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Supplementary
8.3. Proof of Lemma 1
From the optimality condition of the x problem (7a) we have
Vi) + AT (" + BAz"Y) + BT B(a™! — 2") = 0.
Applying (7b), we have
ATyt = —Vf(2") - BBTB(z" ! — 2"). (33)

From equation (7b) (u"*1 = pu” + BAT ") it is clear the difference of the dual variables lies in the column space
of A. Therefore the following is true

1/2 . . .
a2 = | < (AT (= ).

min

This inequality combined with (33) implies that

T T 1 T s T r . e
[t =l < <5 | = V@) = BBT B —a") = (=Vf(2") = BB B(a" —a" )|
1 , ; i
= 75 [[Vf@") = V(@) - BT Bu"||.
Squaring both sides and dividing by 3, we obtain the desired result. Q.E.D.

8.4. Proof of Lemma 2

Since f(z) has Lipschitz continuous gradient, and that AT A+ BT B = I by Assumption [A1], it is known that if
B > L, then the z-problem (7a) is strongly convex with modulus v := 8 — L > 0; See (Zlobec, 2005) [Theorem
2.1]. That is, we have

r B r r 6 r
Lo(w, 1) + S lo = 2[5 = (Lo(z17) + 5112 = 7[5 p)

> (VoLg(z, ") + B(BTB(z — 27)),z — 2) + %Hx — 2|3, Va,zeRY, V", (34)

Using this property, we have
L@ ) = Ly(a”, ")
= Lg(a™ ' w1 = Lo(a"™, p") + Lp(a™, 1) — Lg(a", ")
B

< Lol i) = Lya™ ) + La(am ) + Dl = o e — Lo(a”, )

Q) MT+1 B N’r § r r r r r T Yo T

@ WL (0 La(a )+ BT B o) =0t = Dt -

(ii) r+1 _ ,r|2

< ”:u H ” _ 1||33T+1 _ JZTHQ
B 2

1 212 2
< - 7HﬂCT—I“THHQ‘i‘Q/BHBTBer _leH—l_xr”Q
Omi I} 2

—L 212 2 2

— (B 2 Y e+ 2 57| (35)
2 ﬁamin Omin

where in (i) we have used (34) with the identification z = 2"*! and z = 2" and the fact that
. 1
Lﬁ($7+1,ur+1> _ L5($T+1,HT) _ <'ur+1 _ Mr)Axr-&-l) _ EHMr-&-l _ MTHQ

; in (i7) we have used the optimality condition for the x-subproblem (7a). The claim is proved. Q.E.D.
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8.5. Proof of Lemma 3

From the optimality condition of the z-subproblem (7a) we have

(V@) + AT + AT Ax™ 1 + BBTB(a" ! — 27), 2" — ) <0, V 2 € RY.

If we shift r to r — 1, we get
(V") + AT + AT Ax" + BBTB(2" — 2" 1), 2" —2) <0, V2 € R,

(36)

Plugging = = 2" into the first inequality and z = 2"*! into the second, adding the resulting inequalities and

utilizing the p-update step (7b) we obtain
(Vf(H) = V") + AT (i — u) + BBTBw”, "' — 27) < 0.
Rearranging, we have
(AT (ur+Y — ), 2™ — ™) < —(V (@) — V(") + BT Buw”, &7+ — 27).
Let us bound the lhs and the rhs of (37) separately.
First the lhs of (37) can be expressed as
(AT (07 — "), 27+ — &) = (BAT Az, 27+ — )

= (BAz" T Az"T! — Ax")
= Bl|Az"H|? — B{A2", Az")
= g (Az™HZ = [[A"[|* + |A(e" = 2")[) -

Second we have the following bound for the rhs of (37)

—(Vf(@@™™) = V(") + BT Bw", 2" —2")
< Lljz" — 2"||2 — B(BT Buw", 2"+ — 2"

L R (e e L )]
Combining the above two bounds, we have

B
2

B
2

(w5 5 + 1A = 2")]?) .

(A2 1Z + [l = 2" Fr 5) < Llla™ " —a"|* +

_8
2

(le" = 2" e + 1427 ?)

The desired claim is proved.

8.6. Proof of Lemma 4
Multiplying both sides of (10) by the constant ¢ and then add them to (9), we obtain

r r Cﬂ r r r
Lg(a™ w1 + < Az PP+ 2™ = 2" )
roor r r CB r r— r
< Lg(a”, p") + cLllz" — 2"|* + 5 (" = e g + 11 Az"]%)
— L 2L 2 2
S (EE 2R ) a4 25 BT |
2 Bomin Omin

Cﬂ r r r
== (" [5rp + [|A@E™ = 27)]]?)

C
< Lo i)+ D (Ja7 — " e+ 1427 )

B—L  2L2 . . c8  28|BTB|p .
—<—ﬁa — —cL) " =P = (= - ) [ | B -

2 2 min

(38)

Q.E.D.
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The desired result is proved. Q.E.D.

8.7. Proof of Lemma 5
To prove this we need to utilize the boundedness assumption in [A2].

First, we can express the augmented Lagrangian function as following

Lﬁ(xr—&-l’ur—&-l) _ f-(xr-i-l) 4 <’u7-+17Amr+1> + §||Axr+1”2

1 B i
_ f-(xr—i-l) < B<MT+17MT+1 _Mr> + §||A$7+1||2
. 1 - . . . B .
= fa") + 35 (02 =l 12 et = r)17) + Sl A
Therefore, summing over r = 1--- [T, we obtain

T T 3 1 1
S Latarth ) = 3 ()4 GIAS 4 ol = P ) g (TR ).
r=1 r=1

Suppose Assumption [A2] is satisfied and § is chosen according to (13) and (14), then clearly the above sum is
lower bounded since

B 5
f(x) + 5”14910”2 > f(z) + §||Aac||2 >0, VzeRC.

This fact implies that the sum of the potential function is also lower bounded (note, the remaining terms in the
potential function are all nonnegative), that is

T
ZPC’5($T+1,.’ET7MT+1) > —00, VT >0.
r=1

Note that if ¢ and 3 are chosen according to (13) and (14), then P. g(z" "1, 2", u"*1) is nonincreasing. Combined
with the lower boundedness of the sum of the potential function, we can conclude that the following is true

P.g(x™ 2" ") > —c0, Vr>0. (40)
This completes the proof. Q.E.D.

