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Supplementary Material for “The Sample Complexity of Online One-Class Collaborative
Filtering”

6. Proof of Theorem 1
Theorem 1 follows immediately from the following result.

Theorem 2 Suppose that there are at least N
2K users of the same type, for all user types, and assume that at least a

fraction ⌫ of all items is likable to a given user, for all users. Moreover, suppose that for some � 2 [0, 1), all users satisfy
condition (1). Pick � > 0 and suppose that the number of nearest neighbors k, the batch size Q, and the parameter ⌘, are
chosen such that k  9N

40K , ⌘  ⌫/2,

k

Q
� 64 log(8M/�)

p
f

�

2

, (7)

and

Q � 10

⌫
log(4/�). (8)

Then the reward accumulated by the User-CF algorithm up to time T 2 [Tstart,
4

5

⌫Mp
f

] with

Tstart =

⇣
512max

⇣
log

⇣
4NQ
k�

⌘
, log

�
88

�

�⌘⌘ 1
1�↵

(3p2
f

(1� �)2⌫)
1

1�↵

⇣
1�max

⇣
1

T ,
2

⌘Q

⌘⌘

satisfies

E [reward(T )]

NT
�

✓
1� Tstart

T
� 2

↵ (T � Tstart)
1�↵

T (1� ↵)
�max

✓
1

T
,
2

⌘Q

◆◆
(1� �). (9)

Theorem 1 follows by choosing the parameter of the User-CF algorithm as follows:

⌘ =

⌫

2

, k =

9

40

N

K
, and Q = k

p
f

�

2

64 log(8M/�)
.

To see this, note that by definition, the conditions on k and ⌘ and condition (7) on Q are satisfied. By (4), condition (8)
holds and 2

⌘Q =

K
N

c0 log(M/�)
pf�

2 . Moreover, max

⇣
log

⇣
4NQ
k�

⌘
, log

�
88

�

�⌘
 c̃ log(N/�).

6.1. Proof of Theorem 2

Theorem 2 is proven by showing that at time t � Tstart the following holds for all users u:

i) the neighborhood of u is sufficiently well explored by similarity exploration steps so that most of the nearest neighbors
of u are good, i.e., are of the same user type as u (similarly, neighbors are called bad if they are of a different user
type than u),

ii) for t � Tstart, the estimates p̂ui, for all i 2 Qq, q = 0, . . . , t
⌘Q � 1 correctly predict whether i is likable by u or not,

and

iii) there exist items in the sets Qq, q = 0, . . . , t
⌘Q � 1 that are likable by u and that have not been rated by u at previous

times steps.

Conditions i, ii, and iii guarantee that an exploitation step recommends a likable item.

Formally, we start by defining the following events:

G�(t) = {At time t, no more than �k of the k-nearest neighbors of u are bad}, (10)
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L(t) ={at time t, there exists an item i 2 Qq,

q = 0, . . . , t/(⌘Q)� 1 that is likable by u}, (11)

and

E(t) =
[

q=0,..., t
⌘Q�1

Eq(t), (12)

with

Eq(t) ={Conditioned on G �
4Q

(t), for all i 2 Qq ,

p̂ui > p
f

/2, if pui > 1/2 +�, and
p̂ui < p

f

/2, if pui < 1/2��}. (13)

For convenience, we omit in the notion of L(t), G�(t), E(t), and Eq(t) the dependence on u. The significance of those
definitions is that if L(t), G �

4Q
(t), and E(t) hold simultaneously, then the recommendation made to user u by an exploitation

step at time t is likable. We can therefore lower-bound the reward E [reward(T )] as follows:

E [reward(T )]

NT
=

1

NT

T�1X

t=0

N�1X

u=0

P
⇥
Xui(u,t) = 1

⇤

� 1

NT

N�1X

u=0

T�1X

t=0,t/2{⌘Qq : q=0,1,...}

P [exploitation at t]P
⇥
Xui(u,t) = 1|exploitation at t

⇤
(14)

