here, the goal is to
maintain a sparse approximation to the sum of the vectors
v that were assigned to each stream ID.

Proximity matrix: We also maintain an (non-sparse) ar-
ray pos of length n that stores the current location of each
of the n users seen so far. That array forms the current n2

pairs of proximities prox(u, v) between every pair of users
and their current locations u and v. These pairs correspond
to what we call the proximity matrix at time t, which is a
symmetric adjacency n×n matrix of a social graph, where
the edge weight of a pair of users (an entry in this matrix)
is their proximity at the current time t. We are interested in
maintaining the sum of these proximity matrices over time,
which, after division by n, will give the average proxim-
ity between every two users over time. This is the average
proximity matrix. Since the average proximity matrix and
each proximity matrix at a given time require O(n2) mem-
ory, we cannot keep them all in memory. Our goal is to
maintain a sparse approximation version of each of row in
the average proximity matrix which will use only O(log n)
memory. Hence, the required memory by the system will
be O(n log n) instead of O(n2).

Average proximity vector: The average proximity vec-
tor is a row vector of length n in the average proxim-
ity matrix for each of the n users. We maintain only a
sparse approximation vector for each user, thus, only the
non-zeroes entries are kept in memory as a set of pairs
of type (index, value). We define the proximity between
the current location vectors u, v ∈ R3 of two users as:
prox(u, v) := e−dist(u,v).

Coreset for a streamed average: Whenever a new
record (time, userID, longitude, latitude) is inserted to
the stream, we update the entries for that user as his/her
current position array pos is changed. Next, we compute
that n proximities from that user to each of the other users.
Note that in our case, the proximity from a user to himself
is always e0 = 1. Each proximity proxj where 1 ≤ j ≤ n
is converted to a sparse vector (0, · · · , 0, proxj , 0, · · · , 0)
with one non-zero entry. This vector should be added to the
average proximity vector of user j, to update the jth entry.
Since maintaining the exact average proximity vector will
take O(n) memory for each of the n users, we instead add
this sparse vector to an object (“coreset”) that maintains an
approximation to the average proximity vector of user j.

Our problem is then reduced to the problem of maintain-
ing a sparse average of a stream of sparse vectors in Rn,
using O(log n) memory. Maintaining such a stream for
each of the n users seen so far, will take overall memory

Coresets for Vector Summarization with Applications to Network Graphs

of O(n log n) as desired, compared to the exact solution
that requires O(n2) memory. We generalize and formal-
ize this problem, as well as the approximation error and its
practical meaning, in Section 2.

1.2. Related Work

As mobile applications become location-aware, the repre-
sentation and analysis of location-based data sets become
more important and useful in various domains (Wasser-
man, 1980; Hogan, 2008; Carrington et al., 2005; Dinh
et al., 2010; Nguyen et al., 2011; Lancichinetti & Fortu-
nato, 2009). An interesting application is to extract the re-
lationships between mobile users (in other words, their so-
cial network) from their location data (Liao, 2006; Zheng,
2011; Dinh et al., 2013). Therefore, in this paper, we use
coresets to represent and approximate (streaming) GPS-
based location data for the extraction of the social graphs.
The problem in social network extraction from GPS data
is closely related to the frequency moment problem. Fre-
quency approximation is considered the main motivation
for streaming in the seminal work of (Alon et al., 1996a),
known as the “AMS paper”, which introduced the stream-
ing model.

Coresets have been used in many related applications. The
most relevant are coresets for k-means; see (Barger & Feld-
man, 2015) and reference therein. Our result is related to
coreset for 1-mean that approximates the mean of a set
of points. A coreset as defined in this paper can be eas-
ily obtained by uniform sampling of O(log d log(1/δ))/ε2

or O(1/(δε)) points from the input, where δ ∈ (0, 1) is
the probability of failure. However, for sufficiently large
stream the probability of failure during the stream ap-
proaches 1. In addition, we assume that d may be arbi-
trarily large. In (Barger & Feldman, 2015) such a coreset
was suggested but its size is exponential in 1/ε. We aim
for a deterministic construction of size independent of d
and linear in 1/ε.

A special case of such coreset for the case that the mean is
the origin (zero) was suggested in (Feldman et al., 2016),
based on Frank-Wolfe, with applications to coresets for
PCA/SVD. In this paper we show that the generalization
to any center is not trivial and requires a non-trivial embed-
ding of the input points to a higher dimensional space.

