Online One-Class Collaborative Filtering

Supplementary Material for “The Sample Complexity of Online One-Class Collaborative
Filtering”

6. Proof of Theorem 1

Theorem 1 follows immediately from the following result.

Theorem 2 Suppose that there are at least % users of the same type, for all user types, and assume that at least a
fraction v of all items is likable to a given user, for all users. Moreover, suppose that for some v € [0, 1), all users satisfy
condition (1). Pick § > 0 and suppose that the number of nearest neighbors k, the batch size ), and the parameter n, are

chosen such that k < %, n<v/2,
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Theorem 1 follows by choosing the parameter of the User-CF algorithm as follows:
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To see this, note that by definition, the conditions on & and 7 and condition (7) on () are satisfied. By (4), condition (8)

holds and % = %%. Moreover, max (log (%) ,log (8758)) < ¢log(N/9).

6.1. Proof of Theorem 2

Theorem 2 is proven by showing that at time ¢ > T, the following holds for all users w:

i) the neighborhood of u is sufficiently well explored by similarity exploration steps so that most of the nearest neighbors
of u are good, i.e., are of the same user type as u (similarly, neighbors are called bad if they are of a different user

type than u),

ii) for ¢ > Ty, the estimates p,,;, forall: € Q4,¢ =0, ..., 77% — 1 correctly predict whether ¢ is likable by u or not,
and

iii) there exist items in the sets Q,,¢ =0,..., n% — 1 that are likable by v and that have not been rated by u at previous

times steps.

Conditions i, ii, and iii guarantee that an exploitation step recommends a likable item.

Formally, we start by defining the following events:

Ga(t) = {At time ¢, no more than Sk of the k-nearest neighbors of u are bad}, (10)
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L(t) ={at time ¢, there exists an item i € Q,,

q=0,...,t/(nQ) — 1 that is likable by u}, 1D
and
= |J &, (12)
q=0,..., %71
with

&,4(t) ={Conditioned on Q% (t), foralli € Qg,
Pui > pe/2, if pyi >1/24+ A, and
Pui < pef2, ifpy; <1/2— A} (13)

For convenience, we omit in the notion of £(t), Ga(t), £(t), and &,(t) the dependence on u. The significance of those
definitions is that if £(t), G 2 (t), and £(t) hold simultaneously, then the recommendation made to user u by an exploitation

step at time ¢ is likable. We can therefore lower-bound the reward E [reward(7")] as follows:

E [reward(T ) 1 K=
bk Sl IP =1
| Nl T—1
> 7 > P [exploitation at t] P [ X.;(u,¢) = 1|exploitation at ¢| (14)
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Here, (14) follows from
P [Xyi(us) = 1|preference explorationatt] > 0 and P [X,;(,,¢) = 1|similarity exploration at t] > 0.
For (15) we used, for t # nQq,
P exploration at ] = 1 — (¢ — [1/(n@)])™ > 1~ (1~ 1/(1Q)))™" > 1 - (2/)°

which follows from 7() > 2. Moreover we used for (15) that the fraction of preference exploration steps up to time 7" is at

most max( 4 —) To see that, note that at T € {nQgq, ...,nQ(q + 1)} we have performed ¢ + 1 preference exploration

T
steps. It follows that, for ¢ > 1, the fraction of preference exploration steps performed up to 7" is given by Z:}g < WQQ

Thus, for any 7' > 1, the fraction of preference exploration steps is < max (- T —) Equality (16) follows from
P [Xoius) = 1]exploitation at t] > P [g(t) NGa () NL(H)
>1-4. (18)

Here, inequality (18) holds for ¢ > T, and is established below. Finally, inequality (17) follows from
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It remains to establish (18). To this end, define for notational convenience

256 max (log (4NQ> log (%))
3pf(l—7)v 7

and let T; be the number of similarity exploration steps executed up to time 7'. Inequality (18) follows by noting that, for
all t > Ty, by the union bound,

P[0 NG4 (1) N LD)| <PIE®] +P[g% (0] +PlL()]

A=

<PEW)+P 0% (BT > A +PIT, < A+ P[L7()] (19)
g + - i + i + g d. (20)

Here, inequality (19) follows since for two events C', B we have that
P[C]=P[CNB]+P[CNB°=P[C|B]|P[B]+P[C|B|P[B°] <P[C|B] +P[B]. 21

Inequality (20) follows from

PEc(t)]) <6/4 (22)
PG5 (DI, >A} <5/4 (23)
P[T, < A] <4/4 (24)
P[£7(1)) < 8/4. (25)

In the remainder of this proof, we establish the inequalities (22)-(25). The key ingredient for these bounds are concentration
inequalities, in particular a version of Bernstein’s inequality (Bardenet and Maillard, 2015).

