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Abstract

We study two procedures (reverse-mode and
forward-mode) for computing the gradient of the
validation error with respect to the hyperparame-
ters of any iterative learning algorithm such as
stochastic gradient descent. These procedures
mirror two methods of computing gradients for
recurrent neural networks and have different
trade-offs in terms of running time and space re-
quirements. Our formulation of the reverse-mode
procedure is linked to previous work by Maclau-
rin et al. (2015) but does not require reversible
dynamics. The forward-mode procedure is suit-
able for real-time hyperparameter updates, which
may significantly speed up hyperparameter opti-
mization on large datasets. We present experi-
ments on data cleaning and on learning task in-
teractions. We also present one large-scale exper-
iment where the use of previous gradient-based
methods would be prohibitive.

1. Introduction

The increasing complexity of machine learning algorithms
has driven a large amount of research in the area of hy-
perparameter optimization (HO) — see, e.g., (Hutter et al.,
2015) for a review. The core idea is relatively simple: given
a measure of interest (e.g. the misclassification error) HO
methods use a validation set to construct a response func-
tion of the hyperparameters (such as the average loss on
the validation set) and explore the hyperparameter space to
seek an optimum.

Early approaches based on grid search quickly become im-
practical as the number of hyperparameters grows and are
even outperformed by random search (Bergstra & Bengio,
2012). Given the high computational cost of evaluating the
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response function, Bayesian optimization approaches pro-
vide a natural framework and have been extensively studied
in this context (Snoek et al., 2012; Swersky et al., 2013;
Snoek et al., 2015). Related and faster sequential model-
based optimization methods have been proposed using ran-
dom forests (Hutter et al., 2011) and tree Parzen estima-
tors (Bergstra et al., 2011), scaling up to a few hundreds of
hyperparameters (Bergstra et al., 2013).

In this paper, we follow an alternative direction, where
gradient-based algorithms are used to optimize the perfor-
mance on a validation set with respect to the hyperparame-
ters (Bengio, 2000; Larsen et al., 1996). In this setting, the
validation error should be evaluated at a minimizer of the
training objective. However, in many current learning sys-
tems such as deep learning, the minimizer is only approxi-
mate. Domke (2012) specifically considered running an it-
erative algorithm, like gradient descent or momentum, for
a given number of steps, and subsequently computing the
gradient of the validation error by a back-optimization al-
gorithm. Maclaurin et al. (2015) considered reverse-mode
differentiation of the response function. They suggested the
idea of reversing parameter updates to achieve space effi-
ciency, proposing an approximation capable of addressing
the associated loss of information due to finite precision
arithmetics. Pedregosa (2016) proposed the use of inex-
act gradients, allowing hyperparameters to be updated be-
fore reaching the minimizer of the training objective. Both
(Maclaurin et al., 2015) and (Pedregosa, 2016) managed to
optimize a number of hyperparameters in the order of one
thousand.

In this paper, we illustrate two alternative approaches to
compute the hypergradient (i.e., the gradient of the re-
sponse function), which have different trade-offs in terms
of running time and space requirements. One approach
is based on a Lagrangian formulation associated with
the parameter optimization dynamics. It encompasses
the reverse-mode differentiation (RMD) approach used by
Maclaurin et al. (2015), where the dynamics corresponds
to stochastic gradient descent with momentum. We do
not assume reversible parameter optimization dynamics. A
well-known drawback of RMD is its space complexity: we
need to store the whole trajectory of training iterates in or-
der to compute the hypergradient. An alternative approach
that we consider overcomes this problem by computing
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the hypergradient in forward-mode and it is efficient when
the number of hyperparameters is much smaller than the
number of parameters. To the best of our knowledge, the
forward-mode has not been studied before in this context.

As we shall see, these two approaches have a direct cor-
respondence to two classic alternative ways of comput-
ing gradients for recurrent neural networks (RNN) (Pearl-
mutter, 1995): the Lagrangian (reverse) way corresponds
to back-propagation through time (Werbos, 1990), while
the forward way corresponds to real-time recurrent learn-
ing (RTRL) (Williams & Zipser, 1989). As RTRL allows
one to update parameters after each time step, the forward
approach is suitable for real-time hyperparameter updates,
which may significantly speed up the overall hyperparame-
ter optimization procedure in the presence of large datasets.
We give experimental evidence that the real-time approach
is efficient enough to allow for the automatic tuning of cru-
cial hyperparameters in a deep learning model. In our ex-
periments, we also explore constrained hyperparameter op-
timization, showing that it can be used effectively to detect
noisy examples and to discover the relationships between
different learning tasks.