� 1

N

N�1X

u=0

 
1

T

T�1X

t=0

(1� (2/t)↵)P
⇥
Xui(u,t) = 1|exploitation at t

⇤
�max

✓
1

T
,
2

⌘Q

◆!
(15)

� 1

N

N�1X

u=0

 
1

T

T�1X

t=Tstart

(1� �)(1� (2/t)↵)�max

✓
1

T
,
2

⌘Q

◆!
(16)

� (1� �)

✓
1� Tstart

T
� 2

↵ (T � Tstart)
1�↵

T (1� ↵)
�max

✓
1

T
,
2

⌘Q

◆◆
. (17)

Here, (14) follows from

P
⇥
Xui(u,t) = 1|preference exploration at t

⇤
� 0 and P

⇥
Xui(u,t) = 1|similarity exploration at t

⇤
� 0.

For (15) we used, for t 6= ⌘Qq,

P [exploration at t] = 1� (t� bt/(⌘Q)c)�↵ � 1� (t(1� 1/(⌘Q)))

�↵ � 1� (2/t)↵

which follows from ⌘Q � 2. Moreover we used for (15) that the fraction of preference exploration steps up to time T is at
most max(

1

T ,
2

⌘Q ). To see that, note that at T 2 {⌘Qq, . . . , ⌘Q(q + 1)} we have performed q + 1 preference exploration
steps. It follows that, for q � 1, the fraction of preference exploration steps performed up to T is given by q+1

q⌘Q  2

⌘Q .
Thus, for any T � 1, the fraction of preference exploration steps is  max(

1

T ,
2

⌘Q ). Equality (16) follows from

P
⇥
Xui(u,t) = 1|exploitation at t

⇤
� P

h
E(t) \ G �

4Q
(t) \ L(t)

i

� 1� �. (18)

Here, inequality (18) holds for t � Tstart and is established below. Finally, inequality (17) follows from

T�1X

t=Tstart

t�↵ 
Z T�1

Tstart�1

t�↵
=

1

1� ↵
t1�↵|T�1

t=Tstart�1

=

(T � 1)

1�↵ � (Tstart � 1)

1�↵

1� ↵
 (T � Tstart)

1�↵

1� ↵
.
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It remains to establish (18). To this end, define for notational convenience

A :

=

256max

⇣
log

⇣
4NQ
k�

⌘
, log

�
88

�

�⌘

3p2
f

(1� �)2⌫
,

and let Ts be the number of similarity exploration steps executed up to time T . Inequality (18) follows by noting that, for
all t � Tstart, by the union bound,

P
h
(E(t) \ G �

4Q
(t) \ L(t))c

i
 P [Ec

(t)] + P
h
Gc

�
4Q

(t)
i
+ P [Lc

(t)]

 P [Ec
(t)] + P

h
Gc

�
4Q

(t)|Ts � A
i
+ P [Ts  A] + P [Lc

(t)] (19)

 �

4

+

�

4

+

�

4

+

�

4

= �. (20)

Here, inequality (19) follows since for two events C,B we have that

P [C] = P [C \B] + P [C \Bc
] = P [C|B]P [B] + P [C|Bc

]P [Bc
]  P [C|B] + P [Bc

] . (21)

Inequality (20) follows from

P [Ec
(t)]  �/4 (22)

P
h
Gc

�
4Q

(t)|Ts � A
i
 �/4 (23)

P [Ts  A]  �/4 (24)
P [Lc

(t)]  �/4. (25)

In the remainder of this proof, we establish the inequalities (22)-(25). The key ingredient for these bounds are concentration
inequalities, in particular a version of Bernstein’s inequality (Bardenet and Maillard, 2015).

Proof of (22): By the union bound, we have, for all t = 0, . . . ,M � 1, that

P [Ec
(t)] 

M/Q�1X

q=0

P
⇥
Ec
q (t)

⇤
 �

4

as desired. Here, we used P
⇥
Ec
q (t)

⇤
 �Q

4M , which follows from Lemma 1 stated below with �0 = �Q
4M and Tr = 1 (note

that the assumption (26) of Lemma 1 is implied by the assumption (7) of Theorem 2).

