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Abstract

Sybil detection is a crucial task to protect online
social networks (OSNs) against intruders who
try to manipulate automatic services provided by
OSNs to their customers. In this paper, we first
discuss the robustness of graph-based Sybil de-
tectors SybilRank and Integro and refine theoret-
ically their security guarantees towards more re-
alistic assumptions. After that, we formally in-
troduce adversarial settings for the graph-based
Sybil detection problem and derive a correspond-
ing optimal attacking strategy by exploitation of
trust leaks. Based on our analysis, we propose
transductive Sybil ranking (TSR), a robust ex-
tension to SybilRank and Integro that directly
minimizes trust leaks. Our empirical evaluation
shows significant advantages of TSR over state-
of-the-art competitors on a variety of attacking
scenarios on artificially generated data and real-
world datasets.

1. Introduction

The sheer number and variety of online social networks
(OSN) today is staggering. Although the purpose and the
shaping of these networks vary generously, the majority of
them has one aspect in common: the value of most OSNs
is in its user data and the information that one can infer
from the data. This, unfortunately, results in a big incen-
tive for culprits to intrude OSNs and manipulate their data.
One popular method of intruding and attacking an OSN
is referred to as Sybil attack, where the intruder creates a
whole bunch of fake (Sybil) accounts that are all under the
attacker’s control. The intruder’s influence over the OSN
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is multiplied by the number of accounts created, which
opens possibilities of manipulation typically for gaining
some monetary advantage in the end.

The term, Sybil attack, was coined by Douceur (2002) who
showed that this kind of attack will be always possible un-
less a trusted agency certifies identities. Unfortunately, this
approach is orthogonal to how OSNs grow. The thresh-
old of registration must be as low as possible to attract as
many new users as possible. On the other hand, Sybil at-
tacks can damage the value of OSNs significantly, which
has been proved by the fact that Facebook shares dropped
in 2012 after the company revealed that a significant share
of its network is made up by Sybil accounts (The Associ-
ated Press, 2012).

There exists a number of “classic” feature-based solutions
(Stein et al., 2011; Cao et al., 2012; Stringhini et al., 2010;
Yang et al., 2014). However, up until now, it remains an un-
solved problem as those methods can be evaded by cleverly
designed attacking schemes (Bilge et al., 2009; Boshmaf
etal., 2011; Wagner et al., 2012; Lowd & Meek, 2005) and
manual detection is too expensive, time consuming, and
simply unfeasible in large OSNs (Cao et al., 2012).

More recent graph-based Sybil detection methods assume
that honest (non-Sybil) nodes form a strongly connected
subgraph and attackers can establish a limited amount of
edges which leads to a sparse cut between the honest sub-
raph and the Sybil nodes. The majority of the graph-based
methods define trusted nodes, which the defender is sure to
be honest, and use random walks (Yu et al., 2010; Danezis,
2009; Cao et al., 2012) or other typical graph-based algo-
rithms like breadth-first-search (Tran et al., 2011) and be-
lief propagation (Gong et al., 2014) to convey trust from the
trusted nodes. A node is identified as Sybil if sufficient am-
mount of trust is not delivered to it. Among random-walk
based approaches, SybilRank is known to be the state-of-
the-art, of which the performance is theoretically guaran-
teed (Cao et al., 2012). However, the theory holds only
under unrealistic topological assumptions of the network.
In this paper, we show that the same theoretical guarantee
can be obtained under more realistic situations.

We further dicuss the robustness of the random walk ap-
proach against adversarial strategies. To this end, we for-
mally introduce adversarial settings for graph-based Sybil
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detection and derive an optimal attacking strategy that is
based on the exploitation of trust leaks. Based on our anal-
ysis, we propose a transductive Sybil ranking (7SR), an in-
tegrated approach capable of adjusting edge weights based
on sampled trust leaks. We empirically show good perfor-
mance of TSR against the state-of-the-art baselines on a va-
riety of attacking scenarios using artificially generated data
as well as real-world Facebook data.

