
Faster Greedy MAP Inference for Determinantal Point Processes

Insu Han 1 Prabhanjan Kambadur 2 Kyoungsoo Park 1 Jinwoo Shin 1

Abstract
Determinantal point processes (DPPs) are popu-
lar probabilistic models that arise in many ma-
chine learning tasks, where distributions of di-
verse sets are characterized by matrix determi-
nants. In this paper, we develop fast algorithms
to find the most likely configuration (MAP) of
large-scale DPPs, which is NP-hard in general.
Due to the submodular nature of the MAP ob-
jective, greedy algorithms have been used with
empirical success. Greedy implementations re-
quire computation of log-determinants, matrix
inverses or solving linear systems at each itera-
tion. We present faster implementations of the
greedy algorithms by utilizing the complemen-
tary benefits of two log-determinant approxima-
tion schemes: (a) first-order expansions to the
matrix log-determinant function and (b) high-
order expansions to the scalar log function with
stochastic trace estimators. In our experiments,
our algorithms are significantly faster than their
competitors for large-scale instances, while sac-
rificing marginal accuracy.

1. Introduction
Determinantal point processes (DPPs) are elegant proba-
bilistic models, first introduced by (Macchi, 1975), who
called them ‘fermion processes’. Since then, DPPs have
been extensively studied in the fields of quantum physics
and random matrices (Johansson, 2006), giving rise to a
beautiful theory (Daley & Vere-Jones, 2007). The charac-
teristic of DPPs is repulsive behavior, which makes them
useful for modeling diversity.

Recently, they have been applied in many machine learning
tasks such as summarization (Gong et al., 2014), human

1School of Electrical Engineering, Korea Advanced Institute
of Science and Technology (KAIST), Daejeon, Republic of Ko-
rea. 2Bloomberg LP, 731 Lexington Avenue, New York, NY,
10069. Correspondence to: Jinwoo Shin <jinsoos@kaist.ac.kr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

pose detection (Kulesza et al., 2012), clustering (Kang,
2013) and tweet time-line generation (Yao et al., 2016).
In particular, their computational advantage compared to
other probabilistic models is that many important infer-
ence tasks are computationally tractable. For example,
conditioning, sampling (Kang, 2013) and marginalization
of DPPs admit polynomial-time/efficient algorithms, while
those on popular graphical models (Jordan, 1998) do not,
i.e., they are NP-hard. One exception is the MAP infer-
ence (finding the most likely configuration), which is our
main interest; the MAP computation is known to be NP-
hard even for DPPs (Kulesza et al., 2012).

The distribution of diverse sets under DPPs is characterized
by determinants of submatrices formed by their features,
and the corresponding MAP inference reduces to finding a
submatrix that maximizes its determinant. It is well known
that the matrix log-determinant is a submodular function;
that is, the MAP inference of DPPs is a special instance of
submodular maximization (Kulesza et al., 2012). Greedy
algorithms have been shown to have the best worst-case ap-
proximation guarantees for many instances of submodular
maximization; for example, (1 − 1/e)-approximation for
monotone functions. Furthermore, it has been often empir-
ically observed that greedy algorithms provide near optimal
solutions (Krause et al., 2008). Hence, greedy algorithms
have been also applied for the DPP task (Kulesza et al.,
2012; Yao et al., 2016; Zhang & Ou, 2016). Known imple-
mentations of greedy selection on DPP require computa-
tion of log-determinants, matrix inversions (Kulesza et al.,
2012) or solving linear systems (Li et al., 2016b). Conse-
quently, they run in O(d4) time where d is the total number
of items (see Section 2.3). In this paper, we propose faster
greedy implementations that run in O(d3) time.

Contribution. Our high-level idea is to amortize greedy
operations by utilizing log-determinant approximation
schemes. A greedy selection requires computation of
marginal gains of log-determinants; we consider their first-
order (linear) approximations. We observe that the compu-
tation of multiple marginal gains can be amortized into a
single run of a linear solver, in addition to multiple vector
inner products. We choose the popular conjugate gradient
descent (CG) (Saad, 2003) as a linear solver. In addition,
for improving the quality of first-order approximations, we
partition remaining items into p ≥ 1 sets (via some cluster-

Faster Greedy MAP Inference for Determinantal Point Processes

ing algorithm), and apply the first-order approximations in
each partition. The resulting approximate computation of
multiple marginal gains at each greedy selection requires
2p runs of CG under the Schur complement, and the over-
all running time of the proposed greedy algorithm becomes
O(d3) under the choice of p = O(1) (see Section 3).

Next, for larger-scale DPPs, we develop an even faster
greedy algorithm using a batch strategy. In addition to us-
ing the first-order approximations of log-determinants un-
der a partitioning scheme, we add k > 1 elements instead
of a single element to the current set, where we sample
some candidates among all possible k elements to relax the
expensive cost of computing all marginal gains. Intuitively,
the random batch selection makes the algorithm k times
faster, while potentially hurting the approximation quality.
Now, we suggest running the recent fast log-determinant
approximation scheme (LDAS) (Han et al., 2015) p times,
instead of running CG pk times under the Schur comple-
ment, where LDAS utilizes high-order, i.e., polynomial, ap-
proximations to the scalar log function with stochastic trace
estimators. Since the complexities of running LDAS and CG

are comparable, running the former p times is faster than
running the latter pk times if k > 1.

Finally, we discovered a novel scheme for boosting the
approximation quality by sharing random vectors among
many runs of LDAS, and also establish theoretical justifi-
cation why this helps. Our experiments on both synthetic
and real-world dataset show that the proposed algorithms
are significantly faster than competitors for large-scale in-
stances, while losing marginal approximation ratio.

