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Abstract

In this paper we consider nonconvex optimiza-
tion and learning over a network of distributed
nodes. We develop a Proximal Primal-Dual Al-
gorithm (Prox-PDA), which enables the network
nodes to distributedly and collectively compute
the set of first-order stationary solutions in a
global sublinear manner [with a rate of O(1/r),
where r is the iteration counter]. To the best
of our knowledge, this is the first algorithm that
enables distributed nonconvex optimization with
global sublinear rate guarantees. Our numerical
experiments also demonstrate the effectiveness
of the proposed algorithm.

1. Introduction

We consider the following optimization problem

N
iy, 96 5= 3£, ()
where each f;, i € {1,---, N} := [N]is a nonconvex cost

function, and we assume that it is smooth and has Lipschitz
continuous gradient.

Such a finite sum problem plays a central role in machine
learning and signal/information processing (Cevher et al.,
2014; Hong et al., 2016). In particular, in the class of em-
pirical risk minimization (ERM) problem, z represents the
feature vectors to be learned, and each f; can represent: 1)
a mini-batch of (possibly nonconvex) loss functions model-
ing data fidelity (Antoniadis et al., 2009); 2) nonconvex ac-
tivation functions of neural networks (Allen-Zhu & Hazan,
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2016); 3) nonconvex utility functions used in applications
such as resource allocation (Bjornson & Jorswieck, 2013).
Recently, a number of works in machine learning commu-
nity have been focused on designing fast algorithms for
solving problem (1) in centralized setting; e.g., SAG (De-
fazio etal., 2014), SAGA (Schmidt et al., 2013), and SVRG
(Johnson & Zhang, 2013) for convex problems, and (Reddi
et al., 2016; Allen-Zhu & Hazan, 2016; Hajinezhad et al.,
2016b; Rahimpour et al., 2016) for nonconvex problems.

In this work, we are interested in designing algorithms
that solve problem (1) in a distributed manner. In partic-
ular, we focus on the scenario where each f; (or equiva-
lently, each subset of data points in the ERM problem) is
available locally at a given computing node ¢ € [N], and
the nodes are connected via a network. Clearly, such dis-
tributed optimization and learning scenario is important for
machine learning, because in contemporary applications
such as document topic modeling and/or social network
data analysis, oftentimes data corporas are stored in geo-
graphically distributed locations without any central con-
troller managing the entire network of nodes; see (Forero
etal., 2010; Yan et al., 2013; Rahmani & Atia, 2015; Aybat
& Hamedani, 2016).

Related Works. Distributed convex optimization and
learning has been thoroughly investigated in the literature.
In (Nedic & Ozdaglar, 2009b), the authors propose a dis-
tributed subgradient algorithm (DSG), which allows the
agents to jointly optimize problem (1). Subsequently, many
variants of DSG have been proposed, either with special as-
sumptions on the underlying graph, or having additional
structures of the problem; see, e.g., (Lobel & Ozdaglar,
2011; Lobel et al., 2011; Nedic & Olshevsky, 2015). The
rate of convergence for DSG is O(log(r)/+/r) under cer-
tain diminishing stepsize rules. Recently, a number of al-
gorithms such as the exact first-order algorithm (EXTRA)
(Shi et al., 2014) and DLM (Ling et al., 2015) have been
proposed, which use constant stepsize and achieve faster
O(1/r) rate for convex problems. Recent works that ap-
ply distributed optimization algorithms to machine learn-
ing applications include (Scardapane et al., 2016; Aybat &
Hamedani, 2016; Scardapane & Lorenzo, 2016).

On the other hand, there has been little work for dis-
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tributed optimization and learning when the objective func-
tion involves nonconvex problems. A dual subgradient
method has been proposed in (Zhu & Martinez, 2010),
which relaxes the exact consensus constraint. In (Bianchi
& Jakubowicz, 2013) a stochastic projection algorithm us-
ing diminishing stepsizes has been proposed. An ADMM
based algorithm has been presented in (Hong et al., 2014;
Hajinezhad & Hong, 2015) for a special type of prob-
lem called global consensus, where all distributed nodes
are directly connected to a central controller. Utilizing
certain convexification decomposition technique the au-
thors of (Lorenzo & Scutari, 2016) designed an algorithm
named NEXT, which converges to the set of stationary so-
lutions when using diminishing stepsizes. To the best of
our knowledge, no multi agent distributed algorithm is able
to guarantee global sublinear convergence rate for problem

(D).