8.8. Proof of Theorm 1

First we prove part (1). Combining Lemmas 4 and 5, we conclude that ||z"*1 — 27||*> — 0. Then according to
(8), in the limit we have p"*! — ", or equivalently Az" — 0. That is, the constraint violation will be satisfied
in the limit.

Then we prove part (2). From the optimality condition of z-update step (7a) we have
Vf(l‘r_'_l) —|—AT/1,T +BAT(A.TT+1) —l—ﬂBTB(JJTJ'_l o xr) =0.

Then we argue that {¢"} is a bounded sequence if V f(z" 1) is bounded. Indeed the fact that ||z"+! —2"||*> — 0
and Az"*t! — 0 imply that both (z"*! — ") and Az"*! are bounded. Then the boundedness of u" follows from
the assumption that V f(z) is bounded for any € R?, and that u" lies in the column space of A.

Then we argue that {«"} is bounded if f(x) + gHAacH2 is coercive. Note that the potential function can be
expressed as

cf

2
1 B

= f(=") + %(HNTHHQ =P+ Q= ) + S AT

Peg(@™ ol p ) = f@) + (0, A + §||A:17T+1||2 + 2 (142" + (|2 = 2" p)

C
+ L (A2 + a7~ o e 5)
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and by our analysis in Lemma 5 we know that it is decreasing thus upper bounded. Suppose that {z"} is
unbounded and let K denote an infinite subset of iteration index in which lim _j- 2" = oc. Passing limit to
P.g(z™ 2", ) over K, and using the fact that "™ — 2, p"1 — 4", we have

i P p(a 7,4 ) = lim f(a )+ S A = oo
Te

T'EIC

where the last equality comes from the coerciveness assumption. This is a contradiction to the fact that the
potential function P, g (2"t 2", 1) is upper bounded. This concludes the proof for the second part of the
result.

Then we prove part (3). Let K denote any converging infinite iteration index such that {(u”,2")},cx converges
to the limit point (u*,z*). Passing limit in K, and using the fact that ||z"*! — 27| — 0, we have

Vi(z*)+ AT p* + BAT Az* = 0.

Combined with the fact that Az* = 0, we conclude that (u*,z*) is indeed a stationary point of the original
problem (5), satisfying (16).

Additionally, even if the sequence {" ™1, u"+1} does not have a limit point, from part (1) we still have [|u"** —
u"|| = 0 and ||z" — 2" 1| — 0. Hence

lim V,Lg(z" ™, p") = lim Vf(z") 9 Yim —BBTB(x™ —2") =0

7—00 700 r—00

where (i) is from the optimality condition of the z-subproblem (7a). Therefore we have Q(z"*1, u") — 0.

Finally we prove part (4). Our first step is to bound the size of the gradient of the augmented Lagrangian. From
the optimality condition of the z-problem (7a), we have

IVaLp(a", u" " HI* = |VoLp(a™ 1) + BBTB(a"™ —a") = Vo Lg(a", u" )|
= [Vf@"™) = Vf(a") + AT = p") + BT B2 —a")|?
< BL2|a" =P 4 3t = P AT Al + 362 BT B2 — 2|,

By utilizing the estimate (8), we see that there must exist a constant £ > 0 such that the following is true
Q"1™ = [VaLp(a, u =P + BllAa”|* < € o 27" €| B Bur |
From the descent estimate (9) we see that there must exist a constant v > 0 such that
Pc,ﬁ<l_r+1,xr“ur+l) _ Pcﬁ(xrvxrflvur) < vzt =2 — v ||BTBwTH2.
Matching the above two bounds, we have

Q(mr’ur—l) S (Pc,,@(xraxr_laur) - Pc7ﬁ(xr+17xr7 /J’T+1)) .

m R

Summing over 7, and let T denote the first time that Q(a", u"~!) reaches below ¢, we obtain

;

1

1 R 1 v -
P2 gog 2 QU S g (Pep(@h el u) = Peplat, o7 00))
r=1
1 v v
< —— (P, Ll pl)y— P) = .
,T_lg( ’ﬁ(xaxnu’) —) T -1

We conclude that the convergence in term of the optimality gap function Q(x" 1, ") is sublinear. Q.E.D.
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8.9. The Analysis Outline for Prox-GPDA

First, following the derivation leading to (8) we obtain

1, . . 212
Sl =P <
ﬂ ﬁo-mll'l

Note that the first term is now related to the square of the difference between the previous two iterations.

o — 2P+ 22 |7 Bur | (41)

Following the proof steps in Lemma 2, the descent of the augmented Lagrangian is given by

Lﬁ(errl,uTJrl) o Lg(xr,/f)
— 2

e i BT o - (2
2 Omin ﬁo'min

< —

In the third step we have the following estimate

2 (14272 + o™ — a7 e )
L L
< Dl P T a4 (Ja 0 e+ A2 P)
g
2 (0 Wy + 4G —an)?). (43)

Note that the first two terms come from the following estimate

L 1
—(@ T =a" V@) = V@) < Sl = 2P+ 7 VR - Ve

L L
< = x'r‘-‘rl — X" 2 gt — xr—l 27
<3l 2+ H
where the first inequality is the application of Young’s inequality.

In the fourth step we have the following overall descent estimate

C,
Lo 4 L (1477 4 o+ — )

T s Cﬁ r r— r ﬁ—L cL ” r
< Lg(a", 1) + = (o =" Hlprp + A7) — (2 - 2) 2"+t — 7|2
22 cL _ . B Qﬁ”BTBH o
+ (Bomm + 2) Jo™1 — 7|2 (2 — 2L e (44)

Note that there is a slight difference between this descent estimate and our previous estimate (12), because now
there is a positive term in the rhs, which involves ||#” — 2"~ 1||2. Therefore the potential function is difficult to
decrease by itself. Fortunately, such extra term can be bounded by the descent of the previous iteration. We can
take the summation over all the iterations and obtain

C
Loa™ 1, 5™+ (A2 4 T o )

12 Cﬁ 1 02 112 2L2 0 112
< Lot wt) + 5 (e = a%lle + 1421 1°) + ( g— FeL ) " —a'|
T—1 T
B—L 212 41 2 cf QBHBTBH )
- ; <2 - /Banlin —ck er o || - ; 7 B ﬁ HwTHBTB '

Clearly as long as the potential function is lower bounded, we have "t — 2" and 2" ! — 2" — 2" — 2"~ !, The
rest of the proof follows similar steps leading to Theorem 1, hence is omitted.
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9. Proof of Convergence for Prox-PDA-IP

In this part we present the convergence analysis for Prox-PDA-IP algorithm which main steps are given in (19)
and (20). Our analysis consists of a series of steps.