Related work. To the best of our knowledge, this is the
first work that aims for developing faster greedy algorithms
specialized for the MAP inference of DPP, while there has
been several efforts on those for general submodular max-
imization. An accelerated greedy algorithm, called lazy
evaluation, was first proposed by (Minoux, 1978) which
maintains the upper bounds on the marginal gains instead
of recomputing exact values. In each iteration, only el-
ements with the maximal bound compute the exact gain,
which still bounds on the exact value due to submodularity.
For the DPP case, we also observe that the lazy algorithm
is significantly faster than the standard greedy one, while
the outputs of both are equal. Hence, we compare our al-
gorithms with the lazy one (see Section 5).

Another natural approach is on stochastic greedy selec-
tions computing marginal gains of randomly selected el-
ements. Its worst-case approximation guarantee was also
studied (Mirzasoleiman et al., 2015), under the standard,
non-batch, greedy algorithm. The idea of stochastic se-
lections can be also applied to our algorithms, where we
indeed apply it for designing our faster batch greedy algo-
rithm as mentioned earlier. Recently, (Buchbinder et al.,

2015) proposed a ‘one-pass’ greedy algorithm where each
greedy selection requires computing only a single marginal
gain, i.e., the number of marginal gains necessary to com-
pute can be significantly reduced. However, this algorithm
is attractive only for the case when evaluating a marginal
gain does not increase with respect to the size of the cur-
rent set, which does not hold for the DPP case. As reported
in Section 5, it performs significantly worse than ours in
both their approximation qualities and running times.

There have been also several efforts to design paral-
lel/distributed implementations of greedy algorithms: (Pan
et al., 2014) use parallel strategies for the above one-pass
greedy algorithm and (Kumar et al., 2015) adapt a MapRe-
duce paradigm for implementing greedy algorithms in dis-
tributed settings. One can also parallelize our algorithms
easily since they require independent runs of matrix-vector
(or vector inner) products, but we do not explore this as-
pect in this paper. Finally, we remark that a non-greedy
algorithm was studied in (Gillenwater et al., 2012) for bet-
ter MAP qualities of DPP, but it is much slower than ours
as reported in Section 5.

2. Preliminaries
We start by defining a necessary notation. Our algorithms
for determinantal point processes (DPPs) select elements
from the ground set of d items Y = [d] := {1, 2, . . . , d}
and denote the set of all subsets of Y by 2Y . For any pos-
itive semidefinite matrix L ∈ Rd×d, we denote λmin and
λmax to be the smallest and the largest eigenvalues of L.
Given subset X,Y ⊆ Y , we use LX,Y to denote the sub-
matrix of L obtained by entries in rows and columns in-
dexed by X and Y , respectively. For notational simplic-
ity, we let LX,X = LX and LX,{i} = LX,i for i ∈ Y .
In addition, LX is defined as the average of LX∪{i} for
i ∈ Y \ X . Finally, 〈·, ·〉 means the matrix/vector inner
product or element-wise product sum.

In Section 2.1, we introduce the maximum a posteriori
(MAP) inference of DPP, then the standard greedy op-
timization scheme and its naı̈ve implementations are de-
scribed in Section 2.2 and Section 2.3, respectively.

2.1. Determinantal Point Processes

DPPs are probabilistic models for subset selection of a fi-
nite ground set Y = [d] that captures both quality and di-
versity. Formally, it defines the following distribution on
2Y : for random variable X ⊆ Y drawn from given DPP,
we have

Pr [X = X] ∝ det (LX) ,

where L ∈ Rd×d is a positive definite matrix called an
L-ensemble kernel. Under the distribution, several proba-
bilistic inference tasks are required for real-world applica-

Faster Greedy MAP Inference for Determinantal Point Processes

tions, including MAP (Gong et al., 2014; Gillenwater et al.,
2012; Yao et al., 2016), sampling (Kathuria & Deshpande,
2016; Kang, 2013; Li et al., 2016a), marginalization and
conditioning (Gong et al., 2014). In particular, we are in-
terested in the MAP inference, i.e., finding the most diverse
subset Y of Y that achieves the highest probability, i.e.,
arg maxY⊆Y det(LY), possibly under some constraints on
Y . Unlike other inference tasks on DPP, it is known that
MAP is a NP-hard problem (Kulesza et al., 2012).

2.2. Greedy Submodular Maximization

A set function f : 2Y → R is submodular if its marginal
gains are decreasing, i.e.,

f(X ∪ {i})− f(X) ≥ f(Y ∪ {i})− f(Y),

for every X ⊆ Y ⊂ Y and every i ∈ Y \ Y . We say
f is monotone if f(X) ≤ f(Y) for every X ⊆ Y . It
is well known that DPP has the submodular structure, i.e.,
f = log det is submodular.

The submodular maximization task is to find a subset max-
imizing a submodular function f , which corresponds to the
MAP inference task in the DPP case. Hence, it is NP-hard
and a popular approximate scheme is the following greedy
procedure (Nemhauser et al., 1978): initially, X ← ∅ and
iteratively update X ← X ∪ {imax} for

imax = argmax
i∈Y\X

f(X ∪ {i})− f(X), (1)

as long as f(X ∪ {imax}) > f(X). For the monotone
case, it guarantees (1 − 1/e)-approximation (Nemhauser
et al., 1978). Under some modifications of the standard
greedy procedure, 2/5-approximation can be guaranteed
even for non-monotone functions (Feige et al., 2011). Ir-
respectively of such theoretical guarantees, it has been em-
pirically observed that greedy selection (1) provides near
optimal solutions in practice (Krause et al., 2008; Sharma
et al., 2015; Yao et al., 2016; Zhang & Ou, 2016).

