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Abstract

We consider regret minimization in repeated
games with non-convex loss functions. Minimiz-
ing the standard notion of regret is computation-
ally intractable. Thus, we define a natural no-
tion of regret which permits efficient optimiza-
tion and generalizes offline guarantees for con-
vergence to an approximate local optimum. We
give gradient-based methods that achieve optimal
regret, which in turn guarantee convergence to
equilibrium in this framework.

1. Introduction

Repeated games with non-convex utility functions serve to
model many natural settings, such as multiplayer games
with risk-averse players and adversarial (e.g. GAN) train-
ing. However, standard regret minimization and equilibria
computation with general non-convex losses are computa-
tionally hard. This paper studies computationally tractable
notions of regret minimization and equilibria in non-convex
repeated games.

Efficient online learning algorithms are intimately con-
nected to convexity. This connection is natural, since in
a very broad sense', convexity captures efficient computa-
tion in continuous mathematical optimization.

The recent success of non-convex learning models, no-
tably deep neural networks, motivates the need for effi-
cient non-convex optimization. Since the latter is NP-hard
in general, efficient optimization methods for non-convex
optimization are designed to find local minima of varied
quality. Stochastic gradient-based methods for non-convex
optimization are currently state-of-the-art in training non-
convex machines.
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'Though by no means exclusively, PCA and other spectral
methods being a notable exception.

In this paper we investigate the generalization of the non-
convex statistical, or batch, learning model to online learn-
ing. The main question we ask is what kind of guaran-
tees can be obtained efficiently in an adversarial non-convex
scenario.

After briefly discussing why standard regret is not a suit-
able metric of performance, we introduce and motivate /o-
cal regret, a surrogate for regret to the non-convex world.
We then proceed to give efficient algorithms for non-
convex online learning with optimal guarantees for this new
objective. In analogy with the convex setting, we discuss
the way our framework captures the offline and stochastic
cases. In the final section, we describe a game-theoretic so-
lution concept which is intuitively appealing, and, in con-
trast to Nash equilibria, efficiently attainable by simple al-
gorithms.

1.1. Related work

The field of online learning is by now rich with a diverse
set of algorithms for extremely general scenarios, see e.g.
(Cesa-Bianchi & Lugosi, 2006). For bounded cost func-
tions over a bounded domain, it is well known that versions
of the multiplicative weights method gives near-optimal re-
gret bounds (Cover, 1991; Vovk, 1990; Arora et al., 2012).

Despite the tremendous generality in terms of prediction,
the multiplicative weights method in its various forms
yields only exponential-time algorithms for these general
scenarios. This is inevitable, since regret minimization im-
plies optimization, and general non-convex optimization is
NP-hard. Convex forms of regret minimization have dom-
inated the learning literature in recent years due to the fact
that they allow for efficient optimization, see e.g. (Hazan,
2016; Shalev-Shwartz, 2011).

Non-convex mathematical optimization algorithms typi-
cally find a local optimum. For smooth optimization,
gradient-based methods are known to find a point with gra-
dient of squared norm at most € in O(é) iterations (Nes-
terov, 2004).2 A rate of O(Z) is known for stochastic

2We note here that we measure the squared norm of the

gradient, since it is more compatible with convex optimization.
The mathematical optimization literature sometimes measures the
norm of the gradient without squaring it.
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gradient descent (Ghadimi & Lan, 2013). Further accel-
erations in terms of the dimension are possible via adaptive
regularization (Duchi et al., 2011).

Recently, stochastic second-order methods have been con-
sidered, which enable even better guarantees for non-
convex optimization: not only is the gradient at the point
returned small, but the Hessian is also guaranteed to be
close to positive semidefinite (i.e. the objective function
is locally almost-convex), see e.g. (Erdogdu & Montanari,
2015; Carmon et al., 2016; Agarwal et al., 2016a;b).