Step 1. Our first step is again to bound the size of the successive difference of {u"}. To this end, write down
the optimality condition for the z-update (19) as

AT+ = _v f (2t — g BT B2 — o). (45)
Subtracting the previous iteration, we obtain
AT (@ — yny = (V@Y = V(") — B BTB (w') — (87 — 87)BTB(z"*! — 7). (46)
Therefore, using the fact that u" ™ — " € col(A), we have

|2 < (L2 4+ (87 — gV |BTB]) |7+ — 2|7 + ?’(ﬁ—VHBTB ME. @)

riﬂ”:u = gr+lg r+1
s g B

min
Also from the optimality condition we have the following relation

1
vt (48)

ot =2t — (B"B)™! (vf(mr-i—l) + AT/‘T—H) =l - Brt ;

where we have defined the primal update direction v"*! as

Ur+1 _ (BTB)—l (vf(xr+1) +ATM’I"+1) )

Step 2. In the second step we analyze the descent of the augmented Lagrangian. We have the following estimate

Lyes (a7 0™ — Ly (a7, 1)
= LﬁT+1 (ZET+1, ILLT+1) — Lﬁr+1 (ZL’T+1 T) + LﬂT+1 (:ETJrl, ,ur) — Lﬁ7‘+1 (ZT, [LT) —+ LBT+1 (xr, /LT) — Lﬁr(:vr, [LT)
O 1 r r 6T+1 7‘— ﬂr—i—l —L r r
e e I e
(ii) ﬁT-Fl — L 3 ﬂr+1 8"
< _ _ L2 r+1 _ gr\2 BTB r+1 _ _.r 2 _ r—l 2
(T - g @ - PETE) ) lar - -
3(67)° T 2
g, BB (49)

where in (i) we have used the optimality of the z-subproblem (cf. the derivation in (35)), and the fact that

Br+1 r 5r+1 r

Lgr+1(a",p") = Lpr(a”, p") = —— IIAZE’"II2 ETCEER Hu’”—u“ll\Q; (50)

in (ii) we have applied (47).

Step 3. In the third step, we construct the remaining part of the potential function. We have the following two
inequalities from the optimality condition of the x-update (19)

(V@) + AT + g1 BT B2 — "), 2" —2) <0, V2 € RY

(Vi) + A"y +B"BTB(z" —2"'),2" —2) <0,V € RC.

Plugging z = 2" and 2 = 2" ! to these two equations and adding them together, we obtain
<AT(‘LLT+1 _ ’ur)7l,r+1 o J?T>

_<vf(xr+1) _ Vf(.%‘r),xﬂ—l _ $7‘> _ <BTB(5T+1(:L,T+1 _ xr) _ ﬁr(xr _ wr—l))’mr-i-l _ SCT>.
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The lhs of the above inequality can be expressed as

(AT(u* = "), et —a”)

BT+1 r+1)2 2 r—+1 (12
= 5= (|42 = | A27|]” + [ AG™ = 2")|")

Br-{-l . ﬂr . ﬁT-‘rl ; ; ﬂr Br —+1 ;
= S AP = AP 4 A — a2 S AT,

while its rhs can be bounded as

(V) = Vf@), a2 — (BTB(F @ 1) — (" — a7 ), et )
< Lfam — a2~ (7~ BT)|e ! —

BT(

2
75
la” = 2" HGrp = 2" = 2" e — 0" 5 p)

_ L||$T+1 _ (ETHQ BT+1

BB e -
2

T HBTB

ﬂr—i—l

z' 1||BTB 9

B

e

+ 7”%7- -

337'+1||23TB -

BrJrl

I
||BTB T 2" *»TTH”zBTB - ?”wT”JzBTB'

(21) T
< Lt a2+

Therefore, combining the above three inequalities we obtain
1
" — 2" ||BTB

_1”2 +ﬁr+1 ,BTH - r||2_'_LH r+1 7"”2_
pra gy W P ElT

BT—H ﬁr—H
A r+1(2 r
A

IBT’ T /Br T T
< e + Sl - Sl Py

Multiplying both sides by 8", we obtain

5r+1[3r ; ﬂrJrlﬂr . .
AP+ e = 2"
ﬂw T Ly Briv—pr o, N .
| Az" || + 5 lla" —= IIIQBTB+TIIM P 4 BT — |
(ﬂ’“)2 . BB =B ez BB =BTY
5l e s + = AT |+ P e — 2 e
ﬂrﬂr 1 ; 6T5T71 ; . Br+1 757"71 B i, . . .
| Az ||2 2 " — 2 1||%TB+THH 1*# ||2+ﬂ Lz g H2
(ﬂr)2 r /Br(ﬂriﬁTil) r T
B [|[w ||BTB+fHI 1HBTB (51)

where in the last equality we have merged the terms il 7ﬁ7 lum=t — p"||? and MHAQ@WP

Step 4. In this step we construct and estimate the descent of the potential function. For some given ¢ > 0, let
us define the potential function as

r—+1 97
Pﬂr+l,c(wr+17xr’ur+1) _ L6r+l (xr+17MT+1) CB ||A r+1||2 CB ﬁ ||$T N

o g
2

Note that this potential function has some major differences compared with the one we used before; cf. (11).

In particular, the second and the third terms are now quadratic, rather than linear, in the penalty parameters.
This new construction is the key to our following analysis.
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Then combining the estimate in (51) and (49), we obtain

P5T+1,c(xr+laxra ,LLT+1) - Pﬂ",c(‘rraxrilaur)

< ﬁr+1 —L 3 2 r+1 7\2 BTB T‘L r+1 72
< (T - g (4 = g PIBT) - L) a7 - )
Br+l ﬂr 1 i, . cﬁr(ﬁr _ Br—l) . B
+T(§+C)HM —p 1||2+f||$ — 2" g
c(B7)? _3(BBTBIY | 2
- (A5 - ) i (52
where in the inequality we have also used the fact that g7 > g7—1.
Taking the sum of r from ¢ to T (for some T" > ¢ > 1) and utilize again the estimate in (47), we have
PﬁT+1 c( T+17 T7:U/T+1) Pﬁt (‘T zt aMt)
B — L 3+3(1/8 )BT —p)/28 r r—
<:§j (% e (L2 + (57 — 5172 BT BY)
r+1¢or+1 _ or BTB
—CBTL—CB (ﬁ 5 6 )” ||)|xr+1_xr||2
c(B)? _ (B+3(1/B"+ ) (B =B /28T) (B2 IBTBI | 2
- (45 - o e
Cﬁt Bt _Bt_l B Bt-H ,Bt 1 3
+ DT Dot oty + s+ ol — P (53)