Proof of (22): By the union bound, we have, forallt = 0,..., M — 1, that
M/Q-1

PlEeml < Y P[E®)] <

q=0

NS

as desired. Here, we used P [55(2%)] < %, which follows from Lemma 1 stated below with ¢’ = ff’g] and T, = 1 (note

that the assumption (26) of Lemma 1 is implied by the assumption (7) of Theorem 2).

Lemma 1 (Preference exploration) Suppose we recommend T, random items to each user, chosen uniformly at random
Sfrom a set Q C [M] of Q items. Suppose that p,; is A-bounded away from 1/2, for all 1 € Q and for all v E Ny, where
N, is a set of k users, of which no more than Bk, with 3 < AT > 0. If

2
TﬁipfA >1
Q 641log(2Q/d") —
then, with probability at least 1 — &', for all i € Q, Pu; > 5 if pus > 1/2 + A and pyi < & if pui <1/2 - A

(26)

Proof of (23): Inequality (23) follows from Lemma 2 below, which ensures that a user has many good and only few bad
neighbors.

Lemma 2 (Many good and few bad neighbors) Let T, be the subsets of all users [N] that are of the same type of u and
suppose its cardinality satisfies > Suppose that, for some constant v € [0, 1), condition (1) holds, and that the number
of nearest neighbors k satisfies k Choose 3 € (0,1), and suppose

641log(N/(Bk))
3p2(1 — 7)? 57 minyer, (Pu, Pv)

— 2K
— 40K

T, > 27)

similarity exploration steps have been performed. Then, with probability at least 1 — 11e—saTepi (1=7)? 5 minyeT, (Pu;po),
the set of nearest neighbors N, of user u (defined in Section 3), contains no more than 3k bad neighbors.
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To see that inequality (23) follows from Lemma 2, we first note that Ty > A guarantees that condition (27) of Lemma 2 is
satisfied (with 8 = %). To see this, note that since each user likes at least a fraction v of the items, we have

1

1 2 v
-— i ws Pv) = o A > . 2
M£%<p,,p>_V<2+ > > (28)

Lemma 2 therefore implies

)

P [QCA t)|T, > A| < 11e—aaTspf (1=7)2 57 minyeT, (Pu.Pv) < 11~ los(88/6) _ 9
& 2 S <
as desired. For the second inequality above we used (28) and T, > A.

Proof of (24): We next establish the inequality P [Ts < A] < §/4. To this end, recall that a similarity exploration step

iscarriedoutatt = 0,..., 7T — 1,t # nQq,q = 0,1, ... with probability 1/(¢t — [¢/(nQ)]). Recall from the discussion

below inequality (17), that the fraction of time steps up to time 7" for which ¢t = (g, for some g, is at most max(%, %)
It follows that the number of similarity exploration steps, T, carried out after ¢ > T steps of the User-CF algorithm,

stochastically dominates the random variable S = Zle Zi, T = Tyar(1 — max(, 77%2)), where Z, is a binary random
variable with P [Z; = 1] = 1/¢*. Tt follows that

PT, < A] =P[T, <To/2) <™= <4, (29)

where the first inequality holds by definition of T, i.€.,

Tstart = (QA)ﬁ/ <]. — max <11_” 772)) ,

and the second inequality holds by Lemma 3 stated below. Finally, the last inequality in (29) follows from

~ 1 12
T— 24)™ > 78 log (44/3).

The following lemma appears in (Bresler et al., 2014).

Lemma 3 Let S = E;‘il Zy where Zy is a binary random variable with P [Z; = 1] = 1/t%, a € (0,4/7). We have that

11—«

PSSty < Tlia/Q} < efiﬂzo

Proof of (25): Suppose t < n@Q, consider user u, and let Ny be the total number of items likable by « in the set Q (recall
that Q is choosen uniformly at random from the subset of items [M] of cardinality Q). Note that Ny > 7@ implies that
att < n@, there exist items that are likable by u in Qp that have not been recommended to v yet. Therefore, we can upper
bound the probability that no likable items are left to recommend, for ¢ < 1@, by

PIL(t)] <P[No < nQ] < P[No < Qu/2] <P [Ny < E[No| — Qu/2] (30)

-Q (v/2)2 _Q_v/4 .
<e “wA-»t3E — o T20-0+3 < e @1 <

IR

. 3D

Here, the first inequality in (30) follows from 7 < v/2, by assumption; the second inequality in (30) follows from E [Ny] >
v(Q (since at least a fraction of v of the items is likable by w), the first inequality in (31) follows from Bernstein’s inequality
(Bardenet and Maillard, 2015), and finally the last inequality in (30) holds by assumption (8). We have established that
P[Le(t)] < /4, for t < nQ. Using the exact same line of arguments yields the same bound for ¢ € [nQ, nM].