Lemma 1 (Preference exploration) Suppose we recommend Tr random items to each user, chosen uniformly at random
from a set Q ✓ [M ] of Q items. Suppose that pvi is �-bounded away from 1/2, for all i 2 Q and for all v 2 Nu, where
Nu is a set of k users, of which no more than �k, with �  �Tr

4Q , of the users are of a different type than u. Fix �0 > 0. If

Tr
k

Q

p
f

�

2

64 log(2Q/�0)
� 1 (26)

then, with probability at least 1� �0, for all i 2 Q, p̂ui > pf

2

if pui � 1/2 +� and p̂ui <
pf

2

if pui  1/2��.

Proof of (23): Inequality (23) follows from Lemma 2 below, which ensures that a user has many good and only few bad
neighbors.

Lemma 2 (Many good and few bad neighbors) Let Tu be the subsets of all users [N ] that are of the same type of u and
suppose its cardinality satisfies � N

2K . Suppose that, for some constant � 2 [0, 1), condition (1) holds, and that the number
of nearest neighbors k satisfies k  9N

40K . Choose � 2 (0, 1), and suppose

Ts �
64 log(N/(�k))

3p2
f

(1� �)2 1

M minv2Tu hpu,pvi
(27)

similarity exploration steps have been performed. Then, with probability at least 1� 11e�
3
64Tsp

2
f (1��)2 1

M minv2Tu hpu,pvi,
the set of nearest neighbors Nu of user u (defined in Section 3), contains no more than �k bad neighbors.
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To see that inequality (23) follows from Lemma 2, we first note that Ts � A guarantees that condition (27) of Lemma 2 is
satisfied (with � =

�

4Q ). To see this, note that since each user likes at least a fraction ⌫ of the items, we have

1

M
min

v2Tu

hpu,pvi � ⌫

✓
1

2

+�

◆
2

� ⌫

4

. (28)

Lemma 2 therefore implies

P
h
Gc

�
4Q

(t)|Ts � A
i
 11e�

3
64Tsp

2
f (1��)2 1

M minv2Tu hpu,pvi  11e� log(88/�)
=

�

8

,

as desired. For the second inequality above we used (28) and Ts � A.

Proof of (24): We next establish the inequality P [Ts  A]  �/4. To this end, recall that a similarity exploration step
is carried out at t = 0, . . . , T � 1, t 6= ⌘Qq, q = 0, 1, . . . with probability 1/(t � bt/(⌘Q)c). Recall from the discussion
below inequality (17), that the fraction of time steps up to time T for which t = ⌘Qq, for some q, is at most max(

1

T ,
2

⌘Q ).
It follows that the number of similarity exploration steps, Ts, carried out after t � Tstart steps of the User-CF algorithm,
stochastically dominates the random variable S =

P
˜T
t=1

Zt, ˜T = Tstart(1 � max(

1

T ,
2

⌘Q )), where Zt is a binary random
variable with P [Zt = 1] = 1/t↵. It follows that

P [Ts  A] = P
h
Ts  ˜T 1�↵/2

i
 e�

T̃1�↵

20  �/4, (29)

where the first inequality holds by definition of Tstart, i.e.,

Tstart = (2A)

1
1�↵ /

✓
1�max

✓
1

T
,
2

⌘Q

◆◆
,

and the second inequality holds by Lemma 3 stated below. Finally, the last inequality in (29) follows from

˜T = (2A)

1
1�↵ � 128

3

log(44/�).

The following lemma appears in (Bresler et al., 2014).

Lemma 3 Let S =

P
˜T
t=1

Zt where Zt is a binary random variable with P [Zt = 1] = 1/t↵, ↵ 2 (0, 4/7). We have that

P
h
ST  ˜T 1�↵/2

i
 e�

T̃1�↵

20 .