First, note that for any ¢ € (0,1), the coefficient in front of Hw’"HzBT p becomes negative for sufficiently large
(but finite) ¢. This is because {8} — oo, and that the first term in the parenthesis scales in O((8")?) while the
second term scales in O(8") . For the first term to be negative, we need ¢ > 0 to be small enough such that the
following is true for large enough r

BT-H - L . cBr-‘,—l (BT'H _ BT)HBTB” ﬁr-&-l
2 Bl 2 T

Suppose that r is large enough such that (37! — L)/2 > B"+1/3, or equivalently A7*! > 3L. Also choose
c=min{1/(4L),1/(12x| BT B||)}, where & is given in (21). Then we have

/BT—H . . cﬁr—&-l(ﬂr—i—l _ Br)HBTBH 67-4-1 ﬁr-ﬁ-l 57--&-1 /BT—H
— B — — — = . 54
2 b 2 ~ 73 4 2 24 (54)
For this given ¢, we can also show that the following is true for sufficiently large r
3+3(1/8"+ (B —BTY/28" +1 2 BT prit
L T — BB B||) <
= (L2 4+ (87 = 52| BTB) <
c(B7)? _ (3+3(1/B" + ) (B = 8771 /26")(B")?IBTBI\ . <(8")?
2 BrJrlo'min o 48 ’
In conclusion we have that for sufficiently large but finite ¢y, we have
Paraa (a7 2T, pTTY) — Py (a7 2t plo)
BT 1 r r C(BT)2 12
<> (L - O
r=to
cfho (Bl — oY) pott — i :
+ 5 lz" =2 |G p + T(l/ﬂt" +o)llut — pto T, (59)
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Therefore we conclude that if {571} satisfies (21), and for ¢ > 0 sufficiently small, there exits a finite ¢y > 0
such that for all T' > ¢, the first two terms of the rhs of (53) are negative.

Step 5. Next we show that the potential function must be lower bounded. Observe that the augmented
Lagrangian is given by

L57-+1 (.IT—H, Mr—i—l)

= @)+ et Aty + D e
1 112 2 1 2 BT+1 112
= 1)+ e (P = I+ D = 1) + 2 e
r+41
= 1)+ g = P el = P+ (g = e ) WP+ S e
> J@m) 4 g = I+ g et = g2+ S a2
237 +1 23" 937+ 2

where we have used the fact that 37T > 3", Note that t in (55) is a finite number hence 261‘0 | pto||? is finite,
and utilize Assumption [A2], we conclude that

ZLBTH(:UT“,MH) > —0o0. (56)
T:to

By noting that the remaining terms of the potential function are all nonnegative, we have
oo
ZPBHl)C(er,xr, prt) > —oo. (57)
r=1

Combining (57) and the bound (55) (which is true for a finite ¢ty > 0), we conclude that the potential function
Pgrir (2™, 27, pm 1) is lower bounded for all r.

Step 6. In this step we show that the successive differences of various quantities converge.

The lower boundedness of the potential function combined with the bound (55) (which is true for a finite ¢ty > 0)
implies that

iﬂr+1”xr+l — 2|2 < oo, (58a)
r=1
> (B w5 < oo. (58b)
r=1
Therefore, we have
Bttt — 2|2 — 0, (59a)
(B2 || s — O (59b)

These two facts applied to (46), combined with p" ™ — ™ € col(A), indicate that the following is true
p =" = 0. (60)
Also (55) implies that the potential function is upper bounded as well, and this indicates that

CﬁrJrlﬂr CBH»lBr

5 | Az" || is bounded, 5

lz" — 2" "% is bounded. (61)

The second of the above inequality implies that f"t!BT B(2"+! — ") is bounded. If we further assume that
V f(x) is bounded, and use (45), we can conclude that {u"} is bounded.
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Step 7. Next we show that every limit point of (2", ") converges to a stationary solution of problem (5). Let us
pass a subsequence K to (z", u") and denote (z*, u*) as its limit point. For notational simplicity, in the following
the index r all belongs to the set K.

From relation (58a) we have that any given e > 0, there exists t large enough such that the following is true

o0

Pl 2 < € 62
P P (62)
Utilizing (48), we have that the following is true
oo 1 [ee]
T : T r 2
> Gl I <oo, Jim B (87 w5 s = 0. (63)
r=1 r=t

The first relation implies that liminf,_, |[v"!|| = 0. Applying these relations to (47), we have

=1
> Gl ™t =l < oo
r=1

This implies that for any given € > 0, ¢ > 0, there exists an index ¢ sufficiently large such that

0 2

Z r+1 ur||2 < €

et 4096 L|| BT B||pr(1 +c¢)’

Gt [ (64)

Applying this inequality and (62) to (55), we have that for large enough ¢ and for any T > ¢ the following is true

T r+1 2
P T+ T T4y poy (g b=l by < — B r41 2 € . 65
e o) = Bl a7 ) < =30 (Sl =) + gy (9
Next we modify a classical argument in (Bertsekas & Tsitsiklis, 1996)[Proposition 3.5] to show that
lim [[o" | — 0.
T—00
We already know from the first relation in (63) that liminf, . [[v"T!|| = 0. Suppose that ||[v" ™| does not
converge to 0, then we must have limsup,_,  [[o""!|| > 0. Hence there exists an € > 0 such that ||v" || < €/2

for infinitely many 7, and |[v"*!|| > € for infinitely many r. Then there exists an infinite subset of iteration
indices R such that for each r € R, there exits a t(r) such that

Il < €/2, |[v"7] > e,
/2 < || <€ Vr<t<t(r).
Using the fact that lim _j- p" = p*, we have that for r large enough, the following is true for all ¢ > 0

rHt| < & ! .
~ 8(BTB)|[|ATA

Without loss of generality we can assume that this relation holds for all » € R. Note that the following is true

s

0" —p (66)