Each of the above-mentioned prior techniques has at least
one of the following disadvantages: (1) It holds only for
positive entries. Our algorithm supports any real vector.
Negative values may be used for deletion or decreasing of
counters, and fraction may represent weights. (2) It is ran-
domized, and thus will always fail on unbounded stream.
Our algorithm is deterministic. (3) It supports only s = 1
non-zero entries. Our algorithm supports arbitrary number
of non-zeroes entries with only linear dependency of the
required memory on s. (4) It projects the input vectors on

a random subspace, which diminishes the sparsity of these
vectors. Our algorithm maintains a small weighted subset
of the vectors. This subset keeps the sparsity of the input
and thus saves memory, but also allows us to learn the rep-
resentative indices of points (time stamps in our systems)
that are most important in this sense.

The most important difference and the main contribution of
our paper is the error guarantee. Our error function in (1)
is similar to ‖p̄− p̂‖` ≤ ε ‖p̄‖q for ` = 2 on the left hand
side. Nevertheless, the error on the right hand side might be
significantly smaller: instead of taking the sum of squared
distances to the origin (norm of the average vector), we use
the variance, which is the sum of squared distances to the
mean. The later one is always smaller, since the mean of a
set of vectors minimized their sum of squared distances.

2. Problem Statement
The input is an unbounded stream vectors p1, p2, · · · in Rd.
Here, we assume that each vector has one non-zero entry.
In the social network example, d is the number of users
and each vector is in the form (0, · · · , 0, proxj , 0, · · · , 0),
where proxj is the proximity between the selected user and
user j. Note that for each user, we independently maintain
an input stream of proximities to each of the other users,
and the approximation of its average. In addition, we get
another input: the error parameter N , which is related to
the memory used by the system. Roughly, the required
memory for an input stream will be O(N log n) and the
approximation error will be ε := 1/N . That is, our al-
gorithms are efficient when N is a constant that is much
smaller than the number of vectors that were read from
stream, 2 < N � n. For example, to get roughly 1 per-
cents of error, we have ε = 0.01, and the memory is about
100n, compared to n2 for the exact average proximity.

The output p̂ is an N -sparse approximation to the average
vector in the stream over the n vectors p1, · · · , pn seen so
far. That is, an approximation to the centroid, or center of
mass, p̄ = 1

n

∑
i pi. Here and in what follows, the sum is

over i ∈ {1, · · · , n}. Note that even if s = 1, the aver-
age p̄ might have n � N non-zero entries, as in the case
where pi = (0, · · · , 0, 1, 0, · · · , 0) is the ith row of the
identity matrix. The sparse approximation p̂ of the aver-
age vector p̄ has the following properties: (1) The vector p̂
has at most N non-zero entries. (2) The vector p̂ approxi-
mates the vector of average proximities p̄ in the sense that
the (Euclidean) distance between the two vectors is var/N
where var is the variance of all the vectors seen so far in the
stream. More formally, ‖p̄− p̂‖2 ≤ εvar, where ε = 1/N
is the error, p̄ = 1

n

∑n
i=1 pi is the average vector in Rd for

the n input vectors, and the variance is the sum of squared
distances to the average vector.

Distributed and parallel computation. Our system sup-
ports distributed and streaming input simultaneously in a
“embarrassingly parallel” fashion. E.g., this allows multi-

Coresets for Vector Summarization with Applications to Network Graphs

Figure 1. Coreset computation of streaming data that is dis-
tributed among M = 2 machines. The odd/even vectors in the
stream (leaves) are compressed by the machine on the left/right,
respectively. A server (possibly one of these machine) collects the
coreset C7 and D7 from each machine to obtain the final coreset
C of the n = 32 vectors seen so far. Each level of each tree stores
at most one coreset in memory, and overall of O(logn) coresets.

ple users to send their streaming smart-phone data to the
cloud simultaneously in real-time. There is no assumption
regarding the order of the data in user ID. Using M nodes,
each node will have to use only 1/M fraction of the mem-
ory to (log n)O(1)/M that is used by one node for the same
problem, and the average insertion time for a new point will
be reduced by a factor of M to (log n)O(1)/M .

Parallel coreset computation of unbounded streams of dis-
tributed data was suggested in (Feldman & Tassa, 2015),
as an extension to the classic merge-and-reduce framework
in (Bentley & Saxe, 1980; Har-Peled, 2006). We apply this
framework on our off-line algorithm to handle streaming
and distributed data (see Section 3).