Proof of (25): Suppose t < ⌘Q, consider user u, and let N
0

be the total number of items likable by u in the set Q
0

(recall
that Q

0

is choosen uniformly at random from the subset of items [M ] of cardinality Q). Note that N
0

> ⌘Q implies that
at t < ⌘Q, there exist items that are likable by u in Q

0

that have not been recommended to u yet. Therefore, we can upper
bound the probability that no likable items are left to recommend, for t < ⌘Q, by

P [Lc
(t)]  P [N

0

 ⌘Q]  P [N
0

 Q⌫/2]  P [N
0

 E [N
0

]�Q⌫/2] (30)

 e
�Q (⌫/2)2

2⌫(1�⌫)+ 2
3

⌫
2
= e

�Q ⌫/4

2(1�⌫)+ 1
3  e�Q ⌫

10  �

4

. (31)

Here, the first inequality in (30) follows from ⌘  ⌫/2, by assumption; the second inequality in (30) follows from E [N
0

] �
⌫Q (since at least a fraction of ⌫ of the items is likable by u), the first inequality in (31) follows from Bernstein’s inequality
(Bardenet and Maillard, 2015), and finally the last inequality in (30) holds by assumption (8). We have established that
P [Lc

(t)]  �/4, for t < ⌘Q. Using the exact same line of arguments yields the same bound for t 2 [⌘Q, ⌘M ].

It remains to upper bound P [Lc
(t)] for t 2 [⌘M, 4

5

⌫Mp
f

]. To this end, let N c
u(T ) be the number of (likable) items that

have been rated by user u after T time steps, and note that if N c
u(T ) is strictly smaller than the (minimum) number of

likable items, then there are likable items left to recommend. Formally,

P [Lc
(t)]  P [N c

u(T ) � ⌫M ] (32)
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where we used that for each user u, at least ⌫M items are likable. Recall that with probability puipf  p
f

a likable item i
is rated if it is recommended to u. Once rated, an item is not recommended again.

Note that N c
u(T ) is statistically dominated by a sum of independent binary random variables Zt with P [Zt = 1] = p

f

. We
therefore have that

P [N c
u(T ) � ⌫M ]  P

h
N c

u(T ) � T (p
f

+

p
f

4

)

i
 e�

Tp2f
2  e�

Tstartp2f
2  �

4

. (33)

Here, the first inequality holds by the assumption T  4

5

⌫Mp
f

, the second inequality follows by Hoeffding’s inequality, the
third inequality follows by T � Tstart, and the last inequality follows from Tstart � 2

p2
f
log(4/�), which holds by definition

of Tstart. Application of (33) on (32) concludes the proof of P [Lc
(t)]  �/4.

6.2. Proof of Lemma 2

Recall that rsim
u 2 {0, 1}M is the vector containing the responses Rui of user u to previous similarity exploitation steps up to

time t, and that we assume in Lemma 2, that Ts similarity exploration steps have been performed up to time t. To establish
Lemma 2, we show that there are more than k users v that are of the same user type as u and satisfy 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓,

and at the same time, there are fewer than k� users of a different user type as u that satisfy 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓ for a certain

threshold ✓ chosen below. This is accomplished by the following two lemmas.

Lemma 4 (Many good neighbors) Suppose there are at least N
2K users of the type as user u (including u), and suppose

that Ts similarity exploration steps have been performed. Then, with probability at least 1� 10p
good

,

p
good

:

= e�
3
16Tspg(1�✓/pg)

2

, pg :

= p2
f

1

M
min

v2Tu

hpu,pvi ,

at least 9N
40K users v of the same user type as u obey 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓.

Lemma 5 (Few bad neighbors) Suppose that Ts similarity exploration steps have been performed. Then, with probability
at least 1� p

bad

, where

p
bad

= e
�Tspb(✓/pb�1)2/4

1+(✓/pb�1)/3 , pb := p2
f

max

v/2Tu

1

M
hpv,pui ,

at most Np
bad

users v of a different user type than u obey 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓.

We set
✓ =

pg + pb
2

.