€

t(r)—1
€ <)) - ||vf||§||vf<r>vr||H(BTBV S (VA Vi) + AT (i ) H

t=r

\}

t(r)—1

< |(B"B) 1||( > s Vf<xt>||+||ATA||/f<r>—mn)

t(r)—l

(48) B L . .
1B B (X gl + AT AN - )
t=r

t(r)—1

<eL|(B"B)M Y
t=r

1 €
Bi+1 + 8 (67)
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where in the last inequality we have used (66) and the fact that for all ¢ € (r + 1,#(r)), we have ||vt|| < e. This
implies that

t(r)—1 1

3
< - 68
ST < & (0%)
Using the descent of the potential function (65) we have, for » € R and r large enough
Pgt(r)’c(ﬂft(r), xt(r)—lhut(r)) _ Pgr,c(l‘r,l‘r_l,,ur)
t(r)—1 62
< _ 412
= ; s VI Soeez BT E]
() ¢ 2t(7")71 1 2
< _ (=
< (3 ; w85+ 10061 BT B
(ii) €2 €2
< - +
= T 2048L|BTB| " 1096L| BT B]|
2
< - - 69
= 4096L| BT B|| (69)
where in (i) we have used the fact that for all r € R, [[o" || > § for i = 1,--- ,t(r); in (ii) we have used (68).

However we know that the potential function is convergent, i.e.,

,lggo Pﬁt(r%c(xt(r)’xt('r')—17Mt(r)) N P5r7c($7‘, mr—l’ ’u'r') -0

which contradicts to (69). Therefore we conclude that [[v" 1| — 0.

Finally, combining [[o"™!|| — 0 with the convergence of "™t — " (cf. (60)), we conclude that every limit point
of {z", u"} satisfies

Vi) + AT p* =0, Az* =0.
Therefore it is a stationary solution for problem (5). This completes the proof.
10. Proof of Convergence for Algorithm 2
To make the derivation compact, define the following matrix

M'f-‘rl = va(XT—‘rl’ Y’r»_;,_l)
= (X)) =20t T + 29 XTH - (XY — 2n) (DT + 29X (70)

The proof consists of six steps.

Step 1. First we note that the optimality condition for the X-subproblem (30c) is given by
ATQ = M — B(BTB, (X" — X)), (71)

By utilizing the fact that Q"' — Q" lies in the column space of A, and the eigenvalues of A7 A equal to those
of AT A, we have the following bound

2

I+ —QE < (IIMT+1 - M5+ 8% BTB[(X - XT) — (X" - XT_l)]II%) :

min
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Next let us analyze the first term in the rhs of the above inequality. The following identity holds true

I = M

—le Xy = 2) (T = (XTyr = 2 ()T + 29X = XTI
=1

2

<D AIXTT = XTIy TP+ A TyE =zl = il AT T = DIy
i=1

+ 1691 X7 - X715

<

KMZ

Il
—

AT + 42| X = XTI T+ 407 |yt =yl 1P + 47 X7 (v T = ) )1? (72)

(2

where in the last inequality we have defined the constant 6] as
07 = || X7y} — =ill”. (73)

Therefore, combining the above two inequalities, we obtain

N
1 T 8 T I T,T T ()T T
519 -k < o > (P +PIXTT = XTE + 607l = yf P+ 7lIXT (= i)
min T
6 r r r r—
+——[BTB[(X"" - X") - (X" = X" )]|F (74)

Step 2. Next let us analyze the descent of the augmented Lagrangian. First we have

Le(X", Y™ Q") — Lg(X", Y™, Q)

Il
e

1 .7 ‘s rT.Tr ‘s
I = 2l 4 eyl ) — IIX yr — zill* — hi(yi))
=1

(2

N | —

2

™=

=

1
Xyt =zl + iyt + Z||yr+1y:|l22||X:yzzi|2hz—<yf>)

|
X" Xy ™ = 2) + 07 (i ™ = i)yl —uf) — HXT( T —yn))? - 1||yr+1 vi ll?

] =

<

(
2 (

ey - yz>)

N
s—Z( X7 I+ S - y) (75)

i=1

where in the second to the last equality we have used the convexity of h;, and (/™' € Oh;(y/™"); the last
inequality uses the optimality condition of the y-step (30b). Similarly, we can show that

2
La(X ¥ ) - Ly(X7 v ) < PR xere - xe (76)

where we have utilized the fact that AT A + BT B = 2D > Iy;. Therefore, combining the estimate (74), we
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obtain
L[—}(XT+1, Y’I‘Jrl, QrJrl) - L[—}(XT, YT7 Qr)
< (6 +27_8(r2+49?) S

al 07 80!
2 M) Y - X - 3 (- ) It - P
min i=1

2 Omi
’L:l /6 min

N

1 8
(37 g LI -l

i=1

——|B"B[(X"" - X") - (X" = X" )]}

Omin

(77)

Step 3. This step follows Lemma 3 in the analysis of Algorithm 1. In particular, after writing down the
optimality condition of the X" and X" step, we can obtain

<AT(Q7“+1 _ QT)7XT+1 _ Xr>

< _ <M'r’+1 _ M7‘ +5BTB [(X'r’—‘rl _ Xr) i (Xr - Xr—l)] ’XT+1 o X7> )

Then it is easy to show that the above inequality implies the following

N[

(<AXT+17AXT+1> + <BTB(XT+1 o XT),XTJrl o Xr>>
< g ((AXT, AX") + (BTB(X" - X"1), X" — XT*)) - §<A(XT+1 CXT),AXTT - X))
— (M - M X - XT) - §||B[(X”1 - X" — (X" = X" |%

Note the following fact

_ <MT+1 _ MT7XT+1 _ X'r‘>
—(Vx (XY™ -V f(X7,Y7), X!

— XT>
_<va(Xr+1, Yr—i—l)

_ va(Xr,Yr+1) 4 VXf(X7>7Yr+1)

i

—~
=

- VXf(XT7YT)7Xr+1 - XT>

IN

—(VXf(XT Y -V f(XTYT), X - X

=

l\D

royT royT d r r
Hvxf(X YT = Vx X YE + S IX X

—_

111
d
< P O Ny ™ = i I + 7 X (7 = I + X

- X% (78)

where in (i) we utilize the convexity of f(X,Y") wrt X for any fixed y; in (ii) we use the Cauchy-Swartz inequality,
where d > 0 is a constant (to be determined later); (iii) is true due to a similar calculation as in (72)
Overall we have

5 (<AXT+1,AXT+1> + <BTB(XT+1 _ Xr)7Xr+1 _ Xr))
< g ((AXT, AX") + (BTB(X" - X"V, X" — XH)) - §<A(XT+1 XY, AXTT - X))