2.3. Naı̈ve Implementations of Greedy Algorithm

Log-determinant or related computations, which are at the
heart of greedy algorithms for MAP inference of DPPs,
are critical to compute the marginal gain log detLX∪{i} −
log detLX . Since the exact computations of log-
determinants might be slow, i.e., requires O(d3) time for
d-dimensional matrices, we introduce recent efficient log-
determinant approximation schemes (LDAS). The log-
determinant of a symmetric positive definite matrix A can
be approximated by combining (a) Chebyshev polynomial
expansion of scalar log function and (b) matrix trace esti-
mators via Monte Carlo methods:

log detA = tr (logA)
(a)
≈ tr (pn(A))

(b)
≈ 1

m

m∑
t=1

v(t)>pn(A)v(t).

Here, pn(x) is a polynomial expansion of degree n approx-
imating log x and v(1), . . . ,v(m) are random vectors used
for estimating the trace of pn(A). Several polynomial ex-
pansions, including Taylor (Boutsidis et al., 2015), Cheby-
shev (Han et al., 2015) and Legendre (Peng & Wang, 2015)
have been studied. For trace estimation, several random
vectors have been also studied (Avron & Toledo, 2011),
e.g., the Hutchinson method (Hutchinson, 1990) chooses
elements of v as i.i.d. random numbers in {−1,+1} so that
E
[
v>Av

]
= tr (A). In this paper, we use LDAS using the

Chebyshev polynomial and Hutchinson method (Han et al.,
2015), but one can use other alternatives as well.

Log-determinant Approximation Scheme (LDAS) (Han
et al., 2015)

Input: symmetric matrix A ∈ Rd×d with eigenvalues in
[δ, 1− δ], sampling number m and polynomial degree n
Initialize: Γ← 0
cj ← j-th coefficient of Chebyshev expansion of log x
on [δ, 1− δ] for 0 ≤ j ≤ n.
for i = 1 to m do

Draw a random vector v(i) ∈ {−1,+1}d whose en-
tries are uniformly distributed.
w

(i)
0 ← v(i) and w

(i)
1 ← 2

1−2δAv
(i) − 1

1−2δv
(i)

u← c0w
(i)
0 + c1w

(i)
1

for j = 2 to n do
w

(i)
2 ← 4

1−2δAw
(i)
1 − 2

1−2δw
(i)
1 −w

(i)
0

u← u + cj w
(i)
2

w
(i)
0 ← w

(i)
1 and w

(i)
1 ← w

(i)
2

end for
Γ← Γ + v(i)>u/m

end for
Output: Γ

Observe that LDAS only requires matrix-vector multiplica-
tions and its running time is Θ

(
d2
)

for constants m,n =
O(1). One can directly use LDAS for computing (1) and the
resulting greedy algorithm runs in Θ(d · T 3

GR) time where
the number of greedy updates on the current set X is TGR.
Since TGR = O(d), the complexity is simply O(d4). An al-
ternative way to achieve the same complexity is to use the
Schur complement (Ouellette, 1981):

log detLX∪{i} − log detLX = log
(
Li,i − Li,XL−1X LX,i

)
.

(2)

This requires a linear solver to compute L−1X LX,i; conju-
gate gradient descent (CG) (Greenbaum, 1997) is a popular
choice in practice. Hence, if one applies CG to compute the
max-marginal gain (1), the resulting greedy algorithm runs
in Θ(d · T 3

GR · TCG) time, where TCG denotes the number of
iterations of each CG run. In the worst case, CG converges
to the exact solution when TCG grows with the matrix di-
mension, but for practical purposes, it typically provides a

Faster Greedy MAP Inference for Determinantal Point Processes

very accurate solution in few iterations, i.e., TCG = O(1).
Recently, Gauss quadrature via Lanczos iteration is used
for efficient computing of Li,XL−1X LX,i (Li et al., 2016b).
Although it guarantees rigorous upper/lower bounds, CG is
faster and accurate enough for most practical purposes.

In summary, the greedy MAP inference of DPP can be im-
plemented efficiently via LDAS or CG. The faster implemen-
tations proposed in this paper smartly employ both of them
as key components utilizing their complementary benefits.

3. Faster Greedy DPP Inference
In this section, we provide a faster greedy submodular max-
imization scheme for the MAP inference of DPP. We ex-
plain our key ideas in Section 3.1 and then, provide the
formal algorithm description in Section 3.2.

3.1. Key Ideas

First-order approximation of log-determinant. The
main computational bottleneck of a greedy algorithm is to
evaluate the marginal gain (1) for every element not in the
current set. To reduce the time complexity, we consider
the following first-order, i.e., linear, approximation of log-
determinant as:1

argmax
i∈Y\X

log detLX∪{i} − log detLX

= argmax
i∈Y\X

log detLX∪{i} − log detLX

≈ argmax
i∈Y\X

〈
L
−1
X , LX∪{i} − LX

〉
, (3)

where we recall that LX is the average of LX∪{i}. Observe
that computing (3) requires the vector inner product of a
single column (or row) of L

−1
X and LX∪{i} − LX because

LX∪{i} and LX share almost all entries except a single row
and a column.

To obtain a single column of L
−1
X , one can solve a linear

system using the CG algorithm. More importantly, it suf-
fices to run CG once for computing (3), while the naı̈ve
greedy implementation in Section 2.3 has to run CG |Y \X|
times. As we mentioned earlier, after obtaining the single
column of L

−1
X using CG, one has to perform |Y \X| vector

inner products in (3), but it is much cheaper than |Y \ X|
CG runs requiring matrix-vector multiplications.