Our Contributions. In this work, we propose a proximal
primal-dual algorithm (Prox-PDA) for problem (1) over an
undirected connected network. We show that Prox-PDA
converges to the set of stationary solutions of problem (1)
(satisfying the first-order optimality condition) in a glob-
ally sublinear manner. We also show that Prox-PDA can
be extended in several directions to improve its practical
performance. To the best of our knowledge, this is the first
algorithm that is capable of achieving global sublinear con-
vergence rate for distributed non-convex optimization.

Further, our work reveals an interesting connection be-
tween the primal-dual based algorithm Prox-PDA and the
primal-only fast distributed algorithms such as EXTRA
(Shi et al., 2014). Such new insight of the connection be-
tween primal-dual and primal-only algorithms could be of
independent interest for the optimization community. Fi-
nally, we generalize the theory for Prox-PDA based al-
gorithms to a challenging distributed matrix factorization
problem.

2. System Model

Define a graph G := {V £}, where V and £ are the
node and edge sets; Let |[V| = N and || = E. Each
node v € V represents an agent in the network, and each
edge e;; = (i,j) € & indicates that node ¢ and j are
neighbors; see Fig.1(Left). Assume that each node ¢ can
only communicate with its immediate neighbors, defined
asN; :={j | (i,7) € V}, with |N;| = d;. The distributed
version of problem (1) is given as below

z;ERM

N
min f(z) := Zf,(mz), stz =, V(i,j) €€ )
i=1

Clearly the above problem is equivalent to (1) as long as G
is connected. For notational simplicity, define = := {z;} €
RNMX1 and Q := N x M.

1 -1 0 O
5 1 0 0 -1
A= 0 1 0 -1
0 0 1 -1

Figure 1. (Left) An undirected Connected Network,
(Right) Incidence Matrix.

To proceed, let us introduce a few useful quantities related
to graph G.

e The incidence matrix A € REXN is a matrix with entires
A(k,i) =land A(k, j) = —1ifk = (i,j) € E withj > 4,
and all the rest of the entries being zero. For example, for
the network in Fig.1 (Left); the incidence matrix is given in
Fig.1 (Right). Define the extended incidence matrix as

AZZA@IM GREMXQ, 3)

where ® denotes the Kronecker product.

o The Degree matrix D e RNXN jg given by D =

diag[dy, - ,dn]; Let D := D ® Iy € R9xQ,

e The signed and the signless Laplacian matrices (denoted
as L™ and L respectively), are given below

L™ =ATAcR? [T:=2D - ATA e R¥*Q. 4

Using the above notations, one can verify that problem (2)
can be written in the following compact form

min f(x),

zERQ

s.t. Az = 0. (5)

3. The Prox-PDA Algorithm

The proposed algorithm builds upon the classical aug-
mented Lagrangian (AL) method (Bertsekas, 1982; Powell,
1969). Let us define the AL function for (5) as

Lyt ) = f(&) + (u, Az) + D42, ©)

where ;1 € R is the dual variable; 8 > 0 is a penalty
parameter. Let B € R?*? be some arbitrary matrix to be
determined shortly. Then the proposed algorithm is given
in the table below (Algorithm 1).

In Prox-PDA, the primal iteration (7a) minimizes the aug-
mented Lagrangian plus a proximal term §||:c — 2" % g
We emphasize that the proximal term is critical in both the
algorithm implementation and the analysis. It is used to en-
sure the following key properties:

(1). The primal problem is strongly convex;

(2). The primal problem is decomposable over different
network nodes, hence distributedly implementable.