The relationship between regret minimization and learning
in games has been considered in both the machine learning
literature, starting with (Freund & Schapire, 1997), and the
game theory literature by (Hart & Mas-Colell, 2000). Mo-
tivated by (Hart & Mas-Colell, 2000), (Blum & Mansour,
2005) study reductions from internal to external regret, and
(Hazan & Kale, 2007) relate the computational efficiency
of these reductions to fixed point computations.

2. Setting

We begin by introducing the setting of online non-convex
optimization, which is modeled as a game between a
learner and an adversary. During each iteration ¢, the
learner is tasked with predicting x; from L C R", a con-
vex decision set. Concurrently, the adversary chooses a loss
function f; : £ — R; the learner then observes f;(x) (via
access to a first-order oracle) and suffers a loss of fi(x).
This procedure of play is repeated across 7' rounds.

The performance of the learner is measured through its re-
gret, which is defined as a function of the loss sequence
f1,- .., fr and the sequence of online decisions x1, . ..,z
made by the learner. We discuss our choice of regret mea-
sure at length in Section 2.2.

Throughout this paper, we assume the following standard
regularity conditions:

Assumption 2.1. We assume the following is true for each
loss function fy:

(i) fiis bounded: |fi(x)| < M.

(ii) fi is L-Lipschitz: | fi(z) — fi(y)| < L||x — y||-
(iii) f; is B-smooth (has a B-Lipschitz gradient):
IV fi(x) = V)l < Bllz — yl|.
2.1. Projected Gradients and Constrained Non-Convex
Optimization

In constrained non-convex optimization, minimizing the
gradient presents difficult computational challenges. In
general, even when objective functions are smooth and

bounded, local information may provide no information
about the location of a stationary point. This motivates us
to refine our search criteria.

Consider, for example, the function sketched in Figure 1.
In this construction, defined on the hypercube in R", the
unique point with a vanishing gradient is a hidden valley,
and gradients outside this valley are all identical. Clearly,
it is hopeless in an information-theoretic sense to find this
point efficiently: the number of value or gradient evalua-
tions of this function must be exp(€2(n)) to discover the
valley.

Figure 1. A difficult “needle in a haystack” case for constrained
non-convex optimization. Left: A function with a hidden val-
ley, with small gradients shown in yellow. Right: Regions with
small projected gradient for the same function. For smaller 7,
only points near the valley and bottom-left corner have small pro-
jected gradient.

To circumvent such inherently difficult and degenerate
cases, we relax our conditions, and try to find a vanish-
ing projected gradient. In this section, we introduce this
notion formally, and motivate it as a natural quantity of in-
terest to capture the search for local minima in constrained
non-convex optimization.

Definition 2.2 (Projected gradient). Let f : K — R be
a differentiable function on a closed (but not necessarily
bounded) convex set K C R™ Letn > 0. We define
Vicnf : K — R the (K,n)-projected gradient of f, by

Viewf(a) & % (T [ — 7V (@),

where Il [-] denotes the orthogonal projection onto K.

This can be viewed as a surrogate for the gradient which
ensures that the gradient descent step always lies within £,
by transforming it into a projected gradient descent step.
Indeed, one can verify by definition that

r—nVi () =g [z —nVf(z)].
In particular, when /C = R",
Viala) = (o = o+ 19 /() = V(o).

and we retrieve the usual gradient at all x.
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We first note that there always exists a point with vanishing
projected gradient.

Proposition 2.3. Let IC be a compact convex set, and sup-
pose [ : K — R satisfies Assumption 2.1. Then, there
exists some point x* € IC for which

V)C,nf(x*) =0
Proof. Consider the map g : L — I, defined by

9(@) Ex — Vi, f(2) =k [z =V f(2)].