Generalizations. Above we assume that each vector
in the stream has a single non-zero entry. To generalize
that, we now assume that each vector has at most s non-
zeroes entries and that these vectors are weighted (e.g. by
their importance). Under these assumptions, we wish to
approximate the weighted mean p̄ =

∑n
i=1 uipi where

u = (u1, · · · , un) is a weight vector that represents dis-
tribution, i.e., ui ≥ 0 for every i ∈ [n]. Then, our problem
is formalized as follows.

Problem 1 Consider an unbounded stream of real vec-
tors p1, p2, · · · , where each vector is represented only by
its non-zero entries, i.e., pairs (entryIndex, value) ∈
{1, 2, 3, . . .} × R. Maintain a subset of N � n input vec-
tors, and a corresponding vector of positive reals (weights)
w1, w2, · · · , wN , where the sum p̂ :=

∑N
i=1 wipi approx-

imates the sum p̄ =
∑n
i=1 pi of the n vectors seen so far

in the stream up to a provably small error that depends on
its variance var(p) :=

∑n
i=1 ‖pi − p̄‖

2
2. Formally, for an

error parameter ε that may depend on N ,
‖p̄− p̂‖ ≤ εvar(p). (1)

We provide a solution for this problem mainly by proving
Theorem 1 for off-line data, and turn it into algorithms for
streaming and distributed data as explained in Section 3.

3. New Coreset Algorithms
In this section we first describe an algorithm for approxi-
mating the sum of n streaming vectors using one pass. The
algorithm calls its off-line version as a sub-procedure. We
then explain how to run the algorithm on distributed and
unbounded streaming data using M machines or parallel
threads. The size of the weighted subset of vectors that are
maintained in memory, and the insertion time per new vec-
tor in the stream are logarithmic on the number n of vectors
in the stream. UsingM machines, the memory and running
time per machine is reduced by a factor of M .

3.1. Streaming and Distributed Data

Overview. The input to Algorithm 1 is a stream provided
as a pointer to a device that sends the next input vectors in
a stream that consists of n vectors, upon request, For exam-
ple, a hard drive, a communication socket, or a web-service
that collects information from the users. The second pa-
rameter ε defines the approximation error. The required
memory grows linearly with respect to 1/ε.

Algorithm 1 maintains a binary tree whose leaves are the
input vectors, and each inner node is a coreset, as in the left
or right hand side of Fig. 1. However, at most one core-
set in each level of the tree is actually stored in memory.
In Line 1, we initialize the current height of this tree. Us-
ing log(n)/ε vectors in memory our algorithm returns an
O(ε)-coreset, but to get exactly ε-coreset, we increase it in
Line 2 by a constant factor α that can be find in the proof
of Theorem 1. In Lines 3-14, we read batches (sets) of
O(log(n)/ε) vectors from the stream and compress them.
The last batch may be smaller. Line 4 defines the next batch
P . Unlike the coresets in the nodes of the tree, we assume
that the input vectors are unweighted, so, Line 5 defines a
weight 1 for each input vector. Line 6 reduce the set P by
half to the weighted coreset (S,w) using Algorithm 2 (the
off-line coreset construction.) Theorem 1 guarantees that
such a compression is possible.

In Lines 8–12 we add the new coreset (S,w) to the lowest
level ` of the binary tree, if it is not assigned to a coreset
already, i.e., S` is not empty. Otherwise, we merge the new
coreset (S,w) with the level’s coreset S`, mark the level as
empty from coresets (S` ← ∅), and continue to the next
higher level of the tree until we reach a level ` that is not
assigned to a coreset , i.e., S` = ∅. Line 13 handle the
case where we reach to the root of the tree, and a new (top)
level is created. In this case, only the new root of the tree
contains a coreset.

When the streaming is over, in Lines 15–16 we collect the
active coreset in each of the O(log n) tree levels (if it has
one) and return the union of these coresets.

Parallel computation on distributed data. In this model
each machine has its own stream of data, and computes its

Coresets for Vector Summarization with Applications to Network Graphs

coreset independently and in parallel to the other machines,
as described above. Whenever we wish to get the coreset
for the union of streaming vectors, we collect the current
coreset from each machine on a single machine or a server.
Since each machine sends only a coreset, the communica-
tion is also logarithmic in n. For M ≥ 2 machines and a
single input stream, we send every ith point in the stream
to the ith machine, for every i between 1 and M . For ex-
ample, if M = 2, the odd vectors will be sent to the first
machine, and every second (even) vector will be sent to the
second machine. Then, each machine will compute a core-
set for its own unbounded stream; See Fig 1.