With this choice, by Lemma 4, there are more than 9N
40K � k (the inequality holds by assumption) users v of the same type

as u that satisfy 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓, with probability at least 1 � 10p

good

. By Lemma 5, there are no more than Np
bad

users v of a different type as u with 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓. Thus, by the union bound, Nu contains less than p

bad

N bad
neighbors with probability at least

1� 10p
good

� p
bad

� 1� 11e�
3
64Tspg(1��)2 .

Here, we used
p
good

= e�
3
64Tspg(1�pb/pg)

2

 e�
3
64Tspg(1��)2

where the inequality follows by pb/pg  �, by (1). Moreover, we used

p
bad

= e
�Tspb(✓/pb�1)2/4

1+(✓/pb�1)/3
= e

�Tspb(pg/pb�1)2/16

1+(pg/pb�1)/6
= e

�Tspg(
p

pg/pb�
p

pb/pg)2/16

1+(pg/pb�1)/6  e�
Tspg(

p
1/��p

�)2/16

1+(1/��1)/6

 e�
Tspg(

p
1/��p

�)2/16

1+(1/��1) =e�Tspg(1��)2/16

. (34)

Here, the first inequality follows from the absolute value of the exponent being decreasing in pb/pg , and from the assump-
tion pb/pg  �, by (1).

To conclude the proof, we needed to establish that the maximum number of bad neighbors Np
bad

satisfies Np
bad

 �k.
This follows directly by noting that, by assumption (27), the RHS of (34) is upper-bounded by �k

N .



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Online One-Class Collaborative Filtering

6.2.1. PROOF OF LEMMA 4

Consider u and assume there are exactly N
2K users from the same user type. There could be more, but it is sufficient to

consider N
2K . Let v be of the same user type. We start by showing that 1

Ts

⌦
rsim
u , rsim

v

↵
� ✓ with high probability. To

this end, note that
⌦
rsim
u , rsim

v

↵
=

PTs�1

t=0

Ru⇡(t)Rv⇡(t) where ⇡ is the random permutation of the item space drawn by
the User-CF algorithm at initialization, and Ru⇡(t)Rv⇡(t) is a binary random variable, independent across t, with success
probability p2

f

pu⇡(t)pv⇡(t). Setting a :

= p2
f

1

M hpu,pvi, for notational convenience, it follows that

P

1

Ts

⌦
rsim
u , rsim

v

↵
 ✓

�
= P


1

Ts

⌦
rsim
u , rsim

v

↵
 a� (a� ✓)

�
(35)

 e�
Ts(a�✓)2/2
a+(a�✓)/3 (36)

= e�
Tsa(1�✓/a)2/2
1+(1�✓/a)/3  e�

3
8Tsa(1�✓/a)2 (37)

 e�
3
8Tspg(1�✓/pg)

2

 p
good

. (38)

Here, (36) follows from Bernstein’s inequality (Bardenet and Maillard, 2015), and for (38) we used that the RHS of (37) is
decreasing in a.

Next, consider the random variable

W =

X

v2Tu

Gv, Gv = 1

⇢
1

Ts

⌦
rsim
u , rsim

v

↵
� ✓

�
,

where Tu is the subset of all users [N ] that are of the same time as user u, as before. By Chebyshev’s inequality,

P

W � E [W ]  �E [W ]

2

�
 Var(W )

(E [W ] /2)2
. (39)

Since there are at least N
2K users of the same type, the carnality of Tu is lower bounded by N

2K �1. It follows with (38) that

E [W ] � (1� p
good

)

✓
N

2K
� 1

◆
.

Next, we upper bound the variance of W . We have

Var(W ) =

X

v2Tu

Var(Gv) +

X

v,w2Tu,v 6=w

Cov(Gv, Gw).

With Gv = G2

v ,
Var(Gv) = E

⇥
G2

v

⇤
� E [Gv]

2

= E [Gv] (1� E [Gv])  1� E [Gv]  p
good

.