To see the first point, suppose BT B is chosen such that
ATA + BTB = I, and that f(z) has Lipschitz gradient.
Then by a result in (Zlobec, 2005)[Theorem 2.1], we know
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Algorithm 1 The Prox-PDA Algorithm

1: Atiteration 0, initialize 4° = 0 and 2° € R%.
2: At each iteration r + 1, update variables by:

2"t = arg min f(2) + (u", Az) + é”Axnz
z€R? 2

B r
+ 5z = 2" s (7a)

Mr+l ::A”’+_ﬁ/4xr+1' (7b)

that there exists § > 0 large enough such that the objec-
tive function of (7a) is strongly convex. To see the second
point, Let B := | A|, where the absolute value is taken for

each component of A. It can be verified that BTB =L,
and step (7a) becomes

N
r+1 . . . T
o = argmin 32 A+ (0 A

+ ngLfm + g(m —2") LY (@ —a")

N
= arg min Z fizi) + (u", Az) 4+ Ba" Dz — B2" LT a".
i

Clearly this problem is separable over the nodes, therefore
it can be solved completely distributedly.

4. The Convergence Analysis

In this section we provide convergence analysis for Algo-
rithm 1. The key in the analysis is the construction of a
novel potential function, which decreases at every iteration
of the algorithm. In particular, the constructed potential
function is a conic combination of the AL function and the
size of the violation of the consensus constraint, therefore it
measures the progress of both the primal and dual updates.

We first state our main assumptions below.

[A1.] The function f(x) is differentiable and has Lipschitz
continuous gradient, i.e.,

IVf(z) = V@) < Lz =yl

Further assume that AT A + BTB » Ig.

Y,y e RO

[A2.] There exists a constant § > 0 such that
6 2 Q
3f>-00, st f(x)+§||Aa:H > f, Vz e R*%.

Without loss of generality we will assume that f = 0.
Below we provide a few nonconvex smooth functions that
satisfy our assumptions, all of which are commonly used
as activation functions for neural networks.

o The sigmoid function sigmoid(x) =
e The arctan and tanh function.
e The logit function logit(x) =

1
14e—2="

e(E
er+41"°

4.1. The Analysis Steps

Below we provide the analysis of Prox-PDA. First we pro-
vide a bound on the size of the constraint violation using
a quantity related to the primal iterates. Let op,;, denotes
the smallest non-zero eigenvalue of AT A, and we define
w” = (27Tt —27) — (2" — 2"~ 1) for notational simplicity.
We have the following result.

Lemma 1 Suppose Assumptions [Al] and [A2] are satis-
fied. Then the following is true for Prox-PDA

BWH — |
2L . g2 28 .

< |z — 2" + =BT Bw"|]>. (8)
50hﬁn Omin

Then we bound the descent of the AL function.
Lemma 2 Suppose Assumptions [Al] and [A2] are satis-
fied. Then the following is true for Aéﬁorithm 1

fren th 2B B

L(x™ ™y — Lg(a”, 1) < ——w H2BTB
B-L 22N\, .1

- (2 el L LA ©)

A key observation from Lemma 2 is that no matter how
large $3 is, the rths of (9) cannot be made negative. This
observation suggests that in contrast to (Hong et al., 2014;
Hajinezhad et al., 2016a) the augmented Lagrangian alone
cannot serve as the potential function for Prox-PDA. In
search for an appropriate potential function, we need a new
object that is decreasing in the order of (3 ||wr||QBT - The
following lemma shows that the descent of the sum of the
constraint violation and the proximal term has the desired

property.

Lemma 3 Suppose Assumption [Al] is satisfied. Then the
following is true

ﬁ r+12 r+1 12
5 (1A= 4 [l = 2" )

r+1 12 B 12 T r—1)2
<Ll =2+ 5 (42717 + " = 2" )

0 (e s + I AGT — 2P (10

It is interesting to observe that the new object,
B/2 (| Aa"T|? + 2"t — 27|31 ), increases  in
L|jz"t! — 2"||? and decreases in 3/2||w"||% 5, while the
AL behaves in an opposite manner (cf. Lemma 2). More
importantly, in our new object, the constant in front of
|z" Tt — a7||? is independent of 3. Although neither of
these two objects decreases by itself, quite surprisingly, a
proper conic combination of these two objects decreases at
every iteration of Prox-PDA. To precisely state the claim,
let us define the potential function for Algorithm 1 as

Pog(x™ ™ 2" ) o= Lg(a™, pm )

Cﬂ T s T
+ 5 (A" + o™ = a5 ), (D)
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where ¢ > 0 is some constant to be determined later. We
have the following result.