Partitioning. In order to further improve the quality of
first-order approximation (3), we partition Y \ X into p
distinct subsets so that

‖LX∪{i} − LX‖F � ‖LX∪{i} − L
(j)

X ‖F ,

where an element i is in the partition j ∈ [p], L
(j)

X is the

1 ∇X log detX =
(
X−1

)>

average of LX∪{i} for i in the partition j, and ‖·‖F is the
Frobenius norm. Since LX∪{i} becomes closer to the aver-

age L
(j)

X , one can expect that the first-order approximation
quality in (3) is improved. But, we now need a more ex-
pensive procedure to approximate the marginal gain:

log detLX∪{i} − log detLX

=
(

log detLX∪{i} − log detL
(j)

X

)
+
(

log detL
(j)

X − log detLX

)
≈
〈(

L
(j)

X

)−1
, LX∪{i} − L

(j)

X

〉
︸ ︷︷ ︸

(a)

+
(

log detL
(j)

X − log detLX

)
︸ ︷︷ ︸

(b)

.

The first term (a) can be computed efficiently as we ex-
plained earlier, but we have to run CG p times for computing
single columns of L

(1)

X , . . . , L
(p)

X . The second term (b) can
be also computed using CG similarly to (2) under the Schur
complement. Hence, one has to run CG 2p times in total.
If p is large, the overall complexity becomes larger, but the
approximation quality improves as well. We also note that
one can try various clustering algorithms, e.g., k-means or
Gaussian mixture. Instead, we use a simple random parti-
tioning scheme because it is not only the fastest method but
it also works well in our experiments.

3.2. Algorithm Description and Guarantee

The formal description of the proposed algorithm is de-
scribed in Algorithm 1.

Algorithm 1 Faster Greedy DPP Inference

1: Input: kernel matrix L ∈ Rd×d and number of parti-
tions p

2: Initialize: X ← ∅
3: while Y \X 6= ∅ do
4: Partition Y \X randomly into p subsets.
5: for j = 1 to p do
6: L

(j)

X ← average of LX∪{i} for i in the partition j

7: z(j) ← (|X|+ 1)-th column of
(
L
(j)

X

)−1
8: Γj ← log detL

(j)

X − log detLX
9: end for

10: for i ∈ Y \X do
11: ∆i ←

〈
LX∪{i} − L

(j)

X , Mat
(
z(j)
)〉

2 + Γj

where element i is included in partition j.
12: end for
13: imax ← argmaxi∈Y\X ∆i

14: if log detLX∪{imax} − log detLX < 0 then
15: return X
16: end if
17: X ← X ∪ {imax}
18: end while

Faster Greedy MAP Inference for Determinantal Point Processes

As we explained in Section 3.1, the lines 7, 8 require to run
CG. Hence, the overall complexity becomes Θ(T 3

GR ·TCG ·p+
d·T 2

GR) = Θ(T 3
GR+d·T 2

GR), where we choose p, TCG = O(1).
Since TGR = O(d), it is simply O(d3) and better than the
complexity O(d4) of the naı̈ve implementations described
in Section 2.3. In particular, if kernel matrix L is sparse,
i.e., number of non-zeros of each column/row isO(1), ours
has the complexity Θ(T 2

GR + d · TGR) while the naı̈ve ap-
proaches are still worse having the complexity Θ(d · T 2

GR).

We also provide the following approximation guarantee of
Algorithm 1 for the monotone case, where its proof is given
in the supplementary material.

Theorem 1. Suppose the smallest eigenvalue of L is
greater than 1. Then, it holds that

log detLX ≥ (1− 1/e) max
Z⊆Y,|Z|=|X|

log detLZ − 2|X|ε.

where

ε = max
X⊆Y,i∈Y\X

j∈[p]

∣∣∣∣∣log
detLX∪{i}

detL
(j)

X

−
〈(

L
(j)

X

)−1
, LX∪{i} − L

(j)

X

〉∣∣∣∣∣
and X is the output of Algorithm 1.

The above theorem captures the relation between the first-
order approximation error ε > 0 in (3) and the worst-case
approximation ratio of the algorithm.

4. Faster Batch-Greedy DPP Inference
In this section, we present an even faster greedy algorithm
for the MAP inference task of DPP, in particular for large-
scale tasks. On top of ideas described in Section 3.1, we
use a batch strategy, i.e., add k elements instead of a sin-
gle element to the current set, where LDAS in Section 2.3 is
now used as a key component. The batch strategy acceler-
ates our algorithm. We first provide the formal description
of the batch greedy algorithm in Section 4.1. In Section
4.2, we describe additional ideas on applying LDAS as a
subroutine of the proposed batch algorithm.

4.1. Algorithm Description

The formal description of the proposed algorithm is de-
scribed in Algorithm 2. Similar to the line 7 in Al-
gorithm 1, the line 8 of Algorithm 2 can be solved by
the CG algorithms. However, the line 9 of Algorithm
2 uses the LDAS and we remind that it runs in Θ(d2)
time. In addition, the line 12 requires the vector inner
products ks times. Thus, the total complexity becomes
Θ
(
T 3
GR ·
(
TCG + mn

k

)
· p+ s · T 2

GR + s · TCG
)

= Θ(T 3
GR)

2For Z ∈ Rd×k, Mat(Z) ∈ Rd×d is defined whose the last k
columns and rows are equal to Z and Z>, respectively, and other
entries set to 0.

Algorithm 2 Faster Batch-Greedy DPP Inference

1: Input: kernel matrix L ∈ Rd×d, number of partitions
p, batch size k and the number of batch samples s

2: Initialize: X ← ∅
3: while Y \X is not empty do
4: Ii ← Randomly draw a batch of size k for i ∈ [s].
5: Partition [s] randomly into p subsets.
6: for j = 1 to p do
7: L

(j)

X ← average of LX∪Ii for i in the partition j
8: Z(j) ← (|X| + 1) to (|X| + k)-th columns of(

L
(j)

X

)−1
9: Γj ← log detL

(j)

X using LDAS.
10: end for
11: for i = 1 to s do
12: ∆Batch

i ←
〈
LX∪Ii − L

(j)

X , Mat
(
Z(j)

)〉
2 + Γj

where a batch index i is included in j-th partition.
13: end for
14: imax ← argmaxi∈[s] ∆Batch

i

15: if log detLX∪Iimax
− log detLX < 0 then

16: return X
17: end if
18: X ← X ∪ Iimax

19: end while

where TGR is the number of greedy updates on the current
set X and we choose all parameters p, TCG, k, s,m, n =
O(1). We note that Algorithm 2 is expected to perform
faster than Algorithm 1 when both TGR and d are large. This
is primarily because the size of the current set X increases
by k > 1 for each greedy iteration. A larger choice of k
speeds up the algorithm up to k times, but it might hurt its
output quality. We explain more details of key components
of the batch algorithm below.

