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A. Proof of Theorem 4.4

Since each f; is S-smooth, it follows that each F} is (-
smooth. Define Vf; = % Note that since the it-
erates (x¢ : t € [T]) depend on the gradient estimates,

the iterates are stochastic variables, as are Vf;. By -
smoothness of F}, we have
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Additionally, we each observe that V f; is an average of
w independently sampled unbiased gradient estimates of
variance o2 each. It follows as a consequence that
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Now, applying E [-|z;] on both sides, it follows that
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Also, we note that
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Adding the last two inequalities, we proceed to sum the
above inequality over all time steps:

2MT | Thn* 2
2M + “w + WU

E T
2

T
> IIVFt,w(l“t)IIQ] <
t=1

Setting n = 1/ yields the claim from the theorem.

Finally, note that for each round the number of stochastic
gradient oracle calls required is w. Therefore, across all T'
rounds, the number of noisy oracle calls is Tw. O

B. Proof of Theorem 5.1 (ii)

Following the technique from Theorem 3.1, for2 <t < T,
let 7, be the number of iterations of the inner loop during
the execution of Algorithm 3 during round ¢ — 1 (in order
to generate the iterate x;). Then, we have the following
lemma:
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Proof. This follows by summing the inequality Lemma 5.3
for across all pairs of consecutive iterates of the inner loop
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within the same epoch, and noting that each term ®(z) is
at least before the inner loop has terminated. O

Finally, we write (understanding Fy(zg) := 0):
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Using Lemma B.1, we have
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as claimed (recalling that we chose § = [ for this analysis).
O
C. Proof of Theorem 6.2

Summing up the definitions of w-regret bounds achieved
by each A, and truncating the first w — 1 terms, we get
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Thus, for some ¢ between w and T inclusive, it holds that
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Thus, for the same ¢ we have
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as claimed. O