This is a composition of continuous functions (noting that
the smoothness assumption implies that V f is continuous),
and is therefore continuous. Thus g satisfies the conditions
for Brouwer’s fixed point theorem, implying that there ex-
ists some z* € K for which g(z*) = z*. At this point, the
projected gradient vanishes. O

In the limit where ||V f(z)|| is infinitesimally small, the
projected gradient is equal to the gradient in the interior of
KC; on the boundary of /C, it is the gradient with its outward-
facing component removed. This exactly captures the first-
order condition for a local minimum.

The final property that we note here is that an approximate
local minimum, as measured by a small projected gradient,
is robust with respect to small perturbations.

Proposition 2.4. Let x be any point in K C R", and let f, g
be differentiable functions K — R. Then, for any n > 0,

IVicalf +9l@)| < Vi f (@) +[[Vg(2)ll

Proof. Letu = x+nV f(z), and v = u+nVg(z). Define
their respective projections v’ = Ilx [u],v" = Ik [v], so
that v’ =z — )V, f(z) and v’ = & — 9V, [f + g](2).
We first show that ||u' — o'|| < |ju — v]|.

By the generalized Pythagorean theorem for convex sets,
we have both (v/ —v',v —v’) < 0and (v — v/, u — ') <
0. Summing these, we get

(W —v' =0 — (u—0)) <0

/”2 S <ul _ ’U/,U _ ’U>

= v —v
< " =l =l
as claimed. Finally, by the triangle inequality, we have

IVialf +gl(@)| = [Vien f ()]l
< [ Vienlf +9l(2) = Vien f ()|

1
= v’ =]

IA

1
—|lu —v|| = ||Vyg ,
77” = 1Vg()|l

as required.

In particular, this fact

Vi f (@)l < V()]

As we demonstrate later, looking for a small projected gra-
dient becomes a feasible task. In Figure 1 above, such a
point exists on the boundary of /C, even when there is no
“hidden valley” at all.

immediately implies that

2.2. A Local Regret Measure

In the well-established framework of online convex opti-
mization, numerous algorithms can efficiently achieve op-
timal regret, in the sense of converging in terms of average
loss towards the best fixed decision in hindsight. That is,
for any u € K, one can play iterates x1, ...,z such that

1 I
Z fe(ze)
1:1
Unfortunately, even in the offline case, it is too ambitious
to converge towards a global minimizer in hindsight. In
the existing literature, it is usual to state convergence guar-
antees towards an e-approximate stationary point — that is,
there exists some iterate z; for which |V f(z)|? < e. As
discussed in the previous section, the projected gradient is
a natural analogue for the constrained case.

In light of the computational intractability of direct ana-
logues of convex regret, we introduce local regret, a new
notion of regret which quantifies the objective of predict-
ing points with small gradients on average. The remainder
of this paper discusses the motivating roles of this quantity.

Throughout this paper, for convenience, we will use the
following notation to denote the sliding-window time av-
erage of functions f, parametrized by some window size
1<w<T:

w—1
Frw(@) = % Z fi—i(z)
i=0

For simplicity of notation, we define f;(x) to be identically
zero for all ¢ < 0. We define local regret below:

Definition 2.5 (Local regret). Fix some n > 0. Define the
w-local regret of an online algorithm as

T
def
Ruo(T) L3 (Ve Fr (@),

t=1

When the window size w is understood by context, we omit
the parameter, writing simply local regret as well as Fy(x).

We turn to the first motivating perspective on local regret.
When an algorithm incurs local regret sublinear in 7', a ran-
domly selected iterate has a small time-averaged gradient
in expectation:
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Proposition 2.6. Let z1,...,xr be the iterates produced
by an algorithm for online non-convex optimization which
incurs a local regret of R, (T). Then,

Ny (T)
T

Eitmit(r)) [1VicnFrow(@)|?] <

This generalizes typical convergence results for the gradi-
ent in offline non-convex optimization; we discuss concrete
reductions in Section 4.