N
1 I T . T ‘s ‘s d T T
+ - Z (OF ™" = w11+ 71X (7 = wDI?) + I X7 = X7
B , , , ,,,
-5 IBIX X" — (X=X
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Step 4. Let us define the potential function as
Py o(XTH X7y Qrt)
= Ly(XH, Y+l iy ? ((AX’““, AX™HY 4 (BTB(X™! — X7), X" - X")) . (80)
Then utilize the bounds (77) and (79), we obtain
Ps (X" X7 YL Q) - Py (X, X YT, QN

N
B+2y 8(r°+49%) cd . .
< -(BH2- - S - X
=1

2 ﬁamin
N N
0r 807 ! 1 9 1 87 cT 1
- A TR R S Y TR L (. X7y — )2
S (5 o )W = (5 oy = ) S a0
B _ 28|BTB| r r r_ oy

(9 -2 pprar - xn) - - xR

Therefore the following are the condition that guarantees the descent of the potential function
2 2 42 d 1
B+2y 8(r"+4y7) 0, L8 _c g
2 ﬂo-lnin 2 2 Uminﬂ d (81)
2 Uminﬁ d ’ 2 Omin )
To see that it is always possible to find the tuple (3, ¢, d), first let us set ¢ such that the last inequality is satisfied
4|BTB

Second, let us pick any d such that the following is true
d > max{2cr, 2c}.
Then clearly it is possible to make 8 large enough such that all the four conditions in (81) are satisfied.

Step 5. We need to prove that the potential function is lower bounded. We lower bound the augmented
Lagrangian as follows
Lﬁ (XT+1, YT+1, Q’r‘+1)
N

1
5 (G = 2l Al + R )+ @ AXT - DA A
1

3

<AXT+17 AXT+1>

I
.MZ

1
(2Xir+1yf+1 =zl A XTHE + hi(yf“)) +

R

=1

1 . .
+%(HQ’"+1 — Q7|+ 1QHE - 1977 - (83)

Then by the same argument leading to (40), we conclude that as long as h; is lower bounded over its domain,
then the potential function will be lower bounded.

Step 6. Combining the results in Step 5 and Step 4, we conclude the following

N N
SNXIT = XTI =0, Dyt =yl =0 (84a)
=1

i=1

N
S IXI @ -2 0, [BTBIX - X7 - (X - x| o (84b)
i=1
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Then utilizing (74), we have
Q" — Q" — 0, or equivalently AX" T — 0.

That is, in the limit the network-wide consensus is achieved. Next we show that the primal and dual iterates are
bounded.

Note that the potential function is both lower and upper bounded. Combined with (84) we must have that the
augmented Lagrangian is both upper and lower bounded. Using the expression (83), the assumption that h;(y;)
is lower bounded, and the fact that y; is bounded, we have that in the limit, the following term is bounded

N

1
D SIXI T = al? X
1=1

This implies that the primal variable sequence {X[“} are bounded for all 7. To show the boundedness of the
dual sequence, note that Q"' € col(A) (due to the initialization that Q° = 0). Therefore using (71) we have

omin(AT A)|QFHE < 2[MTE + 28 BTB(XT - X7

Note that from the expression of M in (70), we see that {M" '} is bounded because both X" and Y"+! are
bounded. Similarly, the second term on the rhs of the above inequality is bounded because X" ™' — X". These
two facts imply that {Q" "'} is bounded as well.

Arguing the convergence to stationary point as well as the convergence rate follows exactly the same steps as in
the proof of Theorem 1.

10.1. Prox-PDA-IP for Distributed Matrix Factorization

In this section we extend the Prox-PDA for distributed matrix factorization utilizing increasing penalty pa-
rameters, just as what we have done in Section 5. In particular, when replacing the penalty parameter 5 by an
increasing sequence {3"} that satisfies (21), the resulting algorithm also generates bounded { X"} and {Q" "'},
whose limit points are stationary points of problem (26). The detailed steps of this variant is given in Algorithm
3.

Algorithm 3 Prox-PDA-IP for Distributed Matrix Factorization

1: At iteration 0, initialize Q° = 0, and X©,¢°
2: At each iteration r + 1, update variables by:

0] = | X7y; —zl®, Vi (85a)

; 1,

yit =arg min  Z|| X7y — 2 + hi(yi)
lvill?<r 2

7'+16r r+1
+ 8 P+ s - DI v (85b)
IBT'+1 ﬁ7'+1

X =arg min f (X, YY) +(Q7, AX) + (AX, AX) + (B(X-X"),B(X—-X")); (85c¢)
XecRNM XK 2 2

Q=" + g AXTT (85d)

Now, we provide the proof of convergence for Algorithm 3. Our convergence claim is given below.

Theorem 4 Consider using Algorithm 3 to solve the distributed matriz factorization problem (27). Suppose that
h(Y) is lower bounded over dom h, the penalty parameter {8} satisfies (21), and that the matriz B satisfies

BB =0, and ||B'B| > 1. (86)
Then in the limit, consensus will be achieved, i.e.,

X, =X;, VY (i,j)€&.
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Further, the sequences {X"t1} and {Q" '} are both bounded, and every limit point generated by Algorithm 5 is
a stationary point for problem (27).

The proof essentially combines the analysis steps of Theorem 2 and 3. However the notation is significantly
more complicated due to the increased number of terms involved in the analysis. We include the proof here for
completeness.

Step 1. Bound the size of the successive difference of {2"}. Similarly as in the proof of Theorem 3, the
optimality condition for the X-update can be written as

ATQT+1 _ _Mr+1 _ 57‘+1BTB(XT+1 _ Xr) (87)
ATQ" = -M" - "'BTB(X" - X" ). (88)

Subtracting the above equations, we obtain
AT (Qr+1 o Qr) _ (Mr+1 o MT) _ BTBTB ((X7>+1 _ Xr) o (Xr o Xr—l)) o (6T+1 o 67") BTB<X7”+1 _ XT)
Since Q! — Q7 lies in the column space of A, and the eigenvalues of AT A equal to that of AT A, we have

Tmin(ATA) Q7 — Q7|2 < [|A (@ — )%,
which results in

e[|t -

(MT+1 _ MT) _ ﬂrBTB ((Xr+1 _ Xr) _ (Xr _ erl)) _ (lBrJrl _ ﬁr) BTB(XT+1 _ X’I")||2
_ 5 HMT"’Fl _ M ’ﬁﬁ' + (IBT>2 HBTB ((X7'+1 _ X7) — (X" — Xr—l)) H? .