2. Preliminaries

We are given a graph G = (V, E) consisting of nodes V'
and pairwise edges F between nodes. We denote Gg =
(Vs, Eg) the Sybil sub-graph, G = (Vi, Epr) the disjunct
honest sub-graph, and Vi C V our trusted (verified non-
Sybil nodes) random walk seed nodes. FE 4 is the set of
edges connecting any node in Gg and any node in G .

Sybil Rank is considered the state-of-the-art graph-based
method to detect Sybil accounts as it outperformed all its
contestants (Cao et al., 2012). It is also based on ran-
dom walks and operates solely on the topology of the
graph. Sybil Rank starts from the initial distribution { pgz) €

[0, 1]}‘1‘;‘1 (without superscript refers to a vector contain-
ing all elements), in which “trust” is assigned to the known
honest nodes Vr:

py) =4 U M
0 otherwise.

Then, it “propagates” the trust via a short (k steps) random
walk:

pr=ppQ@=-=pyQ", 2)

where Q € RIVI*IVI is the transition matrix through the
edges with Qf’j = (2, (i, 5") € E])’lj if.(i,j) € E,
and else 0. It is known that the stationary distribution 7 =
Poo 18 the normalized degree distribution (Behrends, 2000)

deg(vjv))
’ Vol(lly)‘ ) ’ &)

T = (S,
where deg(v) is the degree of node v, i.e., the number of
all incident edges of v, and Vol(V') = 3 deg(v) is the
sum of the degrees for all nodes in V. SybilRank conpen-
sates the effect of degrees, and use the degree-normalized
probability

p@ = pf /x® )

as the ranking score, where a high ranking indicates a high
probability of being an honest node.

Essentially, SybilRank relies on the assumption that the to-
tal number of attacking edges is bounded. Under this as-
sumption, only a small fraction of the trust is propagated

through the sparse cut between the honest network and the
Sybil nodes during the short random walk, while trust” go
through the “non-trusted” honest nodes through the dense
connections within the the honest subgraph.

Boshmaf et al. (2016) developed Integro to cope with a
larger number of attacking edges. To this end, Integro intro-
duces weights on the edges to bias the random walk, where
the weights are determined after its pre-processing step to
detect victims. Here a victim is defined as a node that estab-
lished a connection to one of the Sybil nodes. The set of all
victim nodes is defined by V,, = {v € V}, : (v, s) € Ea}.
After the detection step, Integro lowers the weights to all
incident edges to the detected victims, which prevents the
trust to propagate through victim nodes. As the victims
form a natural border between the honest and the Sybil
graph, this reduces the overall flow of trust into the Sybil
graph. Boshmaf et al. found that traditional feature-based
classification methods yield good and robust detection of
victims. A notable advantage against the feature-based
Sybil detection is that, unlike Sybils, victims generally do
not behave adversarial, as they don’t have any incentive to
hide”.

3. SybilRank’s Security Guarantee Under
More Realistic Assumptions

Cao et al. (2012) gave a security guarantee for SybilRank.
Let g := |E4| be the number of attacking edges and n :=
|V'| be the number of all nodes in the graph. their theory
relies on the notion of trust leaks.

Definition 1. (Trust leaks) Let vy = ),y p(ﬁ) be the
trust that remains in the honest graph after k' random
walk steps. We call | = ZZ/:l(Tk’-H — 1) the abso-
lute trust leak. Assume that the attacking edges are cre-
ated randomly, following a distribution o(E 4). We call
Cy(k) = EQ(EA)[%] the expected relative trust
leak.

Cy (k') is actually a constant with respect to &’ under rea-
sonable assumptions on «(E4). The following lemma has
been proved:

Lemma 1. (Cao et al., 2012) Assume that the graph G is
created randomly, following the configuration model (Mol-
loy & Reed, 1995). Then, the expected relative trust leak in
each iteration is given by Cg = m{ﬁ.