2.3. Why Smoothing is Necessary

In this section, we show that for any online algorithm, an
adversarial sequence of loss functions can force the local
regret incurred to scale with 1" as (2 (%) This demon-
strates the need for a time-smoothed performance measure
in our setting, and justifies our choice of larger values of
the window size w in the sections that follow.

Theorem 2.7. Define K = [-1,1]. For any T > 1,
1 <w < T, andn < 1, there exists a distribution D on
0-smooth, 1-bounded cost functions f1, ..., fr on KC such
that for any online algorithm, when run on this sequence of
functions,

Ep [ (T)] > ﬁ HUJ .

Proof. We begin by partitioning the 7" rounds of play into

L%J repeated segments, each of length 2w.

For the first half of the first segment (f = 1,...,w), the
adversary declares that

e For odd ¢, select f;(x) i.i.d. as follows:

—x, with probability 1
fulz) == P 2

x,  with probability §
e Forevent, fi(x) := —fi_1(x).

During the second half (t = w + 1,...,2w), the adver-
sary sets all f;(z) = 0. This construction is repeated | 5= |

times, padding the final 7" mod 2w costs arbitrarily with

By this construction, at each round ¢ at which f;(z) is
drawn randomly, we have F} () = fi(z)/w. Further-
more, for any z; played by the algorithm, | f;(x¢)| = 1 with
probability at least 3. so thatE |||V, Fyw () [|?] > 52z
The claim now follows from the fact that there are at least
%5 of these rounds per segment, and exactly [%J segments

in total.

We further note that the notion of time-smoothing cap-
tures non-convex online optimization under limited con-
cept drift: in online learning problems where F} ,,(z) ~

fi(z), a bound on local regret truly captures a guarantee of
playing points with small gradients.

3. An Efficient Non-Convex Regret
Minimization Algorithm

Our approach, as given in Algorithm 1, is to play follow-
the-leader iterates, approximated to a suitable tolerance
using projected gradient descent. ~We show that this
method efficiently achieves an optimal local regret bound
of O (%), taking O (T'w) iterations.

w?

Algorithm 1 Time-smoothed online gradient descent

1: Input: window size w > 1, learning rate 0 < n < g,
tolerance d > 0, a convex body L C R™,

2: Set xy € K arbitrarily.

3: fort=1,...,Tdo

4:  Predict z;. Observe the cost function f; : £ — R.
5: Initialize Ti41 = Tt

6:  while ||Vic ,Fyw(zeq1)]| > 0/w do

7: Update z;11 := 2441 — 77VIC,7;Ft,w($t+1)-

8:  end while

9: end for

Theorem 3.1. Let f1, ..., fr be the sequence of loss func-
tions presented to Algorithm 1, satisfying Assumption 2.1.
Then:

(i) The w-local regret incurred satisfies

R, (T) < (6 4 2L)° %

(ii) The total number of gradient steps T taken by Algo-
rithm 1 satisfies

M
rgiz
62 (n— 24

Proof of (i). We note that Algorithm 1 will only play an
iterate z; if ||Vic nFi—1.0|| < 6/w. (Note that at t = 1,
Fy_1.4 is zero.) Let hy(z) = i (fe(z) — fi—w(x)), which
is %-Lipschitz. Then, for each 1 < ¢t < T we have a
bound on each cost

. (2Tw + w2) .

IV i Feow(@)I> = Vic [Fraw—1 + he(2)] ()

< IV Fraw-1ll + [ Vhe(a:)])?
2 2
. (6 . 2L) _ (620

)

“\w  w w2

where the first inequality follows from Proposition 2.4.
Summing over all ¢ gives the desired result. O
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Proof of (ii). First, we require an additional property of the
projected gradient.