= Brtlopmin(AT A) +(ﬁr+1 . 6T) HBTB(XT+1 _ XT)HQ

= pr+i cr,,,iln (AT A) || B

(89)
Also, from (72) we have

N
MM Y ) X = X a0 a7 ) (o0

7
i=1
Thus, we have the following bound

g o -
N

< 7Br+1gmli(ATA) 21 (12 + 4+?) ||X{+1 _ X[||fD + 95”1/2"“ - y;H2 + T||X{ (y;“+1 B yf)||2
1=

(91)

« r r+1_ aor 2
el [BTB (X7 - X7) — (X7 — X )|+ S BTB(XH - X2

Step 2. We analyze the descent of the augmented Lagrangian.

First, as in (76), we utilize the strong convexity of the objective function of the X-update (cf. (85¢)) and obtain
the following descent estimate for the X-update

Lgear (XrHL Y™, Q7) = Ly (X7, Y71, Q) < 2700020 |t xr||2 (92)

Note that compared with (76) we have replaced 8 with 7 +1.
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Similarly, we have the following estimate for the descent of the Y-update
Lgra (X7, Y™ Q7) — Lgesa (X7, Y7, Q7)
s 2 T
(BI1x70 = 20+ bl ™) = 3IXT9E = 2l = b))

( 3Xryit - ail | har )+ Syt =y S X ()|

ﬁ
+

|
™M=

s
Il
-

IA
M=

s
Il
_

— s X7yF = 2l = haw)) (93)
<<X?‘>T (7™ = z) + Brtor (u =) + BTN X (Xt = X)Ly ) )
r+lgr 1
=317 (i - ’“)Htﬁ v T“*nyz*B; X7 (™ =) |+ (=)
(~E s = ) - 5

IA
M=

s
Il
-

IN
M=

s
I
—

e A

where in the second to last inequality, g; "+l e oh, (y ’+1) the last inequality is true due to the optimality condition
of the Y-update.

Next we analyze the descent of the augmented Lagrangian. Let us first decompose the successive difference of
the augmented Lagrangian into the following

Lgrer (XTHL YT QrH) - Ly (X7, Y7, Q)

—Lgeer (XTHL YT QrHl) — Ly (XPHL YT Q)
FLgeer (XL YT Q) = Lgepn (X7, Y7L Q1)
FLgeer (X7, YL Q) = Lo (X7, Y7, Q)

+Lgeer (X7, Y7, Q) = Lge (X7, Y7, Q1)

T N T
< gl - - 5 e - 35 (S G - [ )
_|_/3;+1H—23T Qr_QrleQ
(B7) F

where in the last inequality we have used the estimate given in (92) and (93). Plugging in the estimate (91), and
(90), we have

L,BT+1 (){7-_:,_17 Yr-&-l’ Qr+1> LBT (Xr yr Qr)

- 5 vt — e+ HBTB (X =X = (X7 =X )
= Bt lomin (AT A) +(6r+1 ) HBTB Xr-i—l HF

r1 112 N r+1 - rHgr 2
e e 8 (S O )l SR )
+'82(57)2 @ — a1,

N
< e 2 (47 + a9 | X7+ = X7 |+ 407wt = vl + 4| X7 = o))
3(8

r r r r— BB r 2
+5r+lofmn)(ATA> BB ((X +11V* X7) = (X7 =X)L +W [BTBX"+ —X)[[, (94)
- - . r41p7r
I X X = 5 (B =) [P P - )

Br+1 _Br
2(87)°

r r r N
= (s - ﬁ“e)zHyT“—yzuﬁ(ﬁwrf:(m—”i“);H Pyt -y

ey [BTB (X —X7) — (X7 =X )|

Q" — QT?lHi“

ﬁr+1 T 2 .
(st e | e
7‘+1 _ 2
S | -

Step 3. We construct the remaining part of the potential function. From the optimality condition of the
X-update, we obtain

<ATQT+1 + MT‘+1 + 67"+1BTB (X'l"—‘,-l _ XT) 7)(T—i—l _ X> S O7 (95)
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(ATQ"+M" 4+ 8'B"B (X" - X"!), X" - X) <0. (96)
Plugging X = X" and X = X"*! into (95) and (96) and adding them together, we have

<AT (ﬂrJrl _ Qr) ’Xr+1 _ Xr> (97)
S o <Mr+1 o MT’7XT+1 o Xr> o <BTB (ﬂr+1 (Xr+1 o Xr) o ﬁr (Xr o erl)) 7)(rJrl o Xr> .

The lhs of (97) can be expressed as

<AT (QrJrl _ Qr) 7XT+1 _ Xr>
— <BT+1AXT+17AXT+1 _ AX’I“>
_ /87‘"1‘1 HAXT+1|| Br-i-l <AXT+1 AXT> (98)

= Z2 [JAXr | — B AT+ S ||A (X - X))
— o a2 A+ ) A s 2 (xS
Noting the following fact (cf. (78))
r+1 r r+1 _ 1 Y r r4+1 r2 r r4+1 |2 d r+1 r(|2
SO X X < S (0 - =)+ X oo

where d > 0 is a constant. The rhs of (97) can be rewritten as

<Mr+1 M”, X7+ Xr> _ <BTB (ﬂr+1 (Xr+1 _ Xr) —pr (Xr o Xrﬂ)) X+ Xr>
< (H’Hzf“ vill” + 71X =) [)%) + 4 X - x|

5r+1 HXTH XT||123TB + B (BTB (X" — X"—1), X7+ - X")
<3 % (Ol = vz P+ s (it = wn)[7) + Xt = X = (B0 = B7) X7 = X7

A

+5 (||xr X e = X7 = X — X7 =X = (X7 = X)) (100)
rl|,,T rl|2 T, r\ (|2 2 prrt-p" T
"i5 > (0l ™ =+ 71X G =) ) + 4 I3 - E5E = X
HXTH HBTB+%T HXT_XT_lesTB - %T - X" = (XT_XT_1)||123TB
< 1 N 97’ r+1 |2 X r+1 \ 12 d Xr+1 X 2 ﬂr+l Xr+1 X 2
_%71( ™ =i |7+ 7l X7 (™ =) >+§H X[ =5 | = X"||grg
+5 X = X g = & X =X = (X=X g

where the first inequality is obtained by plugging in (99); in the last inequality we have used the fact that
Bt > g
Therefore, combining (98) and (100), we obtain