3.2. Off-line data reduction

Algorithm 2 is called by Algorithm 1 and its variant in the
last sub-section for compressing a given small set P of vec-
tors in memory by computing its coreset. As in Line 10
of Algorithm 1, the input itself might be a coreset of an-
other set, thus we assume that the input has a corresponding
weight vector u. Otherwise, we assign a weight 1 for each
input vector, i.e., u = (1, · · · , 1). The output of Algorithm
1 is an ε-coreset (S,w) of size |S| = O(1/ε) for a given
ε ∈ (0, 1). While the number n of input vectors can be of
an arbitrary size, Algorithm 2 always passes an input set of
n = 2|S| points to get output that is smaller by half.

Overview of Algorithm 2: In Line 1 the desired mean
Eu that we wish to approximate is computed. Lines 2–
4 are used for adding an extra dimension for each input
vector later. In Lines 4-6 we normalize the augmented in-
put, by constructing a set q1, · · · , qn of unit vectors with a
new set of weights s1, · · · , sn whose mean is

∑
i siqi =

(0, · · · , 0, x/v). We then translate this mean to the origin
by defining the new set H in Line 7.

The main coreset construction is computed in Lines 9–13
on the normalized set H whose mean is the origin and its
vectors are on the unit ball. This is a greedy, gradient de-
scent method, based on the Frank-Wolfe framework (Feld-
man et al., 2016). In iteration i = 1, we begin with an arbi-
trary input point c1 in H . Since c1 is a unit vector, its dis-
tance from the mean of H (origin) is 1. In Line 11– 12 we
compute the farthest point h2 from c1, and approximates
the mean using only c1 and the new point h2. This is done,
by projecting the origin on the line segment through c1 and
h2, to get an improved approximation c2 that is closer to
the origin. We continue to add input points in this manner,
where in the ith iteration another input point is selected for
the coreset, and the new center is a convex combination of
i points. In the proof of Theorem 1 it is shown that the dis-
tance to the origin in the ith iteration is α/i, which yields
an ε-approximation after β = O(α/ε) iterations.

The resulting center cβ is spanned by β input vectors.
In Line 11 we compute their new weights based on their
distances from cβ . Lines 14–16 are used to convert the

weights of the vectors in the normalized H back to the
original input set of vectors. The algorithm then returns the
small subset of β input vectors with their weights vector w.

Algorithm 1: STREAMING-CORESET(stream, ε)

Input: An input stream of n vectors in Rd.
an error parameter ε ∈ (0, 1)

Output: An ε-coreset (S,w) for the set of n vectors;
see Theorem 1.

1 Set max← 0
2 Set α to be a sufficiently large constant that can be

derived from the proof of Theorem 1.
3 while stream is not empty do
4 Set P ← next d2α ln(n)/εe input vectors in

stream
5 Set u← (1, · · · , 1) where u has |P | entries.
6 Set (S,w)← CORESET(P, u, ε/(α ln(n))
7 Set `← 1
8 while S` 6= ∅ and ` ≤ max do
9 Set S` ← S ∪ S`

10 Set (S,w)← CORESET(S`, w`, ε)
11 Set S` ← ∅
12 Set `← `+ 1

13 if ` > max then
Set max← `

14 Set (S`, w`)← (S,w)

15 Set S ←
⋃max
i=1 Si and w ← (w1, w2, · · · , wmax)

16 return (S,w)

4. Correctness
In this section we show that Algorithm 1 computes cor-
rectly the coreset for the average vector in Theorem 1.

Let Dn denote all the possible distributions over n items,
i.e., D is the unit simplex

Dn = {(u1, · · · , un) ∈ Rn | ui ≥ 0 and
∑n
i=1 ui = 1} .

Given a set P = {p1, · · · , pn} of vectors, the mean of P is
1
n

∑
i=1 pi. This is also the expectation of a random vector

that is chosen uniformly at random from P . The sum of
variances of this vector is the sum of squared distances to
the mean. More generally, for a distribution u ∈ S over the
vectors of P , the (weighted) mean is

∑n
i=1 uipi, which is

the expected value of a vector chosen randomly using the
distribution u. The variance varu is the sum of weighted
squared distances to the mean. By letting N = 1/ε in
the following theorem, we conclude that there is always a
sparse distributionw of at most 1/ε non-zeroes entries, that
yields an approximation to its weighted mean, up to an ε-
fraction of the variance.
Theorem 1 (Coreset for the average vector) Let u ∈
Dn be a distribution over a set P = {p1, · · · , pn} of
n vectors in Rd, and let N ≥ 1. Let (S,w) denote
the output of a call to CORESET(P, u, 1/N); see Algo-