Lemma 3.2. Let K € R"™ be a closed convex set, and let
n > 0. Suppose [ : IC — R is differentiable. Then, for any
z €R

(Vf(@), Vieuf@) = [Vieaf @)

Proof. Letu =x —nV f(x) and v/ = I [u]. Then,

(Vf(@), Vnf(@) Vi f@)]?
n? n?
=(u—mzu —z)— (v —x,u — )

=(u—u,u —x) >0,

where the last inequality follows by the generalized
Pythagorean theorem. [

For 2 <t < T, let 7y be the number of gradient steps taken
in the outer loop at iteration ¢ — 1, in order to compute the
iterate x;. For convenience, define 7y = 0. We establish a
progress lemma during each gradient descent epoch:

Lemma 3.3. Forany?2 <t < T,

2 2
Fi1(xy) = Fo1(wi—1) £ =74 (77 — 677) i

2 ) w?’

Proof. Consider a single iterate z of the inner loop, and
the next iterate 2’ := z — nVi ,Fi_1(z). We have, by
[3-smoothness of F;_1,

Fir() = Fea(2) < (VEa(2),2 = 2) 4 D1 — 2P

2
= 0 (VE (), Ve Fra(2)) + 2 Vi a P ()

Thus, by Lemma 3.2,

_ by

Fis?) = Fal) < - (0= O ) I9kaFia P

The algorithm only takes projected gradient steps when
IVinFi—1(2)|| > d/w. Summing across all 7; consec-

utive iterations in the epoch yields the claim. O

To complete the proof of the theorem, we write the tele-
scopic sum (understanding Fy (o) = 0):

T
Fr(zr) = Z Fy(xy) — Froq(2¢—1)

Il
[M]=

Fo1(xy) = Fr—q(xp—1) + fe(o) = fimw(my)

-
Il
MR

[Fia () ~ Fioa(zea)] + 2L

N

ﬁ
I|
[\v)

Using Lemma 3.3, we have

_B’\s2 T
OMT (’7 3 )5
Fr(zr) < . > o7,
t=1
whence
T 2
T=Y n< 5 ( “ FrEa <2JZT —FT(DCT))
t=1 U T)
< M . (2Tw + w2)
2 Bn? ’
i (n-2%)
as claimed. O

Setting n = 1/8 and 6 = L gives the asymptotically op-
timal local regret bound, with O(T'w) time-averaged gra-
dient steps (and thus O(Tw?) individual gradient oracle
calls). We further note that in the case where K = R"”,
one can replace the gradient descent subroutine (the inner
loop) with non-convex SVRG (Allen-Zhu & Hazan, 2016),
achieving a complexity of O(Tw®/?) gradient oracle calls.

4. Implications for Offline and Stochastic
Non-Convex Optimization

In this section, we discuss the ways in which our online
framework generalizes the offline and stochastic versions
of non-convex optimization — that any algorithm achieving
a small value of R, (T) efficiently finds a point with small
gradient in these settings. For convenience, for 1 < ¢ <
t' < T, we denote by Dys,417 the uniform distribution on
time steps ¢ through ¢’ inclusive.

4.1. Offline non-convex optimization

For offline optimization on a fixed non-convex function
f + K — R, we demonstrate that a bound on local re-
gret translates to convergence. In particular, using Algo-
rithm 1 one finds a point z € K with ||V, f(z)]|? < e
while making O (é) calls to the gradient oracle, matching
the best known result for the convergence of gradient-based
methods.

Corollary 4.1. Ler f : K — R satisfy Assumption 2.1.
When online algorithm A is run on a sequence of T identi-
cal loss functions f(x), it holds that forany 1 < w < T,

R (A)

EtND[w,T] ||V1Cmf(xt)||2 < T—w’

In particular, Algorithm 1, with parameter choices T =
2w,n = %,5 =L andw = (6 + 2L)\/g, yields

Einp, o | Vienf(z)]* <e.
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Furthermore, the algorithm makes O (é) calls to the gra-
dient oracle in total.

Proof. Since fi(x) = f(x) for all ¢, it follows that
Fw(z) = f(z) for all ¢ > w. As a consequence, we
have

T
Eip, [|Vicwf (@) < Z Vi ()]

T
9‘{ (A)
wa.