The paper is organized in the following manner. In Sec-
tion 2 we introduce the problem under study. In Section 3.1
we derive the reverse-mode computation. In Section 3.2 we
present the forward-mode computation of the hypergradi-
ent, and in Section 3.3 we introduce the idea of real-time
hyperparameter updates. In Section 4 we discuss the time
and space complexity of these methods. In Section 5 we
present empirical results with both algorithms. Finally in
Section 6 we discuss our findings and highlight directions
of future research.

2. Hyperparameter Optimization

We focus on training procedures based on the optimiza-
tion of an objective function J(w) with respect to w (e.g.
the regularized average training loss for a neural network
with weights w). We see the training procedure by stochas-
tic gradient descent (or one of its variants like momentum,
RMSProp, Adam, etc.) as a dynamical system with a state
s; € R? that collects weights and possibly accessory vari-
ables such as velocities and accumulated squared gradients.
The dynamics are defined by the system of equations

St:(I)t(Stfh)\) tzl,,T (1)

where T is the number of iterations, sy contains initial
weights and initial accessory variables, and, for every ¢ €
{1,...,T},

®, : (R* x R™) — R?

is a smooth mapping that represents the operation per-
formed by the ¢-th step of the optimization algorithm (i.e.

on mini-batch t). Finally, A € R™ is the vector of hyperpa-
rameters that we wish to tune.

As simple example of these dynamics occurs when train-
ing a neural network by gradient descent with momentum
(GDM), in which case s; = (v, wy) and

uve—1 + VJi(wi_1)
wi—1 — N(pve—1 — Ve (we—1))

(% =
wy =

2

where J; is the objective associated with the ¢-th mini-
batch, p is the rate and 7 is the momentum. In this example,

A= ().

Note that the iterates sy, ..., sy implicitly depend on the
vector of hyperparameters A\. Our goal is to optimize the
hyperparameters according to a certain error function E
evaluated at the last iterate s7. Specifically, we wish to
solve the problem

min f(X) 3)

AEA

where the set A C R¢ incorporates constraints on the hy-
perparameters, and the response function f : R™ — R is
defined at A € R™ as

fA) = E(sr (). )

We highlight the generality of the framework. The vec-
tor of hyperparameters A may include components associ-
ated with the training objective, and components associ-
ated with the iterative algorithm. For example, the training
objective may depend on hyperparameters used to design
the loss function as well as multiple regularization param-
eters. Yet other components of A may be associated with
the space of functions used to fit the training objective (e.g.
number of layers and weights of a neural network, parame-
ters associated with the kernel function used within a kernel
based method, etc.). The validation error £ can in turn be
of different kinds. The simplest example is to choose F as
the average of a loss function over a validation set. We may
however consider multiple validation objectives, in that the
hyperparameters associated with the iterative algorithm (u
and ~ in the case of momentum mentioned above) may
be optimized using the training set, whereas the regular-
ization parameters would typically require a validation set,
which is distinct from the training set (in order to avoid
over-fitting).

3. Hypergradient Computation

In this section, we review the reverse-mode computation
of the gradient of the response function (or hypergradient)
under a Lagrangian perspective and introduce a forward-
mode strategy. These procedures correspond to the reverse-
mode and the forward-mode algorithmic differentiation
schemes (Griewank & Walther, 2008). We finally intro-
duce a real-time version of the forward-mode procedure.
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Algorithm 1 REVERSE-HG

Algorithm 2 FORWARD-HG

Input: )\ current values of the hyperparameters, s¢ ini-
tial optimization state
Output: Gradient of validation error w.r.t. A
fort =1toT do
St = @t(Stfl, )\)
end for
arp = VE (ST>
g=20
fort =7 — 1 downto 1 do
g =9+ a1Bi1
ap = at+1At+1
end for
return g

3.1. Reverse-Mode

The reverse-mode computation leads to an algorithm
closely related to the one presented in (Maclaurin et al.,
2015). A major difference with respect to their work is that
we do not require the mappings ®; defined in Eq. (1) to
be invertible. We also note that the reverse-mode calcu-
lation is structurally identical to back-propagation through
time (Werbos, 1990).

