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A. Proof of Theorem 4.4
Since each ft is β-smooth, it follows that each Ft is β-
smooth. Define ∇̂ft = xt−xt+1

η . Note that since the it-
erates (xt : t ∈ [T ]) depend on the gradient estimates,
the iterates are stochastic variables, as are ∇̂ft. By β-
smoothness of Ft, we have
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Additionally, we each observe that ∇̂ft is an average of
w independently sampled unbiased gradient estimates of
variance σ2 each. It follows as a consequence that
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Now, applying E [·|xt] on both sides, it follows that(
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Also, we note that
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Adding the last two inequalities, we proceed to sum the
above inequality over all time steps:
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Setting η = 1/β yields the claim from the theorem.

Finally, note that for each round the number of stochastic
gradient oracle calls required is w. Therefore, across all T
rounds, the number of noisy oracle calls is Tw.

B. Proof of Theorem 5.1 (ii)
Following the technique from Theorem 3.1, for 2 ≤ t ≤ T ,
let τt be the number of iterations of the inner loop during
the execution of Algorithm 3 during round t − 1 (in order
to generate the iterate xt). Then, we have the following
lemma:

Lemma B.1. For any 2 ≤ t ≤ T ,

Ft−1(xt)− Ft−1(xt−1) ≤ −τt ·
δ3

2βw3
.

Proof. This follows by summing the inequality Lemma 5.3
for across all pairs of consecutive iterates of the inner loop
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within the same epoch, and noting that each term Φ(z) is
at least δ3

w3 before the inner loop has terminated.

Finally, we write (understanding F0(x0) := 0):
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Using Lemma B.1, we have
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as claimed (recalling that we chose δ = β for this analysis).

C. Proof of Theorem 6.2
Summing up the definitions of w-regret bounds achieved
by each A, and truncating the first w − 1 terms, we get
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Thus, for the same t we have
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as claimed.