This leads to a theoretical guarantee of SybilRank.

Theorem 1. (Cao et al., 2012) Assume that the graph G is
created randomly, following the configuration model. The
total number of Sybils that are ranked higher than non-
Sybils by SybilRank is O(glogn).

Theorem 1 implies good performance of SybilRank, but
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it holds under the assumption that the attacking edges are
created in the same process as the honest graph,! which is
not realistic.

Below, we show that the same guarantee is obtained under
the following more realistic assumption:

Assumption 1. The graph G is constructed by the follow-
ing steps:

1. Honest graph Gy construction: Gy is connected, non-
bipartite, and scale free, i.e., the degree distribution
follows the power law distribution.

2. Sybil graph Gg construction: The topology of Gg is
arbitrary.

3. Attacking edges /4 generation: The attacking edges
are genarated on all possible edges E4 C Vg X Vg
between the honest and the Sybil subgraphs with equal
propability.

Under Assumption 1, evaluating the expected trust leak is
less straightforward. Nevertheless, we can show that it re-
sults in the same formal security guarantee stated in Theo-
rem 1.

To properly compute the expected trust leak, the fol-
lowing random variables are defined. X, counts the
number of attacking edges incident to node v, Y, =
w(v)deg(v’gﬁ = w(v)m is the trust leak in node
vand Z =) cy. Y, is the total trust leak. Note that here
m(v) is the current amount of trust in node v and not the
stationary distribution of the random walk. This notation
is used to avoid confusion with the probability mass func-
tion denoted by P. From Assumption 1 it follows that X,
is hypergeometrically distributed (Tuckwell, 1995) with the
following parameters: the population size: N = |V x Vs,
successes: K = |{v} x Vg, and the draws n = |E4|. Let
g := | E 4| be the number of attacking edges. Moreover, let
ny = |Vg| and ng := |Vg| denote the number of honest
nodes and Sybil nodes, respectively.

The probability mass function of X, is given by P(X, =

K\/N-K N
k) = I I >/(n> and according to Tuckwell
(1995), its expected value can be computed by E[X,] =
nk = |Ea| ||$£;XSS‘| = % = L. The final goal is

to compute the expected value of Z. The linearity of the
expected value yields E[Z] = E[Y,] and for the
expected value of Y,, we get

veVhy

E[Y,) = gy Yonco kP(X, = k)

_ ) )
= @00 X = dogy g -

!This assumption is not explicitly stated in Cao et al. (2012),
but apparent from their derivation.

Using this result, the expected value of Z becomes E[Z] =
dovevy EYo] = 3530 vy %, where the right hand
side still contains a sum that needs to be evaluated individ-
ually for each node to compute its actual value. In order
to “average out” this sum, we rely on the assumption that
the honest nodes Gy is power law-distributed (Barabasi,
2009). To do this, a new random variable D,, is introduced
which measures the degree of v. Then, the assumption re-
sults in the probability of a node having a degree of d being
P(D, =d) = %, where ( is the Riemann zeta function
C(s) := .2 ,n~* (Barabdsi, 2009).

With this expression, it is possible to “average out” the ex-
act topology of the graph by computing the expected value
with respect to the newly defined random variable D,,:

ElZ] = 3% S0 Yoev, "¢ P(Dy = d)
-
= % ZvEVH W(U) ZZC:l é%
_ 7(v) 00 —(y+1
- % Z’UEVH T"/) Zd:l d (+1)

— ¢y+1
= 5 Loev (V)
N —

Total trust in the honest graph

This yields the following lemma.

Lemma 2. Under Assumption 1 the expected relative trust
leak in each iteration of the random walk is given by

where e < 1 is a constant that depends on the parameter of
the assumed power law distribution for the degree distribu-
tion.