With the stated choice of parameters, Theorem 3.1 guaran-
tees that

T

2 g
Etvp, | Vicnf(@)]]* < 2 T—w °©

Also, since the loss functions are identical, the execution
of line 7 of Algorithm 1 requires exactly one call to the
gradient oracle at each iteration. This entails that the total
number of gradient oracle calls made in the execution is
O(Tw + w?) = O(1). O

€

4.2. Stochastic non-convex optimization

We examine the way in which our online framework cap-
tures stochastic non-convex optimization of a fixed func-
tion f : R™ — R, in which an algorithm has access to a
noisy stochastic gradient oracle V f(x). We note that the
reduction here will only apply in the unconstrained case;
it becomes challenging to reason about the projected gra-
dient under noisy information. From a local regret bound,
we recover a stochastic algorithm with oracle complexity

4 . .
O (‘;—2) . We note that this black-box reduction recovers an

optimal convergence rate in terms of ¢, but not o2

In the setting, the algorithm must operate on the noisy es-
timates of the gradient as the feedback. In particular, for
any f; that the adversary chooses, the learning algorithm
is supplied with a stochastic gradient oracle for f;. The
discussion in the preceding sections may be viewed as a
special case of this setting with o = 0. We list the assump-
tions we make on the stochastic gradient oracle, which are
standard:

Assumption 4.2. We assume that each call to the stochas-
tic gradient oracle yields an i.i.d. random vector V f(x)
with the following properties:

(i) Unbiased: E {W(m)} =V f(z).

(ii) Bounded variance: E {Hﬂ”(m) — Vf(a:)||2} < o?

When an online algorithm incurs small local regret in ex-
pectation, it has a convergence guarantee in offline stochas-
tic non-convex optimization:

Proposition 4.3. Let 1 < w < T. Suppose that on-
line algorithm A is run on a sequence of T identical
loss functions f(x) satisfying Assumption 2.1, with iden-
tical stochastic gradient oracles satisfying Assumption 4.2.
Sample t ~ Dy, 7). Then, over the randomness of t and
the oracles,

E [ (A)]

E [IV /()] < =

Proof. Observe that

Y IVl _ R (A)

(IVF@olP) < =5 == < =0

The claim follows by taking the expectation of both sides,
over the randomness of the oracles. O

EtND[w,T]

For a concrete online-to-stochastic reduction, we consider
Algorithm 2, which exhibits such a bound on expected lo-
cal regret.

Algorithm 2 Time-smoothed online gradient descent with
stochastic gradient oracles

1: Input: learning rate > 0, window size w > 1.

2: Set 1 = 0 € R™ arbitrarily.

3:fort=1,...,Tdo

4:  Predict xy. Observe the cost function f; : R™ — R.
5: Update Ti41 = T — % Z;U:OI Vftﬂ-(xt).

6: end for

Theorem 4.4. Let f1,. .., fi satisfy Assumption 2.1. Then,
Algorithm 2, with access to stochastic gradient oracles
{V fi(xy)} satisfying Assumption 4.2, and a choice of n =
%, guarantees
o T

E [R(T)] < (88M + o°) "
Furthermore, Algorithm 2 makes a total of O(T'w) calls to
the stochastic gradient oracles.

Using this expected local regret bound in Proposition 4.3,
we obtain the reduction claimed at the beginning of the sec-
tion:

Corollary 4.5. Algorithm 2, with parameter choices w =
12M B+202
13

,T'=2w, andn = % yields
E[|Vf(z)|?] <e

4
Furthermore, the algorithm makes O (g—z) stochastic gra-
dient oracle calls in total.
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5. An Efficient Algorithm with Second-Order
Guarantees

We note that by modifying Algorithm 1 to exploit second-
order information, our online algorithm can be improved to
play approximate first-order critical points which are also
locally almost convex. This entails replacing the gradient
descent epochs with a cubic-regularized Newton method
(Nesterov & Polyak, 2006; Agarwal et al., 2016a).

