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A. Proof of Theorem 1
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tone and non-negative (Sharma et al., 2015). To complete
the proof, we introduce following approximation guarantee
of the greedy algorithm with a ‘noise’ during the selection
(Streeter & Golovin, 2009).
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This completes the proof of Theorem 1.

B. Proof of Theorem 2
As we explained in Section 2.3, Chebyshev expansion of
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We estimate the log-determinant difference while random
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where the first inequality holds from (Avron & Toledo,
2011) and the second is from combining (6) with the tri-
angle inequality. To complete the proof, we use following
two lemmas.



Faster Greedy MAP Inference for Determinantal Point Processes

Lemma 3. Let T
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(·) be Chebyshev polynomial with k-
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Lemma 4. Let c
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be the k-th coefficient of Chebyshev ex-
pansion for f (x). Suppose f is analytic with |f (z)|  M
in the region bounded by the ellipse with foci ±1 and the
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et al., 2015).

Using Lemma 3 and 4, we can write
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where the second inequality holds from Lemma 3 and the
thrid is from Lemma 4. This completes the proof of Theo-
rem 2.

B.1. Proof of Lemma 3
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B.2. Proof of Lemma 4
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This completes the proof of Lemma 4.
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