Coresets for Vector Summarization with Applications to Network Graphs

Algorithm 2: CORESET(P, u, ε)

Input: A set P of vectors in Rd,
a positive weight vector u = (u1, · · · , un),
an error parameter ε ∈ (0, 1)

Output: An ε-coreset (S,w) for (P, u)
1 Set Eu ←

∑n
i=1 uipi

2 Set x←
∑n
j=1 uj ‖pj − Eu‖

3 Set v ←
∑n
j=1 uj ‖(pj − Eu, x)‖

4 for i← 1 to n do

5 Set qi ←
(pi − Eu, x)

‖(pi − Eu, x)‖

6 Set si ←
ui ‖(pi − Eu, x)‖

v
7 Set H ← {qi − (0, · · · , 0, x/v) | i ∈ [n]}
8 Set α← a sufficiently large constant that can be

derived from the proof of Theorem 1.
9 Set c1 ← an arbitrary vector in H

10 for i← 1 to β := dα/εe do
11 hi+1 ← farthest point from ci in H
12 ci+1 ← the projection of the origin on the

segment ci, hi+1

13 Compute w′ = (w′1, · · · , w′β) ∈ Sβ such that

cβ =
∑β
i=1 w

′
ihi+1

14 for i← 1 to β do

15 w′′i← vw′i
(pi − Eu, x)

16 wi ←
w′′i∑β
j=1 w

′′
j

17 w ← (w1, · · · , wβ)
18 S ← {v1, · · · , wβ}
19 return (S,w)

rithm 1. Then w ∈ Dn consists O(N) non-zero entries,
such that the sum p̄ =

∑
i=1 uipi deviates from the sum

p̂ =
∑n
i=1 wipi by at most a (1/N)-fraction of the vari-

ance varu =
∑n
i=1 ui ‖pi − p̄‖

2
2, i.e., ‖p̄− p̂‖22 ≤

varu
N .

By the O(·) notation above, it suffices to prove that there is
a constant α > 0 such that N ≥ α and

‖Eu − Ew‖22 ≤
αvaru
N , (2)

where Eu = p̄ and Ew = p̂. The proof is constructive and
thus immediately implies Algorithm 1. Indeed, let

x =
∑
j uj ‖pj − Eu‖ , and v =

∑
j uj ‖(pj − Eu, x)‖.

Here and in what follows, ‖·‖ = ‖·‖2 and all the sums are
over [n] = {1, · · · , n}. For every i ∈ [n] let

qi = (pi−Eu,x)
‖(pi−Eu,x)‖ , and si = ui‖(pi−Eu,x)‖

v .

Hence,

∑
i

siqi =
1

v

∑
i

ui(pi − Eu, x)

=
1

v

(∑
i

uipi −
∑
m

umEu,
∑
k

ukx

)

=
1

v

∑
i

uipi −
∑
j

ujpj , x

 =
(

0, · · · , 0, x
v

)
.

(3)

Since (s1, · · · , sn) ∈ Dn we have that the point p =∑
i siqi is in the convex hull of Q = {q1, · · · , qn}. By

applying the Frank-Wolfe algorithm as described in (Clark-
son, 2005) for the function f(s) = ‖As‖, where each row
of A corresponds to a vector in Q, we conclude that there
is w′ = (w′1, · · · , w′n) ∈ Dn that has at most N non-zero
entries such that
‖
∑
i(si − w′i)qi‖

2
=
∥∥∥∑i siqi −

∑
j w
′
jqj

∥∥∥2 = ‖p− q‖2 ≤ 1
N . (4)

For every i ∈ [n], define

w′′i =
vw′i

‖(pi − Eu, x)‖
and wi =

w′′i∑
j w
′′
j

.

We thus have:

‖Eu − Ew‖2 =
∥∥∥∑i uipi −

∑
j wjpj

∥∥∥2 =
∥∥∑

i(ui − wi)pi
∥∥2 (5)

=
∥∥∑

i(ui − wi)(pi − Eu, x)
∥∥2 (6)

= v2
∥∥∥∑i

(
ui‖(pi−Eu,x)‖

v
− wi‖(pi−Eu,x)‖

v

)
qi

∥∥∥2 (7)

= v2
∥∥∥∑i

(
si −

(w′′
i /

∑
j w

′′
j)·‖(pi−Eu,x)‖
v

)
qi

∥∥∥2 (8)

= v2
∥∥∥∑i

(
si − w′

i∑
j w

′′
j

)
qi

∥∥∥2 , (9)

where (5) is by the definitions of Eu and Ew, (6) follows
since

∑
i ui =

∑
i wi = 1 and thus

∑
i uiy =

∑
j ujy for

every vector y, (8) follows by the definitions of wi and qi,
and (9) by the definition of w′i. Next, we bound (9). Since
for every two reals y, z,

2yz ≤ y2 + z2 (10)

by letting y = ‖a‖ and z = ‖b‖ for a, b ∈ Rd,

‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 + 2 ‖a‖ ‖b‖
≤ ‖a‖2 + ‖b‖2 + (‖a‖2 + ‖b‖2) = 2 ‖a‖2 + 2 ‖b‖2 .