Similarly,
Cov(Gv, Gw) = E [GvGw]� E [Gv]E [Gw]  1� (1� q)2  2p

good

.

Thus, we obtain

Var(W ) 
✓

N

2K
� 1

◆
p
good

+

✓
N

2K
� 1

◆✓
N

2K
� 2

◆
2p

good


✓

N

2K
� 1

◆
2

2p
good

.

Plugging this into (39) yields

P

W � E [W ]  �E [W ]

2

�
 8p

good

(1� p
good

)

2

 10p
good

,

for p
good

 1/10. It follows that the number of good neighbors is larger than

W � E [W ] /2 � (1� p
good

)

N

4K
� 9N

40K

with probability at least 1� 10p
good

.
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6.2.2. PROOF OF LEMMA 5

Let u and v be two fixed users of different user types. Similarly as in the proof of Lemma 4, we start by showing that
1

Ts

⌦
rsim
u , rsim

v

↵
 ✓ with high probability. To this end, note that

⌦
rsim
u , rsim

v

↵
=

PTs�1

t=0

Ru⇡(t)Rv⇡(t) where ⇡ is a random
permutation of the item space and Ru⇡(t)Rv⇡(t) is a binary random variable, independent across t, with success probability
p2
f

pu⇡(t)pv⇡(t). Setting a = p2
f

1

M hpu,pvi, for notational convenience, it follows that

P

1

Ts

⌦
rsim
u , rsim

v

↵
� ✓

�
= P


1

Ts

⌦
rsim
u , rsim

v0
↵
� a+ (✓ � a)

�

 e�
Ts(✓�a)2/2
a+(✓�a)/3 (40)

 e
�Tspb(✓/pb�1)2/2

1+(✓/pb�1)/3
= p2

bad

. (41)

Here, (40) follows from Bernstein’s inequality. Specifically, we use that ⇡ is a random permutation of the item space
as well as that RuiRvi are binary random variables independent across i (note that Bernstein’s inequality also applies
to sampling without replacement, see e.g., (Bardenet and Maillard, 2015)). Finally, for inequality (41), we used that
a  pb = p2

f

maxv/2Tu

1

M hpv,pui.

Set Nbad =

P
v/2Tu

1 {u and v are declared neighbors}. By inequality (41), we have E [Nbad]  p2
bad

N. Thus, by
Markov’s inequality,

P [Nbad � Np
bad

]  E [Nbad]

Np
bad

 p2
bad

N

Np
bad

= p
bad

,

which concludes the proof.

6.3. Proof of Lemma 1 (preference exploration)

Assume w.l.o.g. that pui > 1/2 + �, for all i 2 Q. The case where some of the pui satisfy pui < 1/2 � � is treated
analogously. To prove Lemma 1, we may further assume that pui = 1

2

+�, for all i 2 Q, since P
⇥
p̂ui >

pf

2

⇤
is increasing

in pui.

Consider a fixed item i 2 Q, and let N good
u be the subset of Nu corresponding to users that are of the same type as u and

to which additionally an recommendation has been made by drawing Tr items uniformly from Q for each user u. Let Ng

be the cardinality of N good
u . In order to upper-bound P

⇥
p̂ui  pf

2

⇤
, we first note that by (21),

P
h
p̂ui 

p
f

2

i
 P

h
p̂ui 

p
f

2

���Ng � ng

i
+ P [Ng  ng] . (42)

Here, we defined

ng :

=

Trk

Q
(1/2� �). (43)

We next upper bound the probabilities on the RHS of (42). We start with the first probability on the RHS of (42):