Lemma 4 Suppose the assumptions made in Lemmas 1 —
3 are satisfied. Then we have the following

PC,B(-I'TJFl?xTa ,U/r+1) < PC,B(xr,l‘T—l?Mr)

- L 2L72
- (62 - 3 — cL> lz" — :vT||2
Omin

268||BTB
- (ﬁﬂ””F) ' e (12)

2 Omin

From the above analysis, it is easy to see that as long as ¢
and 3 are sufficiently large, the potential function decreases
at each iteration of Prox-PDA. Below we derive the precise
bounds for ¢ and S. First, a sufficient condition for c is
given below (note, that § > 0 is defined in Assumption
[A2])

5 4/|BTB
chaX{,””F}. (13)
L Omin
Second, for any given ¢, we need /3 to satisfy % —
,6’20'L2- — cL > 0, which implies the following
L 16L2
ﬂ>§ 2c+1+\/(20+1)2+ (14)
Omin

We conclude that if both (13) and (14) are satisfied, then
the potential function P, g(z" ™!, 2", u"*1) decreases at
every iteration.

Our next step shows that by using the particular choices of
c and $ in (13) and (14), the constructed potential function
is lower bounded.

Lemma 5 Suppose [Al] - [A2] are satisfied, and (c,[3)
are chosen according to (13) and (14). Then the follow-
ing statement holds true

JP > —cost. Pog(z™ 2", u"™) > P, Vr > 0.

Now we are ready to present the main result of this section.
To this end, define Q(2"*1, u") as the optimality gap of
problem (5), given by

Q(Z'T—H,MT) = vaLﬁ(l’r-Hv//‘)HQ + ||Ax7“+1||2. (15)

It is easy to see that Q(x" 1, u™) — 0 implies that any
limit point (x*, u*), if it exists, is a KKT point of (5) that
satisfies the following conditions

0=Vfz*)+ATu*, Az*=0. (16)

In the following we show that the gap Q(-) not only de-
creases to zero, but does so in a sublinear manner.

Theorem 1 Suppose Assumption A and the conditions (13)
and (14) are satisfied. Then we have
e Eventual Consensus:

lim g™ — " — 0, lim Az" — 0.
r—00

T—>00

e Convergence to Stationary Points: Every limit point of
the iterates {x", "} generated by Algorithm 1 converges

to a KKT point of problem (5). Further, Q(z"+1, u") — 0.
e Sublinear Convergence Rate: For any given ¢ > 0,
let us define T to be the first time that the optimality gap
reaches below o, i.e.,

r+1
)

T := argmin Q(z u’) < .

Then for some v > 0, we have ¢ < Tlil' That is, the

optimality gap Q(z" 1, u") converges sublinearly.

5. Variants of Prox-PDA

In this section, we discuss two important extensions of the
Prox-PDA, one allows the x-problem (7a) to be solved
inexactly, while the second allows the use of increasing
penalty parameter 5. In many practical applications, ex-
actly minimizing the augmented Lagrangian may not be
easy. Therefore, we propose the proximal gradient primal-
dual algorithm (Prox-GPDA), whose main steps are given
below

2"t = arg min (Vf(2"),z —2") + (u", Az)

zERQ
DA + Sl — o Py an
ur+1 _ /J’T —|—6AJJT+1. (18)

The analysis of this algorithm follows similar steps as that
for Prox-PDA. For detailed discussion see (Hong, 2016).