41 41
ﬂ B

AR+ 257 X+ — X
<6 |AXT |+ 5 ||xr X g + 3 z(muy*“ yi I+ X7 it =) I) + £ X - X

(B
2(6 )2

XX = (X = X g - U -
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Multiplying both sides by 8", we have

ﬁr+1ﬁ7

AXT—HHF + BB 57“ HXT-H X'rHBTB
r—1 r—1 - N
< ry S AXT | + S5 [|IX" = X |fep + & (9’Hyr“ v l” + 7X@t = w)IP)

S . ; . b e B =) o _ or—
X e X (0 X g~
+M Jaxr + S - X 1o
B N
= 5 AKXt B X = X g+ 5 (07 = w7 T -9
™ r r T T T r— ﬁH—l*ﬁT_l T r—
P 2 et X (2= X g T e -

Br—B"" e
+<fux7"—x U

Step 4. In this step, we construct and estimate the descent of the potential function. With ¢ > 0, let us define
the potential function as

Pﬁ7'+1’c (XT+17 XT7 YTJrl’ QT+1)

rRr+1
L B L e e )
Combining the estimate in (94) and (101), we obtain
Pyrir o (X710, X7 YL QL) — Py (X7, XL Y7, Q)
_ L5r+1 (XrJrl yrtl Qr+1) o LBT (XT7YT79T) + cgrglﬁr AXTJrlHi?
T gr+l T ar—1 rar—1
_|_c,3 5 HXT—H X |BTB B BT 5 ||AXTH3—~ _ % er _ Xr—lHQBTBN
7‘ 1gr r
= (ﬁ”lafl(i(ATA) = ) Z o =il + (ﬁf“aif:(ATA) -5 +1) P 17 (it = )|
+/3T+£E:W |B"B ( X’”H X7) — (X7 =X Y}
~ 3(m+1 g BTB a1 . , r+1_ pr , _
+ (R + e — 2 ) ok - ) + St o -
N
3 (Bl =il el =) )+ g X X
c T T r r— B + B T r—
f“i%rllxrffx - (% =X [ + L o - (103)
I - X1
I8 r+1gr c rar s -
< (prreiry — 5%+ 2E) & i - il
T r+1 cB"T N r \ (12
+ (et — 25+ ) S IX 6 -
m2||RT ”
4 (IRl ) (- ) - (X)) B
2447 prti—pT)’||B"B ,
(et + U=~ ) o -
1 _gr—1 (Brti_pr—1 ” _ e (BT-pm Tt ” 1112
(T + ) o -0 1HF+¥HX X g

where the first inequality is obtained by plugging in (94) and (101); in the last inequality we have used the fact
that 87t > B". Taking the sum of 7 from ¢ to T'+ 1 (for some 7' >t > 1) and utilize the estimate in (91), we
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have
PBT‘H,C (XT+1, XT, YT+1, QT+1) Pﬁt . (Xt Xt-1 Y't7 Qt)
(ﬁrﬂafii{(ATA) _ ﬁ”;er cBT9T> Z ||yr+1 szH2

(e - 4 4 7Y § Sz - )|

387)°|BTB|| (s
T\ oAt

MXM—W%mHXHm&B

IN
M=

r=t
12(r24442) | 38T B IBTB|L iy | odesr 1
+ BmaTmin(ZxTA) + = A © - e+ 4 ) [ =X
gri_gr=1  c(prtt-prt) _1y2 , eB7(B"-8""") 12
2(87)2 + 2437 ||QT*QT ||FJr 2 ||XT7XT HBTB

1207 griter c/m: pr2_pgr 1 1267 r+1 2
(Bmmnmu)* s T +( gt )\ T ¢) st Z”y — 5|

1 r41 AT r+2_ gr 1 2
* (ﬂT+1aIf:(ATA) BRI (B%TIB> (ﬂr“ +C) %) Z 15 @ =

387 |IBB||  c(sn)?
T Flomin(ATA) — 2 —1)|I?
< + ’ Ur+2(, - ) 3(87)%||B"B H ((XTH - X7) - (X" =X 1))HBTB
<> g+2_g 1) 2eBTB||
=t +\ T BriT T C) 5 (AT A)
12(724+44%) + 3(87—p")"||B" B}, _ BT oy
BT lomin (AT A) Bt lomin (AT A 2

)
deB™ CBT+1 ﬂrﬁ—liﬁr BTB 42 ar 12 5 4 5
+ + 026 + ( 5 )” H + BzﬂrJr? (BrlJrl + C) U!(EIA(;T’A)) H(XT+1 _Xr

g2\ (1 3(87 1 -67)"|[BT B
+< 2ﬁr+l > <ﬁ7+1 + ) Umin(ATA) =

] ﬂt t— 41 pt—1 ,ﬁt+1_6t—1 _ 2
L - X g + (25 + L o -

I

(104)

It can be observed that the coefficient in front of H((X”rl -X") - (X" — X“l))HzBTB becomes negative for
sufficiently large (but finite) ¢

2 2 3(g™ 1 —5")?||IBTB||? r r
Suppose that r is large enough such that ﬁ"ﬁ(c;:(lzT)A) + (ﬁﬁ,,ﬂfml(&TA) HF Sy +12+27 < —BTH and choose

c=min{1/(2d),1/(12||BT B||)}, then we have

ety TS VIBTB g g ()78

BT (AT A) B o (AT A) P
ﬂr+1 8" 8" 41
STt Tt u T

We can also show that for sufficiently large r, the following is true

(ﬁr+2—5r> ( 1 +C> 12(724-4’}’2) N <ﬁr+2 _Br) ( 1 +C) 3(ﬂr+1 757“)2HBTBH§ _ 5r+1

2p+1 ) \ gt Tanin(ATA) g1 ) \ g (AT A) SRV
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Furthermore, if we choose d = max{1,/7}, the coefficients in front of the following terms would be negative for
sufficiently large r
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In conclusion, we have that for sufficiently large but finite ¢y, we have
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Step 5. In this step, we show that the potential function must be lower bounded. Observe that the augmented
Lagrangian is given by

LBT+1 ()(rJrl7 YT+17 Qr+1)
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Thus, following the similar argument in the Step 5 of the proof of Theorem 2, we conclude that the potential
function Lgr+1 (X", Y"1, Q1) is lower bounded for all 7.

Now that we have shown the descent and the lower boundedness of the potential function, the rest of the proof
follows the same arguments as Step 6 - Step 7 of Theorem 2, therefore is omitted.
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