It remains to upper bound P [£¢(t)] for t € [nM, 3vMpg]. To this end, let N¢(T') be the number of (likable) items that
have been rated by user u after T' time steps, and note that if NS(T') is strictly smaller than the (minimum) number of
likable items, then there are likable items left to recommend. Formally,

PIL(H)] < P[NG(T) = vM] (32)
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where we used that for each user u, at least v M items are likable. Recall that with probability p,;ps < pr a likable item
is rated if it is recommended to u. Once rated, an item is not recommended again.

Note that N¢(T') is statistically dominated by a sum of independent binary random variables Z; with P [Z; = 1] = ps. We
therefore have that
TP? - Tsm;lp% < )

P[NS(T) > vM] <P [NS(T) > T(pe + 5)] <™ <750 < 2. (33)
Here, the first inequality holds by the assumption 7" < %I/M pt, the second inequality follows by Hoeffding’s inequality, the

third inequality follows by 1" > Ty, and the last inequality follows from Ty, > z% log(4/48), which holds by definition
f
of Tyar. Application of (33) on (32) concludes the proof of P [L£¢(t)] < §/4.

6.2. Proof of Lemma 2

Recall that r$™ € {0, 1} is the vector containing the responses R,,; of user u to previous similarity exploitation steps up to
time ¢, and that we assume in Lemma 2, that T similarity exploration steps have been performed up to time ¢. To establish
Lemma 2, we show that there are more than k users v that are of the same user type as u and satisfy % <r§jm, rsv‘m> >0,

and at the same time, there are fewer than k3 users of a different user type as u that satisfy - (ri™, ri™) > 6 for a certain
threshold 6 chosen below. This is accomplished by the following two lemmas.

Lemma 4 (Many good neighbors) Suppose there are at least % users of the type as user u (including u), and suppose
that T similarity exploration steps have been performed. Then, with probability at least 1 — 10pgo04,

1

Py =D} 77 [nin (Pu, Po)

%Tspg(lfe/pg)z’
vETy

Pgood = €
at least 2. users v of the same user type as u obey - <r“im r”"”> >0
10K P Y, \Tu Ty ) 20

Lemma 5 (Few bad neighbors) Suppose that T similarity exploration steps have been performed. Then, with probability

at least 1 — ppaq, where
_ Tspy(9/pp—1)2/4

1
—e 1+(0/pp—1)/3 , = 2maX7 y Pu/
Pbad Po =Pt vg T, M (Po: )

at most N pyaq users v of a different user type than u obey % <rfjm, rffm> > 0.

We set
Pg + Db

2

With this choice, by Lemma 4, there are more than % > k (the inequality holds by assumption) users v of the same type
as u that satisfy 7- (r$i™ r$im) > 6, with probability at least 1 — 10pgo0a. By Lemma 5, there are no more than Nppaq

0:

users v of a different type as u with %3 (r$im p$im) > . Thus, by the union bound, NV, contains less than pp,qa N bad
neighbors with probability at least

1- 1Opgood — Pbad > 1- lleiéTspg(li’Y)

Here, we used

3 _ 2 _ 3 N2
Dgood = € 51 Tspg(1—pb/Pg) <e g1 Tspg(1—7)

where the inequality follows by py,/pgy < 7, by (1). Moreover, we used

_ Tspp(9/pp—1)%/4 _ Tspy(pg/pp—1)%/16 _ Tspg(\/Pg/Pp—+/Pp/Pg)?/16 Tspg(V/1/7—vA)?/16
Pbad = € 1+0/pp—1)/3 — ¢ I+(pg/Pp—1/6  — ¢ 1+(pg/pp—1)/6 < e 1+(1/~—1)/6

_ Tsrg(VI/A=vN?/16 _ —Typg(1—7)2/16
<e TF(1/7-1) =e et ) (34)

Here, the first inequality follows from the absolute value of the exponent being decreasing in py,/p,, and from the assump-
tion py/py < 7, by (1).