Our second variant do not require to explicitly compute the
bound for 8 given in (14). Indeed, the bounds on [ de-
rived in the previous sections are the worst case bounds,
and algorithms that use stepsizes that strictly satisfy such
bounds may be slow at the beginning. In practice, one may
prefer to start with a small penalty parameter and gradu-
ally increase it. We denote this algorithm by Prox-PDA-IP,
whose main steps are given below

" =arg min f(x) + (u", Az)
z€RQ
r+1 r+1
A+ B 2y 019)
ur+1 — MT 4 ﬁr+1Al‘T+1. (20)

Note that one can also replace f(z) in (19) by (V f(2"), z—
2") to obtain a similar variant for Prox-GPDA denoted by
Prox-GPDA-IP. Throughout this section we will still as-
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sume that Assumption A holds true. Further, we will as-
sume that 3" satisfies the following conditions

1
/37‘

max (877! — B7) < &, for some finite x > 0.
s

50, Y £ —o, g >
r=1 /B
e

Also without loss of generality we will assume that

BTB =0, and ||BTB|r > 1. (22)
Note that this is always possible, by adding an identity
matrix to BY B if necessary.

The analysis for Prox-PDA-IP is long and technical, there-
fore we refer the readers to (Hong, 2016). The key step is
to construct a new potential function, given below

PBr+17c(xr+1,l‘T, ur+1) — L57-+1 (xr+1,Mr+1)
c r+1 97 c r+1 oQr
+ a4 o o - o,

The insight here is that in order to achieve the de-
sired descent, in the potential function the coefficients for
" — 27||%, , and || Az" ! ||? should be proportional to
O ((B")?%). We have the following theorem regarding to the
convergence of Prox-PDA-IP.

Theorem 2 Suppose Assumption A and (21) are satisfied.
Suppose that B is selected such that (22) holds true. Then
the following hold for Prox-PDA-IP

¢ Eventual Consensus:

lim g™ — " — 0, lim Az" — 0.

T—>00 r—>00
e Convergence to KKT Points: Every limit point of the
iterates {x", 1"} generated by Prox-PDA-IP converges to
a KKT point of problem (5). Further, Q(x™ 1, u™) — 0.

6. Connections and Discussions

In this section we present an interesting observation which
establishes links between the so-called EXTRA algorithm
(Shi et al., 2014) (developed for distributed, but convex op-
timization) and the Prox-GPDA.

Specifically, the optimality condition of the xz-update step
(17) is given by

Vf(@") + AT (4 + BAa") + B(BT B — 7)) = .

Utilizing the fact that ATA = L=, BTB = Lt and LT +
L= = 2D, we have

V(") + ATp" +28Da" ™ — LT 2" = 0.

Subtracting the same equation evaluated at the previous
iteration, we obtain

Vf(z") = Vi) + LT a" +28D(a" —a”)
_ BL-F(J;T’ _ xr—l) -0,

where we have used the fact that AT (y" — p™ ') =
BAT Ax" = BL~x". Rearranging terms, we have

gt =" — %Dil (Vf(:cr) — Vf(xrfl))

1 1
+ DL = L7)a" = oD L

=a" - %D—l (VI") = Vi) + Wa'

1
- 5(I + W)zt (23)
where in the last equality we have defined the weight ma-
trix W := $D~Y(L* — L™), which is a row stochastic
matrix.

Iteration (23) has the same form as the EXTRA algorithm
given in (Shi et al., 2014), therefore we can conclude that
EXTRA is a special case of Prox-GPDA. Moreover, by ap-
pealing to our analysis in Section 35, it readily follows that
EXTRA works for the nonconvex distributed optimization
problem as well.

We remark that each node ¢ can distributedly implement
iteration (23) by performing the following

1

r+1 T r r—1
$i+ :mi*m(vﬁ(%)*vﬁ(% ))
1 T 1 1 r—1 r—1
t 2 dﬁf2<_z PR ) 9
JEN(3) JEN(4)

Clearly, at iteration r + 1, besides the local gradient in-
formation, node ¢ only needs the aggregated information
from its neighbors, > JeN() T Therefore the algorithm
is distributedly implementable.