We start by reformulating problem (3) as the constrained
optimization problem

min E(st)
A,81,...,8T (5)
subjectto sy = Py(si—1,A), t € {1,...,T}.

This formulation closely follows a classical Lagrangian ap-
proach used to derive the back-propagation algorithm (Le-
Cun, 1988). Furthermore, the framework naturally allows
one to incorporate constraints on the hyperparameters.

The Lagrangian of problem (5) is

T
L(s,A\,a) = E(sr) + Zat(q)t(st—la A)—s) (6
t=1
where, foreach t € {1,...,T}, s € R? is a row vector

of Lagrange multipliers associated with the ¢-th step of the
dynamics.

The partial derivatives of the Lagrangian are given by

oL

% = q>1‘,(51‘/—1a)‘)75t7 te{lvaT} (7)
t

oL

878 = Oét+1At+1—Oét, tE{l,...,T—l} (8)
t

oL

D5y VE(st) — ar ©)

L

=~ = > B, (10)

oA —

Input: )\ current values of the hyperparameters, s¢ ini-
tial optimization state
Output: Gradient of validation error w.r.t. A
Zyp =10
fort =1toT do
St = (bt(St,h A)
Zy = AZy 1+ By

end for
return VE(s)Zp
where forevery t € {1,...,T}, we define the matrices
0P (st-1,)) 0P (511, M)
AA=——m—"—- B=——"-"2, 11
t 95, ' Dt N (11)

Note that A, € R%*4 and B, € R¥*™,

The optimality conditions are then obtained by setting each
derivative to zero. In particular, setting the right hand side
of Equations (8) and (9) to zero gives
VE(sT) ift="T,
ap =
VE(ST)ATAt+1 ift € {1,,T—1}

Combining these equations with Eq. (10) we obtain that

GE T T
= VE(sr) ) < 11 AS> B,.

t=1 \s=t+1

As we shall see this coincides with the expression for
the gradient of f in Eq. (15) derived in the next section.
Pseudo-code of REVERSE-HG is presented in Algorithm
1.

3.2. Forward-Mode

The second approach to compute the hypergradient appeals
to the chain rule for the derivative of composite functions,
to obtain that the gradient of f at \ satisfies'

d
Vf(N) = VE(sr) & (12)

where ‘idS/\T is the d x m matrix formed by the total derivative

of the components of st (regarded as rows) with respect to
the components of A (regarded as columns).

Recall that s; = ®4(s;_1, A). The operators ®; depends on
the hyperparameter A\ both directly by its expression and

indirectly through the state s;_;. Using again the chain

'Remember that the gradient of a scalar function is a row vec-
tor.
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rule we have, forevery ¢t € {1,...,T}, that

dsi _
dx

6(1),5(875_1, /\) dSt_1 + 8(I)t(5t—17 )\)

0si—1 dA oA (13)

Defining 7Z; = % forevery t € {1,...,T} and recalling
Eq. (11), we can rewrite Eq. (13) as the recursion

Zy=AZy 1+ By, te{l,...,T} (14)
Using Eq. (14), we obtain that

Vf()\) = VE(ST)ZT

VE(ST>(ATZT_1 + BT)

= VE(st)(ArAr—1Zr_9+ ArBr_1 + Br)

: T T
= VE(sT)Z< 1T AS> B,. (15)

t=1 \s=t+41

Note that the recurrence (14) on the Jacobian matrix is
structurally identical to the recurrence in the RTRL pro-
cedure described in (Williams & Zipser, 1989, eq. (2.10)).

From the above derivation it is apparent that V f(\) can be
computed by an iterative algorithm which runs in parallel
to the training algorithm. Pseudo-code of FORWARD-HG
is presented in Algorithm 2. At first sight, the computa-
tion of the terms in the right hand side of Eq. (14) seems
prohibitive. However, in Section 4 we observe that if m
is much smaller than d, the computation can be done effi-
ciently.