Although Lemma 2 gives a different expected relative trust
leak from Lemma 1, the fact that the maximum number
of connection for each node is bounded in every OSN and
therefore O(ng) = O(vol(Vy)) leads to the same asymp-
totic behavior as Theorem 2:

Theorem 2. Under Assuption 1, the total number of Sybils
that are ranked higher than non-Sybils by SybilRank is
O(glogn).

This result explicitly shows that, asymptotically, Sybil-
Rank’s security guarantee remains unchanged even under
more realistic Assumption 1.

4. Adversarial Strategies

In this section, we discuss adversarial strategies against
graph-based Sybil detection methods.

Attacker’s Action Although attackers in general can
take variety of actions, we restricts their action to adding
attacking edges.
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Definition 2 (Attacking strategy). Given an honest graph
Gy and a Sybil graph Gs, an attacking strategy describes
the set of attacking edges established by the intruder.

The cost of action is measured by the number of attacking
edges.

Attacker’s Knowledge Generally, we focus on adversar-
ial attacks against random walk based approaches. That
is, an attacker’s strategy for establishing edges from Sybil
nodes to honest nodes in order to cloak an attacker’s Sybil
sub-network. For analysis, we assume different levels of
knowledge that the attacker has on the defender’s strategy
and information:

A.1 Strategy only.
A.2 Strategy + topology.

A.3 Strategy + topology + trusted nodes (positively la-
beled nodes).

B.1 Strategy + topology + trusted nodes (positively la-
beled nodes) + untrusted nodes (negatively labeled
nodes).

Here, we divided the level of access to inside information
for the attacker into two groups. In group A (i.e., A.1, A.2,
A.3) attackers are able to gather sophisticated information
based on publicly available sources, whereas in group B
(i.e., B.1) either some back-channel provides non-public
information (e.g. defender marked Sybil nodes based on
their analysis), or, the attackers are provided with all infor-
mation visible to the defenders.

Clearly, it is too hard, if not impossible, to have an out-of-
the-box solution for the setting described in group B and
we therefore resort our analysis on the settings in group A.
In the first case (A.1), no efficient adversarial strategies for
graph-based random walk approaches is possible. The at-
tackers must build up sufficient attacking edges to trusted
nodes in order to absorb enough trust. In A.3 (and A.2
as a special case) on the other hand, the attacker gained
enough information to guide the creation of attacking edges
efficiently. This paper focuses on this most interesting sit-
uation. More specifically, we assume the following: the
intruder knows defender’s strategy (algorithm details), the
topology of the honest graph, and the set of trusted nodes,
i.e., she knows about Gy = (Vy, Ey) and V. Based on
that knowledge the intruder can establish attacking edges
to honest nodes of her choice with the goal to create an at-
tacking scenario where the applied defense method fails.
Although the exact topology of the Sybil graph is not spec-
ified any further, for the following results it is assumed that
it is designed in a way that suits the intruder well.

Attacker’s Goal Attackers can have various final goals,
e.g., spamming honest users to earn money, feeding wrong
information to honest nodes, stealing nonpublic informa-
tion, damaging countries/companies, etc. Depending on
the goal, the objective of the optimal strategy can differ.
We assume that attacker’s try to maximize their influence
and hence, have an inherent need to increase the number of
attacking edges.

Random-walk based approaches such as SybilRank and In-
tegro rely on the fact that the absolute trust leak [ from the
honest graph to the Sybil graph is small (i.e., below the
amount needed to reach the stationary distribution within
the Sybil sub-graph) which ensures low trust scores for the
Sybil nodes. However, if enough trust is being propagated
to the Sybil graph, trust values will be close to the station-
ary distribution in the Sybil graph as well as in the honest
graph. Consequently, the degree-normalized ranking val-
ues will be similar to the ones in the honest graph, which
makes Sybil nodes indistinguishable from honest nodes and
therefore disables the detector.