To conclude the proof, we needed to establish that the maximum number of bad neighbors Npyp.q satisfies Nppaq < SBk.
This follows directly by noting that, by assumption (27), the RHS of (34) is upper-bounded by %
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6.2.1. PROOF OF LEMMA 4

Consider v and assume there are exactly % users from the same user type. There could be more, but it is sufficient to

consider 5. Let v be of the same user type. We start by showing that - (rji™, ri™) > @ with high probability. To
this end, note that <I‘Zim7 rf}m> = Z?;gl R4y Ryr(ry where 7 is the random permutation of the item space drawn by

the User-CF algorithm at initialization, and R, ) R,x(;) is a binary random variable, independent across ¢, with success
probability p?pm(t) Dour(t)- Setting a == p%% (Pu, Pv), for notational convenience, it follows that

1 , . 1 . .
P T (™ ey < 0} =P {Ts (™ ™) <a—(a—0) (35)
Ts(a—6)2/2
< e at(@a—0)/3 (36)
o A < - Tae-0/0) (37)
S 67% Spg(lie/pg)Q é pgood~ (38)

Here, (36) follows from Bernstein’s inequality (Bardenet and Maillard, 2015), and for (38) we used that the RHS of (37) is
decreasing in a.

Next, consider the random variable
1 . .
W = vs ,=1<— 31m’ sim\ ~
ZG G {Ts<r" rv>_9},
vET,
where T, is the subset of all users [N] that are of the same time as user u, as before. By Chebyshev’s inequality,

IE[W]} __Var(W)
2 |7 (EW]/2)*

]P’[W—E[W] < - (39)

Since there are at least % users of the same type, the carnality of 7, is lower bounded by % — 1. It follows with (38) that

N
E [W] > (1 _pgood) <2K— - 1) .
Next, we upper bound the variance of W. We have
Var(W) = Z Var(G,) + Z Cov(Gy, Gy).

vET, V,WE Ty, vFW

With G, = G2,
Var(G,) = E[G?] ~E[G,)° =E[G,] (1 - E[Gy]) <1 - E[Gy] < Pgood-

Similarly,
Cov(Gy, Gy) = B[G,Gy] —E[G,E[Gy] <1 —(1—¢)* < 2Pgo0d-

Thus, we obtain

N N N N 2
Var<W) < <2}—{ - 1> Pgood + <2I{ - 1) (21( - 2) 2pg00d < (21( - 1) 2pg00d-

Plugging this into (39) yields

P{WE[W] < E[W}] < 8Pgood

<10
9 1_ pgood)2 = Pgood>

for pgooa < 1/10. It follows that the number of good neighbors is larger than

N 9N

WZE[W]/22<1_pgood)EZ407K

with probability at least 1 — 10pgood-
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6.2.2. PROOF OF LEMMA 5

Let u and v be two fixed users of different user types. Similarly as in the proof of Lemma 4, we start by showing that
%5 (rsim psim) < ¢ with high probability. To this end, note that (r$™, r$im) = ZtT;al Ry (tyRor(t) Where  is a random
permutation of the item space and Ry (4) Ry (¢) is a binary random variable, independent across ¢, with success probability
DFPur(t)Por(t)- Setting a = p? 37 (Pu, Po), for notational convenience, it follows that

1, . . 1 . )
P T (™ e > 9] =P {T (™) > a+ (0 —a)
S S
_Ts(9-a)?/2
S e at(0-a)/3 (40)
_Tspb(e/Pb71)2/2 9
<e TH@mUA =p2 (4D

Here, (40) follows from Bernstein’s inequality. Specifically, we use that 7 is a random permutation of the item space
as well as that R,;R,; are binary random variables independent across 7 (note that Bernstein’s inequality also applies
to sampling without replacement, see e.g., (Bardenet and Maillard, 2015)). Finally, for inequality (41), we used that

a<p,= pr' maxyeT, ﬁ <pv7pu>'

Set Nygq = Z%ﬂ—u 1 {w and v are declared neighbors}. By inequality (41), we have E[Npa] < pf,qN. Thus, by

Markov’s inequality,
[ [ Npaq]

P [Noad = Nppaa] < <
| } Nppad Nppad

which concludes the proof.