Batch selection. The essence of Algorithm 2 is adding k >
1 elements, called batch, simultaneously to the current set
with an improved marginal gain. Formally, it starts from
the empty set and recursively updates X ← X ∪ Imax for

Imax = argmax
I⊆Y\X,|I|=k

log detLX∪I . (4)

until no gain is attained. The non-batch greedy proce-
dure (1) corresponds to k = 1. Such batch greedy algo-
rithms have been also studied for submodular maximiza-
tion (Nemhauser et al., 1978; Hausmann et al., 1980) and
recently, (Liu et al., 2016) studied their theoretical guar-
antees showing that they can be better than their non-batch
counterparts under some conditions. The main drawback of
the standard batch greedy algorithms is that finding the op-
timal batch of size k requires computing too many marginal
gains of

(|Y\X|
k

)
subsets. To address the issue, we sample

Faster Greedy MAP Inference for Determinantal Point Processes

s �
(|Y\X|

k

)
bunches of batch subsets randomly and com-

pute approximate batch marginal gains using them. (Mirza-
soleiman et al., 2015) first propose an uniformly random
sampling to the standard non-batch greedy algorithm. The
authors show that it guarantees (1 − 1/e − O(e−s)) ap-
proximation ratio in expectation and report that it performs
well in many applications. In our experiments, we choose
s = 50 batch samples.

High-order approximation of log-determinant. Recall
that for Algorithm 1, we suggest using the CG algorithm
under the Schur complement for computing

log detL
(j)

X − log detLX . (5)

One can apply the same strategy for Algorithm 2, which
requires running the CG algorithm k times for (5). Instead,
we suggest running LDAS (using polynomial/high-order ap-
proximations of the scalar log function) only once, i.e., the
line 9, which is much faster if k is large. We remind that the
asymptotic complexities of CG and LDAS are comparable.

4.2. Sharing Randomness in Trace Estimators

To improve the approximation quality of Algorithm 2, we
further suggest running LDAS using the same random vec-
tors v(1), . . . ,v(m) across j ∈ [p]. This is because we are

interested in relative values log detL
(j)

X for j ∈ [p] instead
of their absolute ones.

true
sharing
independent

0

−1.5

−1.0

−0.5

0

partition index
5 10 15 20

Figure 1. Log-determinant estimation qualities of LDAS for shar-
ing and independent random vectors.

Our intuition is that different random vectors have differ-
ent bias, which hurt the comparison task. Figure 1 demon-
strates an experiment on the estimation of log detL

(j)

X

when random vectors are shared and independent, re-
spectively. This implies that sharing random vectors
might be worse for estimating the absolute values of log-
determinants, but better for comparing them.

We also formally justify the idea of sharing random vectors
as stated in the follows theorem whose proof is given in the
supplementary material.

Theorem 2. Suppose A,B are positive definite matrices
whose eigenvalues are in [δ, 1− δ] for δ > 0. Let ΓA,ΓB

be the estimations of log detA, log detB by LDAS using
the same random vectors v(1), . . . ,v(m) for both. Then, it
holds that

Var [ΓA − ΓB] ≤ 32M2ρ2 (ρ+ 1)
2

m (ρ− 1)
6

(1− 2δ)
2 ‖A−B‖

2
F

where M = 5 log (2/δ) and ρ = 1 + 2√
2/δ−1−1

.

Without sharing random vectors, the variance should grow
linearly with respect to ‖A‖2F + ‖B‖2F . In our case, matri-

ces A and B correspond to some of L
(j)

X , and ‖A−B‖2F is
significantly smaller than ‖A‖2F + ‖B‖2F . We believe that
our idea of sharing randomness might be of broader inter-
est in many applications of LDAS or its variants, requiring
multiple log-determinant computations.

5. Experimental Results
In this section, we evaluate our proposed algorithms for the
MAP inference on synthetic and real-world DPP instances.
3

Setups. The experiments are performed using a machine
with a hexa-core Intel CPU (Core i7-5930K, 3.5 GHz) and
32 GB RAM. We compare our algorithms with following
competitors: the lazy greedy algorithm (LAZY) (Minoux,
1978), double greedy algorithm (DOUBLE) (Buchbinder
et al., 2015) and softmax extension (SOFTMAX) (Gillen-
water et al., 2012). In all our experiments, LAZY is signifi-
cantly faster than the naı̈ve greedy algorithms described in
Section 2.3, while they produce the same outputs. Hence,
we use LAZY as the baseline of evaluation.

Unless stated otherwise, we choose parameters of p = 5,
k = 10, s = 50, m = 20 and n = 15, regardless matrix
dimension, for our algorithms. We also run CG until it
achieves convergence error less than 10−10 and typically
TCG ≤ 30.