Definition 3 (Disabling Attacking Strategy). Let Gy, and
Gs be the honest graph and the Sybil graph. Let 1 : 2F —
R be the absolute trust leak as a function of an attacking
strategy. Then, an attacking strategy FE4 C Vg x Vg is
said to be disabling if

UE4) > ta, 5)

where tq is the disabling threshold, which depends on the
topology of the Sybil graph and the detection algorithm.

Surely, an attacker does not aim for just any disabling strat-
egy but for the one that comes at the lowest cost. As the
cost of an attacking strategy is assumed to be increasing
in the number of attacking edges, an optimal/minimal dis-
abling strategy is given by the following definition.

Definition 4 (Optimal Disabling Strategy). An attacking
strategy Ag is said to be optimal if it is the solution to the
following optimization problem:

|EAl (6)

min
EACVgxVs

s. L. Z(EA) > ty.

To solve this, the disabling threshold ¢4 and the trust leak
function must be known to the attacker. Ignoring the edge
weights (which are unknown to the attacker) the amount
of trust needed within the Sybil graph to reach the sta-
tionary distribution of the random walk is given by t; =
D vievs Ti = ‘:ﬁl((“/f)) . To exactly evaluate [(E4) the en-
tire random walk needs to be simulated which is infeasi-
ble for the attacker without knowing its exact length and
the edge weights. A useful estimate is to consider only
the first iteration. The computation of this value is fea-
sible and the trust leak per attacking edge is by far the
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largest in the first iteration because all the trust is con-
centrated in the relatively small subset of trusted nodes
V. The trust leak in the first iteration [(E4) is given by
UEA) =) ey, m, where k(v) is the attack-
ing degree (i.e., the number of attacking edges) of node
v. This leads to a greedy strategy where the intruder itera-
tively adds those attacking edges which produce the largest
increase in . In the following the term adversarial strat-
egy/attacker refers to this greedy strategy.

5. Proposed Method

In this section, we propose our new method and derive
its efficient solver. Our method is specifically designed to
cope with a large number of attacking edges by minimiz-
ing “trust leaks”, that is, minimizing a sampled trust leak
by adjusting the edge weights—a missing mechanism for
SybilRank and Integro.

Transductive Sybil Ranking Combining the approach
of Backstrom & Leskovec (2011) and SybilRank (Cao
et al.,, 2012), our proposed method, called transductive
Sybil ranking (T'SR), tries to leverage potential prior knowl-
edge, negative labels, to bias a short random walk so that
random walk methods work even with the existence of a
large number of attacking edges.

Assume that all nodes carry attributes and n < |V| nodes
are additionally attached with label information, i.e., the
defender knows a subset of nodes are honest, and another
subset of nodes are sybil. More formally, the defender is
given labeled nodes £ := {(x;,y;) € X >< {+1,-1}},
and unlabeled nodes U := {z; € X }l nie1- Since only
the honest nodes can be trusted, Vo C {v; € V;y; = +1}
holds.

We define an edge feature function v, ,, between nodes u
and v as ¢, , 1 X x X — ). A corresponding param-
eterized, non-negative scoring function f,, : ) — R is
learned during training and applied as edge weight a,, , =

fuw(thu.o) in the weighted adjacency matrix Q € RIVI*IVI:
=t if (u,v) € B,
Qu,v = 2o Gue . (7)
0 otherwise.