(11)

By substituting a =
∑
i(si − w′i)qi and b =

∑
i(w
′
i −

w′
i∑

j w
′′
j

)qi in (11), we obtain

∥∥∥∥∥∑
i

(
si −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∑
i

(si − w′i)qi

∥∥∥∥∥
2

(12)

+ 2

∥∥∥∥∥∑
i

(
w′i −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2

.

(13)

Coresets for Vector Summarization with Applications to Network Graphs

Bound on (13): Observe that∥∥∥∥∥∑
i

(
w′i −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

w′i

(
1− 1∑

j w
′′
j

)∥∥∥∥∥
2

=

(
1− 1∑

j w
′′
j

)2

·

∥∥∥∥∥∑
i

w′iqi

∥∥∥∥∥
2

.

(14)

Let τ = v√
Nx

. By the triangle inequality

v =
∑
j uj ‖(pj − Eu, x)‖ ≤

∑
j uj ‖pj − Eu‖+ x = 2x. (15)

By choosing c > 16 in (2) we have N ≥ 16, so

τ ≤ 2√
N
≤ 1

2 . (16)

Substituting a = −
∑
i siqi and b =

∑
i(si−w′j)qj in (11)

bounds the right expression of (14) by∥∥∥∥∥∑
i

w′iqi

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∑
i

siqi

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∑
i

(si − w′j)qj

∥∥∥∥∥
2

≤ 2x2

v2
+

2

N
=

2(1 + τ2)

τ2N
,

(17)

where the last inequality follows from (3) and (4). For
bounding the left expression of (14), note that

(1−
∑
j

w′′j)
2 =

(
1−

∑
j

w′j ·
v

‖(pj − Eu, x)‖

)2

(18)

≤

∥∥∥∥∥(0, · · · , 0, 1)−∑
j

w′j ·
(v
x
(pj − Eu), v)
‖(pj − Eu, x)‖

∥∥∥∥∥
2

=
v2

x2

∥∥∥∥∥(0, · · · , 0, xv)−∑
j

w′j ·
(pj − Eu, x)
‖(pj − Eu, x)‖

∥∥∥∥∥
2

=
v2

x2

∥∥∥∥∥∑
i

(si − w′i)qi

∥∥∥∥∥
2

≤ v2

Nx2
= τ2,

where (18) follows since ‖b‖2 ≤ ‖(a, b)‖2 for every pair
a, b of vectors, and the last inequality is by (3) and (4).
Hence,

∑
j w
′′
j ≥ 1− τ , and(
1− 1∑

j w
′′
j

)2
=
(

1−
∑

i w
′′
i∑

j w
′′
j

)2
≤ τ2

(1−τ)2 .

Combining (14) and (17) bounds (13) by

2

∥∥∥∥∥∑
i

(
w′i −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2

= 2

(
1− 1∑

j w
′′
j

)2

·

∥∥∥∥∥∑
i

w′iqi

∥∥∥∥∥
2

≤ 2τ2

(1− τ)2 ·
2(1 + τ2)

τ2N
=

4(1 + τ2)

N(1− τ)2 .

Bound on (12): Plugging the last inequality, (4) and (12)
in (9) yields
‖Eu − Ew‖2 = v2

∥∥∥∥∥∑
i

(
si −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2

≤ 2v2
(∥∥∥∥∥∑

i

(si − w′i)qi

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i

(
w′i −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥
2)

≤ 2v2

N

(
1 +

2(1 + τ2)

(1− τ)2

)
≤ αv2

N
,

(19)

Figure 2. Given a set of vectors from a standard Gaussian distribu-
tion, the graph shows the `2 error (y-axis) between their sum and
their approximated sum using only N samples (the x-axis) based
on Count Sketch (Charikar et al., 2004), Count Min (Cormode &
Muthukrishnan, 2005a), Count Median (Cormode & Muthukrish-
nan, 2005b), BJKST (Bar-Yossef et al., 2002), F2-Sketch (Alon
et al., 1996b), and our coreset.

