
Convolutional Sequence to Sequence Learning

A. Weight Initialization
We derive a weight initialization scheme tailored to the GLU
activation function similar to Glorot & Bengio (2010); He et al.
(2015b) by focusing on the variance of activations within the
network for both forward and backward passes. We also detail
how we modify the weight initialization for dropout.
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A lower bound is given by (1/4)V ar[y
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We initialize the embedding matrices in our network with small
variances (around 0.01), which allows us to dismiss the quadratic
term and approximate the GLU output variance with
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Following (He et al., 2015b), we aim to satisfy the condition
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so that the activations in a network are neither exponentially
magnified nor reduced. This is achieved by initializing W
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A.2. Backward Pass
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Here, n̂

l

is the number of inputs to layer l+1. The gradients
for the GLU inputs are:
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We observe relatively small gradients in our network, typically
around 0.001 at the start of training. Therefore, we approximate
by discarding the quadratic terms above, i.e.

V ar[�y

a

l

]⇡ 1

4

V ar[�x

l+1] (25)

V ar[�y

b

l

]⇡0 (26)

V ar[�x

l

]⇡ 1

4

n̂

l

V ar[w

a

l

]V ar[�x

l+1] (27)

As for the forward pass, the above result can be generalized to
backpropagation through many successive layers, resulting in
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and a similar condition, i.e. (1/4)n̂
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networks we consider, successions of convolutional layers usually
operate on the same number of inputs so that most cases n
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For arbitrarily large variances of network inputs and activations,
our approximations are invalid; in that case, the initial values for
W

a

l

and W b

l

would have to be balanced for the input distribution
to be retained. Alternatively, methods that explicitly control
the variance in the network, e.g. batch normalization (Ioffe &
Szegedy, 2015) or layer normalization (Ba et al., 2016) could
be employed.

A.3. Dropout

Dropout retains activations in a neural network with a probability
p and sets them to zero otherwise (Srivastava et al., 2014). It is
common practice to scale the retained activations by 1/p during
training so that the weights of the network do not have to be
modified at test time when p is set to 1. In this case, dropout
amounts to multiplying activations x by a Bernoulli random vari-
able r where Pr[r=1/p]=p and Pr[r=0]=1�p (Srivastava
et al., 2014). It holds that E[r]=1 and V ar[r]=(1�p)/p. If
x is independent of r and E[x]=0, the variance after dropout is

V ar[xr]=E[r]

2
V ar[x]+V ar[r]V ar[x] (29)

=

✓
1+

1�p

p

◆
V ar[x] (30)

=

1

p

V ar[x] (31)

Assuming that a the input of a convolutional layer has been
subject to dropout with a retain probability p, the variations of
the forward and backward activations from§A.1 and§A.2 can

now be approximated with
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This amounts to a modified initialization of W
l

from a normal
distribution with zero mean and a standard deviation of

p
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For layers without a succeeding GLU activation function,
we initialize weights from N (0,

p
p/n) to calibrate for any

immediately preceding dropout application.

B. Upper Bound on Squared Sigmoid
The sigmoid function �(x) can be expressed as a hyperbolic
tangent by using the identity tanh(x) = 2�(2x) � 1. The
derivative of tanh is tanh
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C. Attention Visualization
Figure 3 shows attention scores for a generated sentence from
the WMT’14 English-German task. The model used for this plot
has 8 decoder layers and a 80K BPE vocabulary. The attention
passes in different decoder layers capture different portions of
the source sentence. Layer 1, 3 and 6 exhibit a linear alignment.
The first layer shows the clearest alignment, although it is slightly
off and frequently attends to the corresponding source word of
the previously generated target word. Layer 2 and 8 lack a clear
structure and are presumably collecting information about the
whole source sentence. The fourth layer shows high alignment
scores on nouns such as “festival”, “way” and “work” for both the
generated target nouns as well as their preceding words. Note that
in German, those preceding words depend on gender and object
relationship of the respective noun. Finally, the attention scores in
layer 5 and 7 focus on “built”, which is reordered in the German
translation and is moved from the beginning to the very end of
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the sentence. One interpretation for this is that as generation
progresses, the model repeatedly tries to perform the re-ordering.
“aufgebaut” can be generated after a noun or pronoun only, which
is reflected in the higher scores at positions 2, 5, 8, 11 and 13.
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Figure 3. Attention scores for different decoder layers for a sentence translated from English (y-axis) to German (x-axis). This model uses 8 decoder
layers and a 80k BPE vocabulary.