3.3. Real-Time Forward-Mode

For every t € {1,...,T} let f; : R™ — R be the re-
sponse function at time ¢: fi(A) = E(s¢(A\)). Note that
fr coincides with the definition of the response function
in Eq. (4). A major difference between REVERSE-HG and
FORWARD-HG is that the partial hypergradients

- dE(St)
D)

are available in the second procedure at each time step ¢
and not only at the end.

Vfi(A)

The availability of partial hypergradients is significant
since we are allowed to update hyperparameters several
times in a single optimization epoch, without having to
wait until time 7". This is reminiscent of the real-time up-
dates suggested by Williams & Zipser (1989) for RTRL.
The real-time approach may be suitable in the case of a
data stream (i.e. T = o0), where REVERSE-HG would
be hardly applicable. Even in the case of finite (but large)
datasets it is possible to perform one hyperparameter up-
date after a hyper-batch of data (i.e. a set of minibatches)

has been processed. Algorithm 2 can be easily modified
to yield a partial hypergradient when ¢ mod A = 0 (for
some hyper-batch size A) and letting ¢ run from 1 to oo,
reusing examples in a circular or random way. We use this
strategy in the phone recognition experiment reported in
Section 5.3.

4. Complexity Analysis

We discuss the time and space complexity of Algorithms 1
and 2. We begin by recalling some basic results from the
algorithmic differentiation (AD) literature.

Let I/ : R™ — RP be a differentiable function and sup-
pose it can be evaluated in time c(n, p) and requires space
s(n,p). Denote by Jp the p X n Jacobian matrix of F.
Then the following facts hold true (Griewank & Walther,
2008) (see also Baydin et al. (2015) for a shorter account):

(i) For any vector r € R, the product Jrr can be evalu-
ated in time O(c(n, p)) and requires space O(s(n, p))
using forward-mode AD.

(ii) For any vector ¢ € RP, the product J}.q has time and
space complexities O(c(n,p)) using reverse-mode
AD.

(iii) As a corollary of item (i), the whole Jgr can be
computed in time O(nc(n,p)) and requires space
O(s(n,p)) using forward-mode AD (just use unitary
vectors r = e; fort =1,...,n).

(iv) Similarly, Jp can be computed in time O(pc(n, p))
and requires space O(c(n,p)) using reverse-mode
AD.

Let g(d, m) and h(d, m) denote time and space, respec-
tively, required to evaluate the update map ®; defined by
Eq. (1). Then the response function f : R™ — R defined
in Eq. (3) can be evaluated in time O(T'g(d, m)) (assuming
the time required to compute the validation error E(\) does
not affect the bound?) and requires space O(h(d,m)) since
variables s; may be overwritten at each iteration. Then, a
direct application of Fact (i) above shows that Algorithm 2
runs in time O(T'mg(d, m)) and space O(h(d,m)). The
same results can also be obtained by noting that in Algo-
rithm 2 the product A;Z; 1 requires m Jacobian-vector
products, each costing O(g(d, m)) (from Fact (i)), while
computing the Jacobian B; takes time O(mg(d, m)) (from
Fact (iii)).

Similarly, a direct application of Fact (ii) shows that
Algorithm 1 has both time and space complexities
O(Tg(d,m)). Again the same results can be obtained by

2This is indeed realistic since the number of validation exam-
ples is typically lower than the number of training iterations.
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noting that ayy1A4;, and «ayB; are transposed-Jacobian-
vector products that in reverse-mode take both time
O(g(d,m)) (from Fact (ii)). Unfortunately in this case
variables s; cannot be overwritten, explaining the much
higher space requirement.

As an example, consider training a neural network with
k weights®, using classic iterative optimization algorithms
such as SGD (possibly with momentum) or Adam, where
the hyperparameters are just learning rate and momentum
terms. In this case, d = O(k) and m = O(1). Moreover,
g(d,m) and h(d,m) are both O(k). As a result, Algo-
rithm 1 runs in time and space O(T'k), while Algorithm 2
runs in time O(T'k) and space O(k), which would typically
make a dramatic difference in terms of memory require-
ments.