Additional tricks for boosting accuracy. For boosting ap-
proximation qualities of our algorithms, we use the simple
trick in our experiments: recompute top ` marginal gains
exactly (using CG) where they are selected based on esti-
mated marginal gains, i.e., ∆i for Algorithm 1 and ∆Batch

i

for Algorithm 2. Then, our algorithms choose the best el-
ement among ` candidates, based on their exact marginal
gains. Since we choose small ` = 20 in our experiments,
this additional process increases the running times of our
algorithms marginally, but makes them more accurate. In
fact, the trick is inspired from (Minoux, 1978) where the
authors also recompute the exact marginal gains of few el-
ements. In addition, for boosting further approximation

3The codes are available in https://github.com/
insuhan/fastdppmap.

https://github.com/insuhan/fastdppmap
https://github.com/insuhan/fastdppmap

Faster Greedy MAP Inference for Determinantal Point Processes

Softmax
Lazy
Double
Algorithm 1
Algorithm 2lo

g
pr

ob
. r

at
io

 (v
s.

 L
az

y)

0.85

0.90

0.95

1.00

matrix dimension
5,000 10,000

(a)

Softmax
Lazy
Double
Algorithm 1
Algorithm 2

sp
ee

du
p

(v
s.

 L
az

y)

0

5

10

matrix dimension
5,000 10,000

Softmax
Lazy
Double

sp
ee

du
p

(v
s.

 L
az

y)

0.1

1

matrix dimension
5,000 10,000

Lazy
Algorithm 2

sp
ee

du
p

(v
s.

 L
az

y)

5

10

15

20

matrix dimension
20,000 40,000

(b)
Figure 2. Plot of (a) log-probability ratio and (b) speedup for SOFTMAX, DOUBLE, Algorithm 1 and Algorithm 2 compared to LAZY.
Algorithm 1 is about 3 times faster the lazy greedy algorithm (LAZY) while loosing only 0.2% accuracy at d = 10, 000. Algorithm 2
has 2% loss on accuracy but 9 times faster than LAZY at d = 10, 000. If dimension is d = 40, 000, it runs 19 times faster.

qualities of Algorithm 2, we also run Algorithm 1 in par-
allel and choose the largest one among {∆i,∆

Batch
i } given

the current set. Hence, at most iterations, the batch with the
maximal ∆Batch

i is chosen and increases the current set size
by k (i.e., making speed-up) as like Algorithm 2, and the
non-batch with the maximal ∆i is chosen at very last iter-
ations, which fine-tunes the solution quality. We still call
the synthesized algorithm by Algorithm 2 in this section.

Performance metrics. For the performance measure on
approximation qualities of algorithms, we use the follow-
ing ratio of log-probabilities:

log detLX/log detLXLAZY
.

where X and XLAZY are the outputs of an algorithm and
LAZY, respectively. Namely, we compare outputs of algo-
rithms with that of LAZY since the exact optimum is hard
to compute. Similarly, we report the running time speedup
of each algorithm over LAZY.

5.1. Synthetic Dataset

In this section, we use synthetic DPP datasets generated
as follows. As (Kulesza & Taskar, 2011; Kulesza et al.,
2012) proposed, a kernel matrix L for DPP can be re-
parameterized as

Li,j = qiφ
>
i φjqj ,

where qi ∈ R+ is considered as the quality of item i and
φi ∈ Rd is the normalized feature vector of item i so that
φ>i φj measures the similarity between i and j. We use
qi = exp (β1xi + β2) for the quality measurement xi ∈ R
and choose β1 = 0.01, β2 = 0.2. We choose each entry of
φi and xi drawn from the normal distribution N (0, 1) for
all i ∈ [d], and then normalize φi so that ‖φi‖2 = 1.

We first show how much the number of clusters p and the
batch size k are sensitive for Algorithm 1 and Algorithm 2,
respectively. Figure 3(a) shows the accuracy of Algorithm
1 with different numbers of clusters. It indeed confirms that
a larger cluster improves its accuracy since it makes first-

order approximations tighter. Figure 3(b) shows the perfor-
mance trend of Algorithm 2 as the batch size k increases,
which shows that a larger batch might hurt its accuracy.
Based on these experiments, we choose p = 5, k = 10 in
order to target 0.01 approximation ratio loss compared to
LAZY.

Lazy
Algorithm 1lo

g
pr

ob
. r

at
io

 (v
s.

 L
az

y)

0.992

0.994

0.996

0.998

1.000

number of clusters
20 40 60 80 100

(a)

Lazy
Algorithm 2

lo
g

pr
ob

. r
at

io
 (v

s.
 L

az
y)

0.985

0.990

0.995

1.000

batch size
5 10 15 20

(b)
Figure 3. Log-probability ratios compared to LAZY: (a) Algo-
rithm 1 changing the number of clusters p and (b) Algorithm
2 varying the batch size k. These experiments are done under
d = 1, 000.

We generate synthetic kernel matrices with varying dimen-
sion d up to 40, 000, and the performances of tested algo-
rithms are reported in Figure 2(a). One can observe that
LAZY seems to be near-optimal, where only SOFTMAX of-
ten provides marginally larger log-probabilities than LAZY
under small dimensions. Interestingly, we found that
DOUBLE has the strong theoretical guarantee for general
submodular maximization (Buchbinder et al., 2015), but its
practical performance for DPP is worst among evaluating
algorithms. Moverover, it is slightly slower than LAZY.
In summary, one can conclude that our algorithms can be
at orders of magnitude faster than LAZY, DOUBLE and
SOFTMAX, while loosing 0.01-approximation ratio. For
example, Algorithm 2 is 19 times faster than LAZY for
d = 40, 000, and the gap should increase for larger dimen-
sion d.

5.2. Real Dataset

We use real-world datasets of the following two tasks of
matched and video summarizations.

Faster Greedy MAP Inference for Determinantal Point Processes

Lazy
Algorithm 2lo

g
pr

ob
. r

at
io

 (v
s.

 L
az

y)

0.8

0.9

1.0

matrix dimension
1000 2000 3000 4000

(a)

Lazy
Algorithm 2

sp
ee

du
p

(v
s.