6.3. Proof of Lemma 1 (preference exploration)

Assume w.Lo.g. that p,; > 1/2 + A, for all i € Q. The case where some of the p,,; satisfy p,; < 1/2 — A is treated
analogously. To prove Lemma 1, we may further assume that p,,; = % + A, forall i € Q, since P [ﬁm > %] is increasing
in Pui-

Consider a fixed item i € Q, and let N2 be the subset of N, corresponding to users that are of the same type as u and

to which additionally an recommendation has been made by drawing 7T’. items uniformly from Q for each user u. Let N,
be the cardinality of N In order to upper-bound P [Pui < Bt], we first note that by (21),

P [pui < 2] <P [pui < 2|, 2 ny| + PN, <) “2)
Here, we defined
T,k
Ng = 0 (1/2 = p). (43)

We next upper bound the probabilities on the RHS of (42). We start with the first probability on the RHS of (42):

D D ez Boi_ py )
P[i<—’N:’]<IF’7“<—‘N: 44
Pui =7 g] = w4k 2T “@4)
=Pl Y Rus gt N =
L gveNiood g
1 1 Bk
=P Rvigpf(zw)—pf(A—Qn,)\Ngzn;
veM%uod g
1 Bk
=P Z <R,Ui — pr <2—|—A>) < —n’gpf <A— 2n’> ’Ng :n;
_UENEOOd g

_ nppe(A—BR/(2n}))% /2
< e (/242)HA-BR/(2ng))/3 (45)
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where (44) follows from the number of users n,,; in V,, that received recommendation ¢ being upper bounded by N, + Sk
(recall that Sk is the maximum number of bad neighbors in N,,), and by assuming adversarially that all recommendations
given to bad neighbors did yield R,; = 0. Finally, (45) follows from Bernstein’s inequality; to apply Bernstein’s inequality,
we used that I [R,;] = p¢(1/2 4+ A), and that the variance of R,,; is upper bounded by pg(1/2 + A), for v € N2, Next,
note that by Bayes theorem,

P{pui <1/2}N {Ng 2 ng}]

P[pui < 1/2|Ng > ny] =

P[Ng = ng]
Sy zny P [Pui < 1/2 Ny 2 ng] P [Ny = ;]
PNy > ng]
_ ngpp(A—Bk/(2n}))?/2
< ¢ (72F8)+(A=Br/(2n}))/3 (46)
_ ngpea2/s ngppa? TrkppA?
< e T2FAFATS < e T 16 <e @ (47)

Here, inequality (46) follows from inequality (45) and using that the RHS of inequality (45) is increasing in n;. For
inequality (47) we used the definition of ny in (43), and that

bh_ Pk _Q P A (48)

ng  TE(1j2-8) T.12-8"

Here, the inequality (48) holds by 8 < %, by assumption, and 8 < 1/4, due to A < 1/2 and T, < @ (since we
recommend each item at most once).

We proceed with upper bounding PP [N, < ng] in (42). Recall that IV, is the number of times item ¢ has been recommended
to one of the > (1 — )k good neighbors in N,,.

We will only consider the 7;. random items recommended to each user; this yields an upper bound on P [N, < n,]. Recall
that those items are chosen from the @ items in Q, and that, by assumption, of the k neighbors at least (1 — 8)k are good.
By Bernstein’s inequality,

(1-B)k Tk
P[Ny <ngl=P NggTrTf 50
_ Trk(g)?)/2 L Trk(g)?/2 S
<e B < B < oo < e 198, (49)

Application of inequalities (47) and (49) to inequality (42) together with a union bound yields

_ Trkppa? Trhpp A2

P [pu; < 1/2,for one or more i € Q] < Q (e QeT 4 elTOTQk) <2Qe T ev (50)

where we used that p;A? < 1. By (26), the RHS above is smaller than §’. This concludes the proof.

7. Proof of Proposition 1

Consider a set of users with K user types that are non-overlapping in their preferences, specifically, consider a set of users
where every user u belonging to the k-th user type has preference vector

1, ifiek(M-1)/K,...,EM/K]
[pu]i = .
0, otherwise.

Consider a given user u. At time 7', the expected number of ratings obtained by u is upper bounded by p?. Thus, for
all T < ]% in at least a fraction A of the runs of the algorithm, the algorithm has no information on the user u, and the

f
best it can do is to recommend a random item. For our choice of preference vectors, with probability at most 1/ K, it will
recommend a likable item. Therefore, an upper bound on the expected regret is given by (A + 1/K)NT.