S. Experiments

In this section, we present numerical simulations with
the proposed methods. All algorithms were implemented
in TensorFlow and the software package used to repro-
duce our experiments is available at https://github.
com/lucfra/RFHO. In all the experiments, hypergradi-
ents were used inside the Adam algorithm (Kingma & Ba,
2014) in order to minimize the response function.

5.1. Data Hyper-cleaning

The goal of this experiment is to highlight one potential ad-
vantage of constraints on the hyperparameters. Suppose we
have a dataset with label noise and due to time or resource
constraints we can only afford to cleanup (by checking and
correcting the labels) a subset of the available data. Then
we may use the cleaned data as the validation set, the rest
as the training set, and assign one hyperparameter to each
training example. By putting a sparsity constraint on the
vector of hyperparameters A, we hope to bring to zero the
influence of noisy examples, in order to generate a better
model. While this is the same kind of data sparsity ob-
served in support vector machines (SVM), our setting aims
to get rid of erroneously labeled examples, in contrast to
SVM which puts zero weight on redundant examples. Al-
though this experimental setup does not necessarily reflect
a realistic scenario, it aims to test the ability of our HO
method to effectively make use of constraints on the hyper-
parameters*

We instantiated the above setting with a balanced subset of
N = 20000 examples from the MNIST dataset, split into
three subsets: Dy, of Ny, = 5000 training examples, )V of

3This includes linear SVM and logistic regression as special
cases.

“We note that a related approach based on reinforcement learn-
ing is presented in (Fan et al., 2017).

Ny = 5000 validation examples and a test set containing
the remaining samples. Finally, we corrupted the labels of
2500 training examples, selecting a random subset Dy C
Dir-

We considered a plain softmax regression model with pa-
rameters W (weights) and b (bias). The error of a model
(W,b) on an example = was evaluated by using the cross-
entropy ¢(W,b,x) both in the training objective func-
tion, F,., and in the validation one, FE,,. We added in
E,, an hyperparameter vector A € [0, 1]Vt that weights
each example in the training phase, i.e. FE, (W,b) =

N iy, Ml(W,b,zy).

According to the general HO framework, we fit the param-
eters (T, b) to minimize the training loss and the hyperpa-
rameters A to minimize the validation error. The sparsity
constraint was implemented by bounding the L1-norm of
A, resulting in the optimization problem

min Eva(Wr,br)  (Pro)

where A = {\ : A € [0,1]V ||A]|x < R} and (Wr, br)
are the parameters obtained after T iterations of gradient
descent on the training objective. Given the high dimen-
sionality of A\, we solved (Pgo) iteratively computing the
hypergradients with REVERSE-HG method and projecting
Adam updates on the set A.

We are interested in comparing the following three test set
accuracies:

e Oracle: the accuracy of the minimizer of F\, trained
on clean examples only, i.e. (D, \D;)UV; this setting
is effectively taking advantage of an oracle that tells
which examples have a wrong label;

e Baseline: the accuracy of the minimizer of E, trained
on all available data D U V;

e DH-R: the accuracy of the data hyper-cleaner with
a given value of the L1 radius, R. In this case, we
first optimized hyperparameters and then constructed
a cleaned training set D. C Dy, (keeping examples
with \; > 0); we finally trained on D, U V.

We are also interested in evaluating the ability of the hyper-
cleaner to detect noisy samples. Results are shown in Ta-
ble 1. The data hyper-cleaner is robust with respect to the
choice of R and is able to identify corrupted examples, re-
covering a model that has almost the same accuracy as a
model produced with the help of an oracle.

Figure 1 shows how the accuracy of DH-1000 improves
with the number of hyper-iterations and the progression of
the amount of discarded examples. The data hyper-cleaner
starts by discarding mainly corrupted examples, and while
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Table 1: Test accuracies for the baseline, the oracle, and DH-R
for four different values of R. The reported F; measure is the
performance of the hyper-cleaner in correctly identifying the cor-
rupted training examples.