 L
az

y)

2

4

6

8

10

matrix dimension
1000 2000 3000 4000

(b)
Figure 4. Plot of log-probability ratio and speedup (log-scale) of
Algorithm 2, compared to LAZY, for matched summarization un-
der 2016 Republican presidential primaries.

Matched summarization. We evaluate our proposed al-
gorithms for matched summarization that is first proposed
by (Gillenwater et al., 2012). This task gives useful infor-
mation for comparing the texts addressed at different times
by the same speaker. Suppose we have two different doc-
uments and each one consists of several statements. The
goal is to apply DPP for finding statement pairs that are
similar to each other, while they summarize (i.e., diverse)
well the two documents. We use transcripts of debates in
2016 US Republican party presidential primaries speeched
by following 8 participates: Bush, Carson, Christie, Ka-
sich, Paul, Trump, Cruz and Rubio.4

We follow similar pre-processing steps of (Gillenwater
et al., 2012). First, every sentence is parsed and only nouns
except the stopwords are extracted via NLTK (Bird, 2006).
Then, we remove the ‘rare’ words occurring less than
10% of the whole debates, and then ignore each statement
which contains more ‘rare’ words than ’frequent’ ones in it.
This gives us a dataset containing 3, 406 distinct ‘frequent’
words and 1, 157 statements. For each statement pair (i, j),
feature vector φ(i,j) = wi + wj ∈ R3406 where wi is gen-
erated as a frequency of words in the statement i. Then, we
normalize φ(i,j). The match quality x(i,j) is measured as
the cosine similarity between two statements i and j, i.e.,
x(i,j) = w>i wj , and we remove statement pairs (i, j) such
that its match quailty x(i,j) is smaller than 15% of the maxi-
mum one. Finally, by choosing q(i,j) = exp

(
0.01 · x(i,j)

)
,

we obtain
(
8
2

)
= 28 kernel matrices of dimension d from

516 to 4, 000.

Figure 4 reports log-probability ratios and speedups of Al-
gorithm 2 under the 28 kernels. We observe that Algorithm
2 looses 0.03-approximation ratio on average, compared to
LAZY, under the real-world kernels. Interestingly, SOFT-
MAX runs much slower than even LAZY, while our algo-
rithm runs faster than LAZY for large dimension, e.g., 8
times faster for d = 4, 000 corresponding to transcripts of
Bush and Rubio.

4Details of the primaries are provided in http://www.
presidency.ucsb.edu/debates.php.

Lazy
Algorithm 1

F-
sc

or
e

0

0.5

1.0

video index
10 20 30

(a)

Lazy
Algorithm 1

sp
ee

du
p

(v
s.

 L
az

y)

0

5

10

matrix dimension
200 400 600 800

(b)

(c)

Figure 5. Plot of (a) F-scores for Algorithm 1 compared to LAZY

and (b) speedup of both algorithms. (c) shows the summaries of
YouTube video of index 99. Images in the first row are summaries
produced by LAZY and the second row images illustrate those
produced by Algorithm 1. The bottom 2 rows reflect ‘real’ user
summaries.

Video summarization. We evaluate our proposed algo-
rithms video summarization. We use 39 videos from a
Youtube dataset (De Avila et al., 2011), and the trained
DPP kernels from (Gong et al., 2014). Under the kernels,
we found that the numbers of selected elements from al-
gorithms are typically small (less than 10), and hence we
use Algorithm 1 instead of its batch version Algorithm 2.
For performance evaluation, we use an F-score based on
five sets of user summaries where it measures the quality
across two summaries.

Figure 5(a) illustrates F-score for LAZY and Algorithm 1
and Figure 5(b) reports its speedup. Our algorithm achieves
over 13 times speedup in this case, while it produces F-
scores that are very similar to those of LAZY. For some
video, it achieves even better F-score, as illustrated in 5(c).

6. Conclusion
We have presented fast algorithms for the MAP inference
task of large-scale DPPs. Our main idea is to amortize com-
mon determinant computations via linear algebraic tech-
niques and recent log-determinant approximation meth-
ods. Although we primarily focus on a special matrix op-
timization, we expect that several ideas developed in this
paper would be useful for other related matrix computa-
tional problems, in particular, involving multiple determi-
nant computations.

http://www.presidency.ucsb.edu/debates.php
http://www.presidency.ucsb.edu/debates.php

Faster Greedy MAP Inference for Determinantal Point Processes

Acknowledgements
This work was supported in part by the ICT R&D Program
of MSIP/IITP, Korea, under [2016-0-00563, Research on
Adaptive Machine Learning Technology Development for
Intelligent Autonomous Digital Companion].

References
Avron, Haim and Toledo, Sivan. Randomized algorithms

for estimating the trace of an implicit symmetric positive
semi-definite matrix. Journal of the ACM (JACM), 58(2):
8, 2011.

Bird, Steven. Nltk: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presenta-
tion sessions, pp. 69–72. Association for Computational
Linguistics, 2006.

Boutsidis, Christos, Drineas, Petros, Kambadur, Prab-
hanjan, and Zouzias, Anastasios. A randomized al-
gorithm for approximating the log determinant of a
symmetric positive definite matrix. arXiv preprint
arXiv:1503.00374, 2015.

Buchbinder, Niv, Feldman, Moran, Seffi, Joseph, and
Schwartz, Roy. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. SIAM
Journal on Computing, 44(5):1384–1402, 2015.

Daley, Daryl J and Vere-Jones, David. An introduction to
the theory of point processes: volume II: general the-
ory and structure. Springer Science & Business Media,
2007.

De Avila, Sandra Eliza Fontes, Lopes, Ana Paula Brandão,
da Luz, Antonio, and de Albuquerque Araújo, Arnaldo.
Vsumm: A mechanism designed to produce static video
summaries and a novel evaluation method. Pattern
Recognition Letters, 32(1):56–68, 2011.

