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1. Model architectures and training details

1.1. Optimization and regularization
All models optimized with Adam (Kingma & Ba, 2014) with learning rate = 0.001, 81 = 0.9, 8> = 0.999 and € = le - 08.

Unless otherwise specified, we trained our models for (1.5 x 10°/n) epochs with a batch size of 100, weight decay (L2
regularization) set to 0.001 and a dropout rate of min(1000/(1000 + n);0.5) where n is the number of training examples.
These heuristics were chosen because models trained on larger datasets larger datasets typically need fewer epochs (because
they do more mini-batch updates per an epoch), and models trained on larger datasets need less dropout regularization
(because the larger datasets reduce the risk of overfitting).

1.2. Architectures

The low dimensional domain experiment used multi-layer perceptrons for both the treatment and response networks. Both
networks had three hidden layers with 128, 64 and 32 units respectively. The treatment networks used tanh activation
functions and a mixture of gaussian output with 10 mixture components, while the response networks used relu activation
functions.

The high dimensional experiment used multiple convolution layers to construct an image embedding which was merged with
the additional features before applying further dense layers to produce the output (See Figure 1). Again, both the treatment
and response networks used the same architecture. The image embedding was constructed by applying two convolution
layers, each with 64 3 x 3 filters and relu activation layers, followed by a 2 x 2 max pooling layer and a single fully connected
layer that mapped to a 64 dimensional output embedding. The time of year feature, x, and fuel price instrument, z, (or price,
p, treatment variable in the case of the response network) were concatenated with this embedding layer before applying one
hidden layer and mapping to the output. The treatment network used the same mixture of gaussian output with 10 mixture
components while the response network mapped to a scalar output.
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Figure 1. The convolutional architecture used for the high dimensional simulation experiments.

2. Baselines models

Two stage least squares Standard two-stage least squares was used for the low dimensional experiment. For the high
dimensional experiment, it was necessary to add some L2 regularization (i.e. ridge regression) to avoid overfitting because
the model had a large number of parameters (MNIST digits are 28*%28 = 784 pixel). The pixels were flattened into a vector
and treated as features.

Two stage least squares with polynomial basis Again we followed the standard two-stage least square procedure, but
applied a polynomial basis expansion at each stage, where the basis expansion with interaction terms. The order of the
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polynomial and the ridge regression hyper-parameter were chosen using 5-fold cross-validation at each stage. Note: this
is not a causally valid procedure because the polynomial basis expansion invalidates the closed form solutions to the
expectations. We include it simply to compare to a more scalable flexible model.

Nonparametric Instrumental Kernel Regression We used the npregiv function in the np package (Hayfield et al.,
2008) in R. To reproduce the method described in Darolles et al. (2011), we followed the np package documentation’s
directives to set method = ‘Tikhonov’ and local constant kernel weighting. We experimented with alternative parameter
settings, but we unable to improve on these defaults in a reasonable amount of time. These methods tend to be extremely
slow in practice.
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