Accuracy % B

Oracle 90.46 1.0000
Baseline 87.74 -

DH-1000 90.07 0.9137
DH-1500 90.06 0.9244
DH-2000 90.00 0.9211
DH-2500 90.09 0.9217

Accuracy and sparsity of A

»n 3500 92
[
g 3000
E i 90
& 2500 =
R [ 88
[ N >
T 2000 ®
3 86 g
2 1500 — — Validation 2
? 1000 Test 84
[ == TP ~
Qa 82
£ 500 — Fp
3
= 0 80
0 100 200 300 400 500

Hyper-iterations

Figure 1: Right vertical axis: accuracies of DH-1000 on valida-
tion and test sets. Left vertical axis: number of discarded exam-
ples among noisy (True Positive, TP) and clean (False Positive,
FP) ones.

the optimization proceeds, it begins to remove also a por-
tion of cleaned one. Interestingly, the test set accuracy con-
tinues to improve even when some of the clean examples
are discarded.

5.2. Learning Task Interactions

This second set of experiments is in the multitask learning
(MTL) context, where the goal is to find simultaneously
the model of multiple related tasks. Many MTL methods
require that a task interaction matrix is given as input to
the learning algorithm. However, in real applications, this
matrix is often unknown and it is interesting to learn it from
data. Below, we show that our framework can be naturally
applied to learning the task relatedness matrix.

We used CIFAR-10 and CIFAR-100 (Krizhevsky & Hin-
ton, 2009), two object recognition datasets with 10 and 100
classes, respectively. As features we employed the pre-
activation of the second last layer of Inception-V3 model
trained on ImageNet’. From CIFAR-10, we extracted 50

3 Available at t inyurl.com/h2x8wws

examples as training set, different 50 examples as valida-
tion set and the remaining for testing. From CIFAR-100,
we selected 300 examples as training set, 300 as validation
set and the remaining for testing. Finally, we used a one-
hot encoder of the labels obtaining a set of labels in {0, 1}%
(K =10 or K = 100).

The choice of small training set sizes is due to the strong
discriminative power of the selected features. In fact, using
larger sample sizes would not allow to appreciate the ad-
vantage of MTL. In order to leverage information among
the different classes, we employed a multitask learning
(MTL) regularizer (Evgeniou et al., 2005)

K K
Qoo (W) = Y Ciullwy —will3+p ) [Jwkl?,
k=1

Jik=1

where wy, are the weights for class k, K is the num-
ber of classes, and the symmetric non-negative matrix C'
models the interactions between the classes/tasks. We
used a regularized training error defined as Ei, (W) =
> iep,, LWz +b,y:) + Qc,, (W) where £(-, -) is the cat-
egorical cross-entropy and b = (by,...,bx) is the vector
of thresholds associated with each linear model. We wish
solve the following optimization problem:

min {Eval(WT,bT) subjectto p>0,C=CT, C > O},

where (W, br) is the T-th iteration obtained by running
gradient descent with momentum (GDM) on the training
objective. We solve this problem using REVERSE-HG and
optimizing the hyperparameters by projecting Adam up-
dates on the set {(p,C) : p > 0, C = C7, C > 0}.
We compare the following methods:

e SLT: single task learning, i.e. C' = 0, using a valida-
tion set to tune the optimal value of p for each task;

e NMTL: we considered the naive MTL scenario in
which the tasks are equally related, that is C;, = a
forevery 1 < j, k < K. In this case we learn the two
non-negative hyperparameters a and p;

e HMTL: our hyperparameter optimization method
REVERSE-HG to tune C' and p;

e HMTL-S: Learning the matrix C' with only few exam-
ples per class could bring the discovery of spurious re-
lationships. We try to remove this effect by imposing
the constraint that ij Cirx <R, where® R = 1073,
In this case, Adam updates are projected onto the set

{(p,C):p=>0,C=CT,C>0, Zj,k Cjr < R}.

Results of five repetitions with different splits are presented
in Table 2. Note that HMTL gives a visible improvement in

SWe observed that R = 10~ * yielded very similar results.
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Figure 2: Relationship graph of CIFAR-10 classes. Edges repre-
sent interaction strength between classes.

Table 2: Test accuracy+standard deviation on CIFAR-10 and
CIFAR-100 for single task learning (STL), naive MTL (NMTL)
and our approach without (HMTL) and with (HMTL-S) the L1-
norm constraint on matrix C.