7. Distributed Matrix Factorization

In this section we study a variant of the Prox-PDA/Prox-
PDA-IP for the following distributed matrix factorization
problem (Ling et al., 2012)

: 1 2 2
min S [XY — Zl[ + 0] X][r + h(Y) (295)

N
1
= > 51X = w2+ A X I+ i),
i=1
st wll* <7, Vi

where X € RM*K 'y ¢ REXN: for each i, y; € RE
consists of one column of Y; Z € RM*N is some known
matrix; h(Y) := Zf\il h;(y;) is some convex but possibly
nonsmooth penalization term; 1 > 0 is some given con-
stant; for notation simplicity we have defined v := 1/N1.
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It is easy to extend the above formulation to the case where
Y and Z both have N P columns, and each y; and z; con-
sists of P columns of Y and Z respectively.

We assume that 2(Y") is lower bounded over dom (h). One
application of problem (25) is the distributed sparse dic-
tionary learning problem where X is the dictionary to be
learned, each z; is a training data sample, and each y; is the
sparse coefficient corresponding to the particular training
sample z;. The constraint ||y;||?> < 7 simply says that the
size of the coefficient must be bounded.

Consider a distributed scenario where N agents form a
graph {V, £}, each having a column of Y. We reformu-

late problem (25) as
N

1
min SIXiy: = 2ill* + hi(ys) + Xi2>
{Xi}t Ay} ; (2' H ( ) || ”F

st |yl <7 Vi Xi=Xj, ¥ (i,j) €E.

Let us stack all the variables X;, and define X :=
[X1; Xo;--+; Xn| € RVMXE " Define the block signed
incidence matrix as A = A ® Iy € REMXNM & where
A is the standard graph incidence matrix. Define the block
signless incidence matrix B € RFMXNM gimilarly. If the
graph is connected, then the condition AX = 0 implies
network-wide consensus. We formulate the distributed ma-
trix factorization problem as

min X,Y)+h(Y
{Xi}t{wi} f( ) ( )

N1
= 3 (31— 1?20+ )

st lyil> <7, Vi AX =0. (26)

Clearly the above problem does not satisfy Assumption
A, because the objective function is not smooth, and nei-
ther Vx f(X,Y) nor Vy f(X,Y) is Lipschitz continuous.
The latter fact poses significant difficulty in algorithm de-
velopment and analysis. Define the block-signed/signless
Laplacians as

~=ATA, LT =B"B. (27)

The AL function for the above problem is given by
N
1
LaX. Vi) = 3 (§1Xeas = =+l + o))
=1

B

where Q = £{ZQ € REMXK g the matrix of the dual
variable, with ), € RM %K being the dual variable for the

consensus constraint on link e, i.e, X; = X, e = (4, j).

Let us generalize Algorithm 1 for distributed matrix fac-
torization given in Algorithm 2. In Algorithm 2 we have
introduced a sequence {67 > 0} which measures the size

Algorithm 2 Prox-PDA for Distr. Matrix Factorization

1: At iteration 0, initialize Q° = 0, and X°, ¢/°
2: At each iteration r 4 1, update variables by:

HXZ yz - Zl” VZ (29&)
r+1
i =arg min =|| X[y — z]||° + hi(y;
y g min 2H yi — zil|* + hi(y:)
0: 12 .
+ 5l =il Vi (29b)
X argn)n(n F(X, Y™ +(Q7, AX) (29¢)

B

+5(AX, AX) + b

CUB(X - X7), BX = X7);

Q=" +8AX", (29d)

of the local factorization error. We note that including the
proximal term 971' ly: — yr||* is the key to achieve conver-

gence for Algorithm 2.

Let us comment on the distributed implementation of
the algorithm. First note that the y subproblem
(29b) is naturally distributed to each node, that is,
only local information is needed to perform the up-
date. Second, the X subproblem (29c) can also be
decomposed into /N subproblems, one for each node.
To be more precise, let us examine the terms in
(29¢c) one by one. First, the term f(X,Y"t!) =
Sy (B Xayr ™ = zl12 4 hayr ™) + | Xl hence
it is decomposable. Second, the term (2", AX) can be
expressed as

(Q",AX)

> Y

=1 ecU(4)

Z <Q£a Xi>

e€H (i)

where the sets U (¢) and H (i) are defined as
U@):={ele=(i,j) € &,i>j},
H(i) = {e | e = (i,]) € £,j > i}.