Figure 3. The overview of our designed system to extract and rep-
resent social networks is given.

for a sufficiently large constant α, e.g. α = 3, where in the
last inequality we used (16). Since v ≤ 2x by (15) we have

v ≤ 2x = 2
∑
j

uj ‖pj − Eu‖

=
∑
j

2 ·
√√

varu
√
uj ·
√
uj ‖pj − Eu‖√√

varu

≤
∑
j

(
√
varuuj +

uj ‖pj − Eu‖2√
varu

)
=
√
varu +

1√
varu

∑
j

uj ‖pj − Eu‖2 = 2
√
varu,

where in the second inequality we used (10). Plugging this
in (19) and replacing N by 4αN = O(N) in the proof
above, yields the desired bound

‖Eu − Ew‖2 ≤ αv2

N
≤ 4α·varu

N
.

5. Experimental Results
We implemented the coreset algorithms in 1 and 2. We also
implemented a brute force method for determining the so-
cial network that considers the entire data. We used this
method to derive the ground truth for the social network
for small scale data. Our system’s overview is given in Fig-
ure 3 and explained in Section 1.1. The coreset algorithm
computes the heavy hitters by approximating the sum of

Coresets for Vector Summarization with Applications to Network Graphs

Figure 4. The normalized error (y-axis) of proximities for the
GPS traces taxi-drivers in the New York City Cab dataset using
only N samples (N increases along x-axis).

the columns of the proximity matrix as explained in Sec-
tion 1.1. In this section, we have used different data sets
from three different sources: In our first experiment, we
compared our coreset algorithm’s error with other sketch
algorithms (Charikar et al., 2004; Cormode & Muthukr-
ishnan, 2005a). The second dataset is the New York City
Cab dataset1 and the third data set is from Stanford2 and
includes six different graph-based data sets. In all the
figures shown in this section, the x axis shows the core-
set size (N) and the y axis represents the normalized er-
ror value (Error ∗ mean(var(pi)

2)/mean(norm(pi))),
where Error = ‖pi − p̄‖2. In our experiments, we ran N
iterations and wrote down the empirical error ε.

Comparison to sketch algorithms: Since the algorithms
in (Charikar et al., 2004; Cormode & Muthukrishnan,
2005a) focused on selecting the entries at scalar level (i.e.,
individual entries from a vector), in this experiment, we
generated a small scale synthetic data (standard Gaussian
distribution) and compared the error made by our core-
set implementation to four other sketch implementations.
These sketch algorithms are: Count Sketch, Count Min,
Count Median, BJKST and F2-Sketch (see Fig. 2). For the
sketch algorithms, we used the code available at3. We plot
the results in Fig. 2 where our Coresets algorithm showed
better approximation than all other well known sketch tech-
niques for all N values.

Application on NYC data: Here we applied our algorithm
on the NYC data. The data contains the location informa-
tion of 13249 taxi cabs with 14776616 entries. The goal
here is showing how the error on Coreset approximation
would change on real data with respect to N (we expect
that the error would reduce with respect to N as the theory
suggests). This can be seen in Fig. 4, where x axis is the
coreset size (N) and y axis is the normalized error.

Application on Stanford Data Sets: Here we apply our al-
gorithm on six different data sets from Stanford: Amazon,
Youtube, DBLP, LiveJournal, Orkut and Wikitalk data sets.
We run the Coreset algorithm to approximate the total num-
ber of connectivities each node has. We computed the error

1https://publish.illinois.edu/dbwork/open-data/
2https://snap.stanford.edu/data/
3https://github.com/jiecchen/StreamLib/

(a) Amazon data (b) YouTube data

(c) DBLP data
(d) Wikitalk data

(e) Orkut data (f) LiveJournal data
Figure 5. The normalized error (y-axis) of the coreset for network
structure approximation is shown for four different datasets using
only N samples (N increases along x-axis).

for each of the seven different N values from [100, 200,
300, 400, 500, 600, 900] for each data set. We used the
first 50000 entries from the Orkut, Live Journal, Youtube
and Wiki data sets and the first 5000 entries from Amazon
and DBLP data set. The results are shown in Figure 5.
In the figures, y axis represents the normalized error. The
results demonstrate the utility of our proposed method for
summarization.