In this setting, we assume that we have access to each f;
through a value, gradient, and Hessian oracle. That is,
once we have observed f;, we can obtain f;(z), V f(z),
and V2 f,(x) for any . Let MinEig(A) be the minimum
(eigenvalue, eigenvector) pair for matrix A. As is standard
for offline second-order algorithms, we must add the fol-
lowing additional smoothness restriction:

Assumption 5.1. f; is twice differentiable and has an Lo-
Lipschitz Hessian:

IV2f(z) = V2 ()]l < Lz — yl.-

Additionally, we consider only the unconstrained case
where L = R"; the second-order optimality condition is
irrelevant when the gradient does not vanish at the bound-
ary of KC.

The second-order Algorithm 3 uses the same approach as
in Algorithm 1, but terminates each epoch under a stronger
approximate-optimality condition. We define

4p

D, (x) := maX{HVFt(xHZ, ~372
2

- )\min(VQFt(x))g} |

so that the quantity Zthl Oy (z;) is termwise lower
bounded by the costs in 2R, (7"), but penalizes local con-
cavity.

We characterize the convergence and oracle complexity
properties of this algorithm:

Theorem 5.2. Let f1,..., fr be the sequence of loss func-
tions presented to Algorithm 3, satisfying Assumptions 2.1
and 5.1. Choose § = (3. Then, for some constants Cy,Co
in terms of M, L, B, Ly:

(i) The iterates {x:} produced by Algorithm 3 satisfy

T

T
E Qy(zy) <Cr- —5.
=1

w

(ii) The total number of iterations T of the inner loop taken
by Algorithm 3 satisfies

TS Cg'T’LUz.

Algorithm 3 Time-smoothed online Newton method
1: Input: window size w > 1, tolerance § > 0.
2: Setx; € K arbitrarily.
3: fort=1,...,7do
4 Predict z;. Observe the cost function f; : R™ — R.
5. Initialize x;41 1= 4.
6:  while ®;(71) > 63 /w3 do
7.
8
9

Update x;11 := 2441 — %VFt,w('rt-i-l)-
Let (A, v) := MinEig (VQFt’w(le)).

: if A < 0 then
10: Flip the sign of v so that (v, VF} ,(z4+1)) < 0.
11: Compute ysq1 := 2 + %v.
12: if Ft,w(yt+1) < Ft,w(xt+1) then
13: Set Ti41 = Yt+1-
14: end if
15: end if
16:  end while
17: end for

Proof of (i). Foreach1 <t < T, we have
53

D _q1(zy) < B

Let hy(z) :== L (f() = fi—w(®)). Then, since hy(z) is
%-Lipschitz and %-smooth,

@u(we) = max { [V Fi-1 () + V()|

_ 48
312

. 82 2L\® g (5, 28\°
=Mz Ty ) 3L \w  w ’
which is bounded by C;/w?, for some C1(M, L, 3, L3).

The claim follows by summing this inequality across all
1<t<T. [

MAmin(V2Fy () + V2ht(:ct))3}

Proof of (ii). We first show the following progress lemma:

Lemma 5.3. Let z,2' be two consecutive iterates of the
inner loop in Algorithm 3 during round t. Then,

/ q)t(z)

Proof. Let u denote the step 2’ — z. Let g := VF;(z),
H := V?Fy(z), and (\,v) := MinEig(H).