CIFAR-10  CIFAR-100
STL 67.47+£2.78 18.99+1.12
NMTL 69.41£1.90 19.191+0.75
HMTL 70.85+1.87 21.15+0.36
HMTL-S 71.62+1.34 22.09+0.29

performance, and adding the constraint that 0, , Cjx < R
further improves performance in both datasets The matrix
C can been interpreted as an adjacency matrix of a graph,
highlighting the relationships between the classes. Figure
2 depicts the graph for CIFAR-10 extracted from the algo-
rithm HMTL-S. Although this result is strongly influenced
by the choice of the data representations, we can note that
animals tends to be more related to themselves than to ve-
hicles and vice versa.

5.3. Phone Classification

The aim of the third set of experiments is to assess the effi-
cacy of the real-time FORWARD-HG algorithm (RTHO).
We run experiments on phone recognition in the mul-
titask framework proposed in (Badino, 2016, and refer-
ences therein). Data for all experiments was obtained from
the TIMIT phonetic recognition dataset (Garofolo et al.,
1993). The dataset contains 5040 sentences correspond-
ing to around 1.5 million speech acoustic frames. Training,
validation and test sets contain respectively 73%, 23% and
4% of the data. The primary task is a frame-level phone
state classification with 183 classes and it consists in learn-
ing a mapping fp from acoustic speech vectors to hidden
Markov model monophone states. Each 25ms speech frame
is represented by a 123-dimensional vector containing 40
Mel frequency scale cepstral coefficients and energy, aug-
mented with their deltas and delta-deltas. We used a win-
dow of eleven frames centered around the prediction target
to create the 1353-dimensional input to fp. The secondary
(or auxiliary) task consists in learning a mapping fg from
acoustic vectors to 300-dimensional real vectors of context-
dependent phonetic embeddings defined in (Badino, 2016).

Table 3: Frame level phone-state classification accuracy on stan-
dard TIMIT test set and execution time in minutes on one Titan X
GPU. For RS, we set a time budget of 300 minutes.

Accuracy %  Time (min)
Vanilla 59.81 12
RS 60.36 300
RTHO 61.97 164
RTHO-NT 61.38 289

As in previous work, we assume that the two mappings fp
and fg share inputs and an intermediate representation, ob-
tained by four layers of a feed-forward neural network with
2000 units on each layer. We denote by W the parameter
vector of these four shared layers. The network has two
different output layers with parameter vectors W and W
each relative to the primary and secondary task. The net-
work is trained to jointly minimize Eoq (W, WP W¥9) =
Ep(W,WP) 4 pEs(W,W*?), where the primary error Ep
is the average cross-entropy loss on the primary task, the
secondary error Fg is given by mean squared error on the
embedding vectors and p > 0 is a design hyperparame-
ter. Since we are ultimately interested in learning fp, we
formulate the hyperparameter optimization problem as

min { Eya(Wr, Wf) subjectto p,n >0,0 < p <1},

where E., is the cross entropy loss computed on a vali-
dation set after T iterations of stochastic GDM, and n and
1 are defined in (2). In all the experiments we fix a mini-
batch size of 500. We compare the following methods:

1. Vanilla: the secondary target is ignored (p = 0); 1 and
w are set to 0.075 and 0.5 respectively as in (Badino,
2016).

2. RS: random search with p ~ U(0,4), n ~ £(0.1) (ex-
ponential distribution with scale parameter 0.1) and
w~U(0,1) (Bergstra & Bengio, 2012).

3. RTHO: real-time hyperparameter optimization with
initial learning rate and momentum factor as in Vanilla
and initial p set to 1.6 (best value obtained by grid-
search in Badino (2016)).

4. RTHO-NT: RTHO with “null teacher,” i.e. when the
initial values of p, n and p are set to 0. We regard
this experiment as particularly interesting: this initial
setting, while clearly not optimal, does not require any
background knowledge on the task at hand.

We also tried to run FORWARD-HG for a fixed number of
epochs, not in real-time mode. Results are not reported



Forward and Reverse Gradient-Based Hyperparameter Optimization

since the method could not make any appreciable progress
after running 24 hours on a Titan X GPU.