6. Conclusion
In this paper we proposed a new coreset algorithm for
streaming data sets with applications to summarizing large
networks to identify the ”heavy hitters”. The algorithm
takes a stream of vectors as input and maintains their sum
using small memory. Our presented algorithm shows better
performance at even lower values of non-zero entries (i.e.,
at higher sparsity rates) when compared to the other exist-
ing sketch techniques. We demonstrated that our algorithm
can catch the heavy hitters efficiently in social networks
from the GPS-based location data and in several graph data
sets from the Stanford data repository.

Acknowledgements
Support for this research has been provided in part by Ping
An Insurance and NSFSaTC-BSF CNC 1526815. We are
grateful for this support.

Coresets for Vector Summarization with Applications to Network Graphs

References
Alon, Noga, Matias, Yossi, and Szegedy, Mario. The space

complexity of approximating the frequency moments. In
Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, pp. 20–29. ACM, 1996a.

Alon, Noga, Matias, Yossi, and Szegedy, Mario. The space
complexity of approximating the frequency moments. In
Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, pp. 20–29. ACM, 1996b.

Bar-Yossef, Ziv, Jayram, TS, Kumar, Ravi, Sivakumar, D,
and Trevisan, Luca. Counting distinct elements in a data
stream. In International Workshop on Randomization
and Approximation Techniques in Computer Science, pp.
1–10. Springer, 2002.

Barger, Artem and Feldman, Dan. k-means for stream-
ing and distributed big sparse data. SDM’16 and arXiv
preprint arXiv:1511.08990, 2015.

Bentley, Jon Louis and Saxe, James B. Decomposable
searching problems i. static-to-dynamic transformation.
Journal of Algorithms, 1(4):301–358, 1980.

Carrington, Peter J, Scott, John, and Wasserman, Stanley.
Models and methods in social network analysis, vol-
ume 28. Cambridge university press, 2005.

Charikar, Moses, Chen, Kevin, and Farach-Colton, Mar-
tin. Finding frequent items in data streams. Theoretical
Computer Science, 312(1):3–15, 2004.

Clarkson, K. L. Subgradient and sampling algorithms for
l1-regression. In Proc. 16th Annu. ACM-SIAM Symp. on
Discrete algorithms (SODA), pp. 257–266, 2005. ISBN
0-89871-585-7.

Cormode, Graham and Muthukrishnan, S. An improved
data stream summary: the count-min sketch and its ap-
plications. Journal of Algorithms, 55(1):58–75, 2005a.

Cormode, Graham and Muthukrishnan, S. An improved
data stream summary: the count-min sketch and its ap-
plications. Journal of Algorithms, 55(1):58–75, 2005b.

Dinh, Thang N, Xuan, Ying, Thai, My T, Park, EK, and
Znati, Taieb. On approximation of new optimization
methods for assessing network vulnerability. In INFO-
COM, 2010 Proceedings IEEE, pp. 1–9. IEEE, 2010.

Dinh, Thang N, Nguyen, Nam P, and Thai, My T. An adap-
tive approximation algorithm for community detection
in dynamic scale-free networks. In INFOCOM, 2013
Proceedings IEEE, pp. 55–59. IEEE, 2013.

Feldman, Dan and Tassa, Tamir. More constraints, smaller
coresets: constrained matrix approximation of sparse big

data. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD’15), pp. 249–258. ACM, 2015.

Feldman, Dan, Volkov, Mikhail, and Rus, Daniela. Di-
mensionality reduction of massive sparse datasets using
coresets. In NIPS, 2016. URL http://arxiv.org/
abs/1503.01663.

Har-Peled, Sariel. Coresets for discrete integration and
clustering. In FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, pp. 33–
44. Springer, 2006.

Hogan, Bernie. Analyzing social networks. The Sage hand-
book of online research methods, pp. 141, 2008.

Lancichinetti, Andrea and Fortunato, Santo. Community
detection algorithms: a comparative analysis. Physical
review E, 80(5):056117, 2009.

Liao, Lin. Location-based activity recognition. PhD thesis,
University of Washington, 2006.

Nguyen, Nam P, Dinh, Thang N, Xuan, Ying, and Thai,
My T. Adaptive algorithms for detecting community
structure in dynamic social networks. In INFOCOM,
2011 Proceedings IEEE, pp. 2282–2290. IEEE, 2011.

Wasserman, Stanley. Analyzing social networks as stochas-
tic processes. Journal of the American statistical associ-
ation, 75(370):280–294, 1980.

Zheng, Yu. Location-based social networks: Users.
In Computing with spatial trajectories, pp. 243–276.
Springer, 2011.

http://arxiv.org/abs/1503.01663
http://arxiv.org/abs/1503.01663