Feige, Uriel, Mirrokni, Vahab S, and Vondrak, Jan. Max-
imizing non-monotone submodular functions. SIAM
Journal on Computing, 40(4):1133–1153, 2011.

Gillenwater, Jennifer, Kulesza, Alex, and Taskar, Ben.
Near-optimal map inference for determinantal point pro-
cesses. In Advances in Neural Information Processing
Systems, pp. 2735–2743, 2012.

Gong, Boqing, Chao, Wei-Lun, Grauman, Kristen, and
Sha, Fei. Diverse sequential subset selection for super-
vised video summarization. In Advances in Neural In-
formation Processing Systems, pp. 2069–2077, 2014.

Greenbaum, Anne. Iterative methods for solving linear sys-
tems. SIAM, 1997.

Han, Insu, Malioutov, Dmitry, and Shin, Jinwoo. Large-
scale log-determinant computation through stochastic
chebyshev expansions. In ICML, pp. 908–917, 2015.

Hausmann, Dirk, Korte, Bernhard, and Jenkyns, TA. Worst
case analysis of greedy type algorithms for indepen-
dence systems. In Combinatorial Optimization, pp. 120–
131. Springer, 1980.

Hutchinson, Michael F. A stochastic estimator of the trace
of the influence matrix for laplacian smoothing splines.
Communications in Statistics-Simulation and Computa-
tion, 19(2):433–450, 1990.

Johansson, Kurt. Course 1 random matrices and determi-
nantal processes. Les Houches, 83:1–56, 2006.

Jordan, Michael Irwin. Learning in graphical models, vol-
ume 89. Springer Science & Business Media, 1998.

Kang, Byungkon. Fast determinantal point process sam-
pling with application to clustering. In Advances in
Neural Information Processing Systems, pp. 2319–2327,
2013.

Kathuria, Tarun and Deshpande, Amit. On sampling and
greedy map inference of constrained determinantal point
processes. arXiv preprint arXiv:1607.01551, 2016.

Krause, Andreas, Singh, Ajit, and Guestrin, Carlos. Near-
optimal sensor placements in gaussian processes: The-
ory, efficient algorithms and empirical studies. Journal
of Machine Learning Research, 9(Feb):235–284, 2008.

Kulesza, Alex and Taskar, Ben. Learning determinantal
point processes. In In Proceedings of UAI. Citeseer,
2011.

Kulesza, Alex, Taskar, Ben, et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends R©
in Machine Learning, 5(2–3):123–286, 2012.

Kumar, Ravi, Moseley, Benjamin, Vassilvitskii, Sergei, and
Vattani, Andrea. Fast greedy algorithms in mapreduce
and streaming. ACM Transactions on Parallel Comput-
ing, 2(3):14, 2015.

Li, Chengtao, Jegelka, Stefanie, and Sra, Suvrit. Efficient
sampling for k-determinantal point processes. In Pro-
ceedings of the 19th International Conference on Artifi-
cial Intelligence and Statistics, pp. 1328–1337, 2016a.

Li, Chengtao, Sra, Suvrit, and Jegelka, Stefanie. Gaussian
quadrature for matrix inverse forms with applications.
In Proceedings of The 33rd International Conference on
Machine Learning, pp. 1766–1775, 2016b.

Faster Greedy MAP Inference for Determinantal Point Processes

Liu, Yajing, Zhang, Zhenliang, Chong, Edwin KP, and
Pezeshki, Ali. Performance bounds for the k-batch
greedy strategy in optimization problems with curva-
ture. In American Control Conference (ACC), 2016, pp.
7177–7182. IEEE, 2016.

Macchi, Odile. The coincidence approach to stochastic
point processes. Advances in Applied Probability, 7(01):
83–122, 1975.

Minoux, Michel. Accelerated greedy algorithms for maxi-
mizing submodular set functions. In Optimization Tech-
niques, pp. 234–243. Springer, 1978.

Mirzasoleiman, Baharan, Badanidiyuru, Ashwinkumar,
Karbasi, Amin, Vondrák, Jan, and Krause, Andreas.
Lazier than lazy greedy. In Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, 2015.

Nemhauser, George L, Wolsey, Laurence A, and Fisher,
Marshall L. An analysis of approximations for maximiz-
ing submodular set functionsi. Mathematical Program-
ming, 14(1):265–294, 1978.

Ouellette, Diane Valerie. Schur complements and statistics.
Linear Algebra and its Applications, 36:187–295, 1981.

Pan, Xinghao, Jegelka, Stefanie, Gonzalez, Joseph E,
Bradley, Joseph K, and Jordan, Michael I. Parallel dou-
ble greedy submodular maximization. In Advances in
Neural Information Processing Systems, pp. 118–126,
2014.

Peng, Wei and Wang, Hongxia. Large-scale log-
determinant computation via weighted l 2 polynomial
approximation with prior distribution of eigenvalues. In
International Conference on High Performance Comput-
ing and Applications, pp. 120–125. Springer, 2015.

Saad, Yousef. Iterative methods for sparse linear systems.
SIAM, 2003.

Sharma, Dravyansh, Kapoor, Ashish, and Deshpande,
Amit. On greedy maximization of entropy. In ICML,
pp. 1330–1338, 2015.

Yao, Jin-ge, Fan, Feifan, Zhao, Wayne Xin, Wan, Xiao-
jun, Chang, Edward, and Xiao, Jianguo. Tweet timeline
generation with determinantal point processes. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 3080–3086. AAAI Press, 2016.

Zhang, Martin J and Ou, Zhijian. Block-wise map infer-
ence for determinantal point processes with application
to change-point detection. In Statistical Signal Process-
ing Workshop (SSP), 2016 IEEE, pp. 1–5. IEEE, 2016.