Suppose that at time ¢, the algorithm takes a gradient step,
so that u = g/f. Then, by second-order smoothness of F7},
we have

1
F) - Fi(a) < {g.u) + G ull = = - ol
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Supposing instead that the algorithm takes a second-order
step, so that v = :I:%v (whichever sign makes (g, u) < 0),
the third-order smoothness of F; implies

Ls
6

[

1 .
Fi() = Fi(2) < {g,u) + Gu” Hu+ ==l

_ Az Lo
= (g, u) + Sllull®+
2A3 1 48)3

<22 . )
= 3L% 23 3L2

The lemma follows due to the fact that the algorithm takes
the step that gives a smaller value of Fi(2'). O

The rest of the proof follows the same structure as that for
part (ii) of Theorem 3.1: summing Lemma 5.3 implies a
statement analogous to Lemma 3.3, which we telescope
over all epochs. For sake of completeness, we give the
proof in the appendix. O

6. A Solution Concept for Non-Convex Games

Finally, we discuss an application of our regret minimiza-
tion framework to learning in k-player 7T-round iterated
games with smooth, non-convex payoff functions. Suppose
that each player ¢ € [k] has a fixed decision set IC; C R™,
and a fixed payoff function f; :  — R satisfies Assump-
tion 2.1 as before. Here, /C denotes the Cartesian product
of the decision sets /C;: each payoff function is defined in
terms of the choices made by every player.

In such a game, it is natural to consider the setting where
players will only consider small local deviations from their
strategies. This is a natural setting, which models risk aver-
sion. This setting lends itself to the notion of a local equi-
librium, to replace the stronger condition of Nash equilib-
rium: a joint strategy in which no player encounters a large
gradient on her utility. However, finding an approximate
local equilibrium in this sense remains computationally in-
tractable when the utility functions are non-convex.

Using the idea time-smoothing, we formulate a tractable re-
laxed notion of local equilibrium, defined over some time
window w. Intuitively, this definition captures a state of
an iterated game in which each player examines the past
w actions played, and no player can make small deviations
to improve the average performance of her play against her
opponents’ historical play. We formulate this solution con-
cept as follows:

Definition 6.1 (Smoothed local equilibrium). Fix some
n > 0,w > 1. Let {fz(xl,,zk) : K%R}le be
the payoff functions for a k-player iterated game. A
joint strategy (x},...,xF) is an e-approximate (n,w)-
smoothed local equilibrium with respect to past iterates

{(z}_;,..., mffj)};):_ol if, for every player i € [k],

w—1 §
Vi Zj:o fl)tj} (x;) <k,

w

where
; def o0 1 i—1 i+1 k
fip (@) = filzy, ..oy xxy . ay).
To achieve such an equilibrium efficiently, we use Algo-

rithm 4, which runs k copies of any online algorithm that
achieves a w-local regret bound for some 1 > 0.

Algorithm 4 Time-smoothed game simulation
1: Input: convex decision sets K1, ...,Kr C R", payoff
functions f; : (K1, ...,Kx) — R, online algorithm A,
window size 1 < w < T.
2: Initialize k copies (A, ..., A) of A with window
size w, where each A; plays on decision set .
3: fort=1,...,Tdo

4:  Each A; outputs x.
5:  Show each A; the online loss function
i—1 i+1
firlw) = —filxh, .. it o a2k,
6: end for

We show this meta-algorithm yields a subsequence of iter-
ates that satisfy our solution concept, with error parameter
dependent on the local regret guarantees of each player:

Theorem 6.2. For some t such that w < t < T, the
joint strategy (7, ..., z¥) produced by Algorithm 4 is an
e-approximate (1, w)-smoothed local equilibrium with re-

zk )}2;; where

spect 1o {(x}_j, ..., xf_;

The proof, which we give in the appendix, follows from
the same method as for the reductions in Section 4, after
summing the regret bounds from each A;.

7. Concluding Remarks

‘We have described how to extend the theory of online learn-
ing to non-convex loss functions, while permitting efficient
algorithms. Our definitions give rise to efficient online and
stochastic non-convex optimization algorithms that con-
verge to local optima of first and second order. We give
a game theoretic solution concept which we call local equi-
librium, which, in contrast to existing solution concepts
such as Nash equilibrium, is efficiently attainable in any
non-convex game.
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