Test accuracies and execution times are reported in Table 3.
Figure 3 shows learning curves and hyperparameter evolu-
tions for RTHO-NT. In Experiments 1 and 2 we employ a
standard early stopping procedure on the validation accu-
racy, while in Experiments 3 and 4 a natural stopping time
is given by the decay to 0 of the learning rate (see Figure 3
left-bottom plot). In Experiments 3 and 4 we used a hyper-
batch size of A = 200 (see Eq. (16)) and a hyper-learning
rate of 0.005.

Validation error
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Figure 3: Learning curves and hyperparameter evolutions for
RTHO-NT: the horizontal axis runs with the hyper-batches. Top-
left: frame level accuracy on mini-batches (Training) and on a
randomly selected subset of the validation set (Validation). Top-
right: validation error E\,1 on the same subset of the validation
set. Bottom-left: evolution of optimizer hyperparameters 7 and
. Bottom-right: evolution of design hyperparameter p.

The best results in Table 3 are very similar to those ob-
tained in state-of-the-art recognizers using multitask learn-
ing (Badino, 2016; 2017). In spite of the small number of
hyperparameters, random search yields results only slightly
better than the vanilla network (the result reported in Ta-
ble 3 are an average over 5 trials, with a minimum and max-
imum accuracy of 59.93 and 60.86, respectively). Within
the same time budget of 300 minutes, RTHO-NT is able
to find hyperparameters yielding a substantial improvement
over the vanilla version, thus effectively exploiting the aux-
iliary task. Note that the model trained has more that
15 x 10® parameters for a corresponding state of more than
30 x 10° variables. To the best of our knowledge, reverse-
mode (Maclaurin et al., 2015) or approximate (Pedregosa,
2016) methods have not been applied to models of this size.

6. Discussion

We studied two alternative strategies for computing the hy-
pergradients of any iterative differentiable learning dynam-

ics. Previous work has mainly focused on the reverse-mode
computation, attempting to deal with its space complexity,
that becomes prohibitive for very large models such as deep
networks.

Our first contribution is the definition and the application of
forward-mode computation to HO. Our analysis suggests
that for large models the forward-mode computation may
be a preferable alternative to reverse-mode if the number of
hyperparameters is small. Additionally, forward-mode is
amenable to real-time hyperparameter updates, which we
showed to be an effective strategy for large datasets (see
Section 5.3). We showed experimentally that even starting
from a far-from-optimal value of the hyperparameters (the
null teacher), our RTHO algorithm finds good values at a
reasonable cost, whereas other gradient-based algorithms
could not be applied in this context.

Our second contribution is the Lagrangian derivation of the
reverse-mode computation. It provides a general frame-
work to tackle hyperparameter optimization problems in-
volving a wide class of response functions, including those
that take into account the whole parameter optimization dy-
namics. We have also presented in Sections 5.1 and 5.2 two
non-standard learning problems where we specifically take
advantage of a constrained formulation of the HO problem.

We close by highlighting some potential extensions of our
framework and direction of future research. First, the rel-
atively low cost of our RTHO algorithm could suggest to
make it a standard tool for the optimization of real-valued
critical hyperparameters (such as learning rates, regular-
ization factors and error function design coefficient), in
context where no previous or expert knowledge is avail-
able (e.g. novel domains). Yet, RTHO must be thor-
oughly validated on diverse datasets and with different
models and settings to empirically asses its robustness and
its ability to find good hyperparameter values. Second,
in order to perform gradient-based hyperparameter opti-
mization, it is necessary to set a descent procedure over
the hyperparameters. In our experiments we have always
used Adam with a manually adjusted value for the hyper-
learning rate. Devising procedures which are adaptive in
these hyper-hyperparameters is an important direction of
future research. Third, extensions of gradient-based HO
techniques to integer or nominal hyperparameters (such as
the depth and the width of a neural network) require ad-
ditional design efforts and may not arise naturally in our
framework. Future research should instead focus on the in-
tegration of gradient-based algorithm with Bayesian opti-
mization and/or with emerging reinforcement learning hy-
perparameter optimization approaches (Zoph & Le, 2016).
A final important problem is to study the converge prop-
erties of RTHO. Results in Pedregosa (2016) may prove
useful in this direction.
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