P
h
p̂ui 

p
f

2

���Ng = n0
g

i
 P

"P
v2N good

u
Rvi

n0
g + �k

 p
f

2

���Ng = n0
g

#
(44)

= P

2

4 1

n0
g

X

v2N good
u

Rvi 
p
f

2

n0
g + �k

n0
g

���Ng = n0
g

3

5

= P

2

4 1

n0
g

X

v2N good
u

Rvi  p
f

✓
1

2

+�

◆
� p

f

✓
�� �k

2n0
g

◆ ���Ng = n0
g

3

5

= P

2

4
X

v2N good
u

✓
Rvi � p

f

✓
1

2

+�

◆◆
 �n0

gpf

✓
�� �k

2n0
g

◆ ���Ng = n0
g

3

5

 e
�

n0
gpf (���k/(2n0

g))2/2

(1/2+�)+(���k/(2n0
g))/3 (45)
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where (44) follows from the number of users nui in Nu that received recommendation i being upper bounded by Ng + �k
(recall that �k is the maximum number of bad neighbors in Nu), and by assuming adversarially that all recommendations
given to bad neighbors did yield Rvi = 0. Finally, (45) follows from Bernstein’s inequality; to apply Bernstein’s inequality,
we used that E [Rvi] = p

f

(1/2 +�), and that the variance of Rvi is upper bounded by p
f

(1/2 +�), for v 2 N good
u . Next,

note that by Bayes theorem,

P [p̂ui  1/2|Ng � ng] =
P [{p̂ui  1/2} \ {Ng � ng}]

P [Ng � ng]

=

P
n0
g�ng

P
⇥
p̂ui  1/2

��Ng � ng

⇤
P
⇥
Ng = n0

g

⇤

P [Ng � ng]

 e
�

ngpf (���k/(2n0
g))2/2

(1/2+�)+(���k/(2n0
g))/3 (46)

 e�
ngpf�

2/8

1/2+�+�/6  e�
ngpf�

2

16  e�
Trkpf�

2

Q64 . (47)

Here, inequality (46) follows from inequality (45) and using that the RHS of inequality (45) is increasing in n0
g . For

inequality (47) we used the definition of ng in (43), and that

�k

ng
=

�k
Trk
Q (1/2� �)

=

Q

Tr

�

1/2� �
 �. (48)

Here, the inequality (48) holds by �  �Tr
4Q , by assumption, and �  1/4, due to �  1/2 and Tr  Q (since we

recommend each item at most once).

We proceed with upper bounding P [Ng  ng] in (42). Recall that Ng is the number of times item i has been recommended
to one of the � (1� �)k good neighbors in Nu.

We will only consider the Tr random items recommended to each user; this yields an upper bound on P [Ng  ng]. Recall
that those items are chosen from the Q items in Q, and that, by assumption, of the k neighbors at least (1� �)k are good.
By Bernstein’s inequality,

P [Ng  ng] = P

Ng  Tr

(1� �)k

Q
� Trk

2Q

�

 e
�

Trk( 1
2Q

)2/2

1��
Q

(1� 1��
Q

)+ 1
3

1
2Q  e

�
Trk( 1

2Q
)2/2

1��
Q

(1� 1��
Q

)+ 1
3

1
2Q  e�

Trk 1
8Q

1+1/6  e�
Trk
10Q . (49)

Application of inequalities (47) and (49) to inequality (42) together with a union bound yields

P [p̂ui  1/2, for one or more i 2 Q]  Q

✓
e�

Trkpf�
2

Q64
+ e�

Trk
10Q

◆
 2Qe�

Trkpf�
2

Q64 , (50)

where we used that p
f

�

2  1. By (26), the RHS above is smaller than �0. This concludes the proof.

7. Proof of Proposition 1
Consider a set of users with K user types that are non-overlapping in their preferences, specifically, consider a set of users
where every user u belonging to the k-th user type has preference vector

[pu]i =

(
1, if i 2 [k(M � 1)/K, . . . , kM/K]

0, otherwise.

Consider a given user u. At time T , the expected number of ratings obtained by u is upper bounded by p2
f

. Thus, for
all T  �

p2
f

in at least a fraction � of the runs of the algorithm, the algorithm has no information on the user u, and the
best it can do is to recommend a random item. For our choice of preference vectors, with probability at most 1/K, it will
recommend a likable item. Therefore, an upper bound on the expected regret is given by (�+ 1/K)NT .