Throughout our experiments, we restrict ourselves to the
following differentiable edge feature function:

Fulus) = (1 —exp(—w ) ®

Once the transition matrix is fixed, The remaining pro-
cedure is the same as SybilRank. Namely, starting form
the initial distribution (1), k-steps random walk (2) is ap-
plied with the transition matrix (7). After that, the degree-
normalized ranking probability (4) is used for classifica-
tion. However, we are also given negatively labeled nodes,

which are used to train the parameter w of the edge fea-
ture function (8), so that p() < p\¥), Vi j € {1,...,n}
with y; = —1 and y; = +1. In the spirit of regularized risk
minimization (Vapnik, 1999), this problem is formalized as
follows:

Definition 5 (TSR optimization problem). TSR solves a
quadratically regularized, non-convex optimization prob-
lem with generic loss-functions h : [0,1] x {+1, -1} — R:

minimize F'(w) =
w

A - ;
5%W+;m#%&m.@

Using the notion of p(*) (w) visually indicates that node
ranking probabilities p are (non-linearly) dependent on the
parameter vector w. As for the choice of loss-functions, we
examine the following:

¢ Wilcoxon-Mann-Whitney (WMW) loss (Yan et al.,
2003). WMW maximizes the area under the ROC
curve:

n -1

i, y) = Z 1y = +1Ay; = —1] (1 + exp_ﬁ)
j=1

e Smooth hinge-loss variant A smooth variant of the
classical support vector machine hinge-loss with two
additional parameters: a decision boundary b € R and
a scaling parameter a € R:

if y(ap —b) <0,
if0<y(ap—b) <
if 1 < y(ap —b).

—y(ap —b)
(1 —y(ap—b))?

[t

h(p,y) =

O o= =

In this work, we focus on smooth, differentiable loss-
functions only, ensuring fast convergence to local optima
via gradient-based methods, i.e., fast second-order meth-
ods (BFGS). A pivotal point is hence, to assess the gradient
w.r.t. w.

Gradient Computation The remaining of this section is
dedicated to the derivation of the gradient:

OF(w) _ 9AJ|lw|? n 9h(p™ (w), yl)
ow 02w + Z ow

where the loss-function h can be further split into
oh(p™ (w),y:) Ah(p') (w),ys) 9™ (w)

ow - Op() (w) ow *
strained ourselves to differentiable loss-function h(p,y),
the partial derivative w.r.t. p can be calculated rather

straightforward. More complicated is the evaluation of

Since we con-

,.(1) (4) B) () i i ﬂ(i) i -2
%v=§ph=<§ Hﬁm?%w>ﬂ>.<M>
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The derivative of the i-th component of 7 is given by:

on _ <ade§’;j(v1)vol(v) _ av317(‘/)deg*(vi)) vol(V)~2,

ow w

adeg™ (vi) __ da. __ Ofw(¥e)
where “=5 =% = Y ccp 7 = DecE — 5, and
v, €e v;€e
dvol(V) __ dae _ Ofw(tbe) ; ;
G~ =22 ccr g = 22cer " u - As fu is said

to be differentiable the only part of Eq. (10) that remains is
the Jacobian Opy, /Ow.

Theorem 3. The derivative Opy, /0w for k > 1 is given by:
d T k—1mt) 09
- (Sreo) 2 an
=0

(the proof is given in Appendix A). The derivative of @,
defined in Eq. (7), is given by

% ZI aum*auuzzx Ggﬁ}av
(. aue)
0 otherwise.

20 if (u,v) € E,
ow

This completes the computation of the gradient and enables
the application of gradient-based methods, i.e., BFGS to
find a (locally) optimal estimate w. By using this estimate,
TSR weights the whole graph, with which a short random
walk is performed to obtain the final ranking p.

Robustness of TSR against Attacks By using the neg-
ative label information, our 7SR, in principle, monitors
“trust leak” through random walk, and adjusts the edge
weights so that the leak is minimized. As a result, the
weights tend to be lower on the attacking edges (to reduce
the propagation), and higher on the Sybil edges (to boost
the stationary distribution). Thus, we can expect that our
TSR, which is an advanced integrated method, is more ro-
bust against attacks than the SybilRank and the two-step
Integro approach.

6. Empirical Evaluation on Synthetic Data

To assess the robustness of the proposed method and the
baseline methods, we generate artificially network topol-
ogy and edge and node attributes in order to have full con-
trol of the underlying ground truth. We separately create
two graphs, the honest and the Sybil graph. Both use the
generation method proposed by Holme & Kim (2002) for
scale free networks. Node features are generated randomly
and correlated through dependency injection. The edge
features function 4, ,, simply stacks node features of the
two adjacent nodes z,, and x, (see Appendix B for more
details). Connections between Sybil and honest graphs are
established according to a random attacking strategy that
iteratively adds attacking edges randomly, i.e., equally dis-
tributed on the set of all possible attacking edges Vi x Vg

or a adversarial attacking strategy that solves Problem (6)
for optimal attacks. This strategy only chooses an hon-
est node to be attacked next and the corresponding Sybil
node is chosen randomly (equally distributed on the set
of all Sybil nodes Vg). We test our method, 7SR, using
the proposed loss functions and compare against the state-
of-the-art methods SybilRank and Integro. As Integro de-
pends on a preceding victim prediction, we simulated one
that achieves highest possible rankings (ROC-AUC close
to 1.0).2

Random Attacking Strategy We generated a sample
network (|Vy| = 200 and |Vs| = 30) and select 15 hon-
est nodes and 8 Sybil nodes randomly, which will be used
as labeled examples for our 7SR. The labeled honest nodes
are also used as the set Vi of trusted seeding nodes for
the random walks in all methods. We evaluate the per-
formance in terms of ROC-AUC-values for the computed
ranking. This procedure was repeated 20 times for vary-
ing number of attacking edges (10-200 edges). Figure 1
shows ROC-AUC curves for all methods under the random
attacking setting. We can obsreve that our 7SR, regard-
less of the choice of loss function, performs superior to the
other methods. Integro’s accuracy deteriorates fast but still
has an edge over SybilRank up to the point where the ROC-
AUC-value reaches 0.5. After that SybilRank and Integro
essentially perform similar.

Adversarial Attacking Strategy For the adversarial set-
ting, we ran the same benchmarks but this time attacking
edges were added according to the adversarial attacking
strategy. Due to the much more aggressive setting, we
varied the number of attacking edges from 1-40 and re-
peated this procedure 20 times to report averaged ROC-
AUC accuracies. The results are depicted in Figure 2. All
choices of loss functions outperform SybilRank and Inte-
gro clearly. The results confirm our considerations that
SybilRank’s performance drops fast and steep as soon as
a certain amount of attacking edges is established. Integro
behaves more robust than SybilRank, but, ultimately, must
resign after a few more attacking edges. Again, our 7SR
is significantly more robust against adversarial attacks and
can withstand higher number of attacking edges until its
performance finally deteriorates.

7. Empirical Evaluation on Real-world Data

We also evaluated our method on a sample of the Facebook
graph Leskovec & Mcauley collected from survey partic-
ipants using the Facebook app. The dataset includes the
topology (|V| = 4039 users and |E| = 88234 friend-

s 'ybiRank, Integro, and TSR rely on different information, and
therefore, the fairness of comparison is not trivial. We discuss this
issue in Appendix C.
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Figure 1. Results for the random attacking setting. Accuracy
in terms of ROC-AUC for all methods on the generated graph
(|Va| = 200, |Vs| = 30) with 20 repetitions and varying number
of attacking edges.
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Figure 2. Results for the adversarial setting.

ships) as well as node features for every node (see Ta-
ble 1 for summary), Figure 3). Node features are comprised
of obfuscated categorical features of users profiles includ-
ing education, work, hometown, language, last name, etc.
As with most of real world social graphs, the data ex-
hibits strong multi-cluster structure, as seen in Figure 3
and Figure 4. These clusters pose additional challenges to
the application of random walk-based methods as the trust
propagation between two loosely inter-connected clusters
is low (Cao et al., 2012; Boshmaf et al., 2016). Hence, trust
seeds should be distributed among all clusters. Following
SybilRank and Integro (Cao et al., 2012), we employ the
Louvian clustering method (Blondel et al., 2008) first.

As common, the Sybil graph needs to be generated. For
this purpose, a (small) subgraph was copied and declared
as Sybil. The attacking edges were created to link the
honest and the Sybil graph following one of the attacking
strategies (random or adversarial). It was made sure that no
Sybil node attacked one of the direct neighbors of its origin
which is reasonable for most social graphs. Edge features

Figure 3. Visualization of the Facebook graph. The size of a
node represents its degree.

Figure 4. Adjacency matrix of the Facebook graph. Nodes
have been grouped together.

for TSR are as follows: the number of shared features (in to-
tal), the number of shared friends, and the number of shared
features within specific categories. The other experimental
setup is the same as the previous section.

Random Attacks The trusted nodes | V| = 50 were ran-
domly distributed among all clusters and a small subset of
Sybils |Vp| = 30 was chosen as known Sybil nodes. At-
tacking edges E 4 were established following the random
attacking strategy ranging from |E 4| = 1 to |E4| = 1400.
Experiments were repeated 10 times. Integro was run with

Table 1. Topological properties of the Facebook sample graph

Property Value
Number of nodes 4039
Number of edegs 88234

Strongly connected True
Weighted (edges) False
Avg. clustering coefficient  0.6055
Diameter 8
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Figure 5. Comparison of the detection methods in a random
attacking scenario on the Facebook graph. Accuracy in terms
of average AUROC for all evaluated methods.
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Figure 6. Comparison of the detection methods in an adver-
sarial attacking scenario on the Facebook graph.

two levels of accuracy in simulated victim detection, i.e.,
perfect (AUROC = 1) and almost perfect (AUROC = 0.9).
Figure 5 shows the AUROC-values. The detection per-
formance of SybilRank is the lowest and drops soon as
attacking edges increase. Integro with the perfect vic-
tim detection outperforms the other methods, but with just
a slight reduction in the victim detection accuracy (AU-
ROC = 0.9), its performance drops significantly. All ver-
sions of TSR perform almost on par with perfect version
of Integro in the lower range of attacking edges (1—800).
In the higher range (800—1400), the hinge loss drop fast
to end up with a performance similar to Integro with the
almost perfect victim detection. However, the variant that
uses the WMW-loss does not show this performance drop
and stays close to the upper-bound of Integro.

Adversarial Attacks The number of adversarial attack
edges ranged from |E 4| = 1to |E 4| = 45. Figure 6 shows

the recorded average AUROC-values. Again, SybilRank’s
performance drops the fastest and steepest and Integro is in-
significantly better in this adversarial scenario. Both vari-
ants of TSR performs better than the baselines. However,
the WMW-loss variant performs only slightly better than
SybilRank and Integro, while the hinge-loss variant keeps
good performance even for a large number of attacking
edges. As our future work, we will investigate which loss
function should be chosen, depending on data and assumed
attacker’s strategy. Overall, whereas SybilRank’s and Inte-
gro’s performance drops to an average AUROC-value be-
low 0.5 at |E4| = 30, the hinge-loss variant of TSR still
achieves an average value over 0.9 at the same amount of
attacking edges.

8. Conclusion & Outlook

In this paper, we studied the problem of Sybil detection.
We first refined the security guarantees of random walk ap-
proaches towards more realistic assumptions. Then, we
formalized and coined the adversarial setting and intro-
duced optimal strategies for attackers. Further, we pro-
posed a new method, transductive Sybil ranking (TSR), that
leverages prior information, network topology as well as
node and edge features. Unlike Integro, it is fused in a sin-
gle optimization framework and can be solved efficiently
by using gradient-based optimizer. In our empirical evalu-
ation, we showed the advantages of our method and inves-
tigated the susceptibility of our method and baseline com-
petitors to adversarial attacks. Further research will focus
on the application of our method to real-world, large-scale
OSNE.
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