Similarly, we have

N
(BX",BX)=>_ <Xi, 4X]+ > X;>
=1

JEN ()

g ((AX,AX) + (BX,BX))
N

=B(DX,X) =8> dillXi|%,
1=1

where D := D ® Ip; € RVMXNM with D being the
degree matrix. Itis easy to see that the X subproblem (29c)
is separable over the distributed agents. Finally, one can
verify that the €2 update step (29d) can be implemented by
each edge e € £ as follows

Ot =Qr+ 8 (X7 - XY,

=(1,5),i 2 J.
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To show convergence rate of the algorithm, we need the
following definition

QXY™ Q) = BIAX I + (127 Z5 )P,

where we have defined
Z?1“+1 = VXL[J}(XT-FI, YT+1, QT);
Z;+l = Y’r+1

—prox, .,y Y = Vy (Lg(XL YL Q) = w(Y))].

In the above expression, we have used )Y :=
U {||yz||2 < T} to denote the feasible set of Y, and used
() to denote the indicator function of such set. Similarly
as in Section 4, we can show that Q( X", Y7+ Q") —
0 implies that every limit point of (X" ™!, Y"1 Q") is a
KKT point of problem (26).

Next we present the main convergence analysis for Algo-
rithm 2. The proof is long and technical, therefore we refer
the readers to (Hong, 2016).

Theorem 3 Consider using Algorithm 2 to solve the dis-
tributed matrix factorization problem (26). Suppose that
h(Y') is lower bounded over dom h(x), and that the penalty
parameter 3, together with two positive constants ¢ and d,
satisfies the following conditions

B+2y 8(r*+49%) o

0

2 ﬂgmin 2 -
1 8 c 1 8T cT
-2 50,2 -—— -2 >0
2 O'minﬂ d - 2 Umin/B d -0 (30)

26||BTB

8 _281B7B _
2 Omin

Then in the limit, consensus will be achieved, i.e.,
Tim (X7~ XJ[ =0, V(i) €&

Further, the sequences {X"™'} and {Q"'} are both
bounded, and every limit point generated by Algorithm 2
is a KKT point of problem (25).

Additionally, Algorithm 2 converges sublinearly. Specifi-

cally, for any given ¢ > 0, define T to be the first time that
the optimality gap reaches below ¢, i.e.,

T :=argmin Q(X" T, Y™™ Q") < ¢.

Then for some constant v > 0 we have ¢ < ="~

We can see that it is always possible to find the tuple
{B,c,d > 0} that satisfies (30): ¢ can be solely deter-
mined by the last inequality; for fixed ¢, the constant d

needs to be chosen large enough such that 1/2 — § > 0
and 1/2 — <7 > 0 are satisfied. After c and d are fixed,

one can always choose 3 large enough to satisfy the first
three conditions. In practice, we typically prefer to choose
[ as small as possible to improve the convergence speed.
Therefore empirically one can start with (for some small

v>0)c= 4H37T_BH + v, d= max{4,2cr}, and then

Omin

gradually increase d to find an appropriate 3 that satisfies
the first three conditions.

We remark that Algorithm 2 can be extended to the case
with increasing penalty. Due to the space limitation we
omit the details here.

8. Numerical Results

In this section, we demonstrate the performance of the pro-
posed algorithms. All experiments are performed in Matlab
(2016b) on a desktop with an Intel Core(TM) 15-4690 CPU
(3.50 GHz) and 8GB RAM running Windows 7.

8.1. Distributed Binary Classification

In this subsection, we study the problem of binary classifi-
cation using nonconvex regularizers in the mini-bach setup
i.e. each node stores b (batch size) data points, and each
component function is given by

M 2
Aax; }

b
fi(z:) = % [zlog(l + exp(—yi;z; vij)) + kz
i= 1

2
— 1+ ax;

where v;; € RM and y;; € {1, —1} are the feature vector
and the label for the jth date point in ith agent (Antoniadis
et al., 2009). We use the parameter settings of A = 0.001,
a = 1and M = 10. We randomly generated 100, 000 data
points and distribute them into N = 20 nodes (i.e. b =
5000). We use the optimality gap (opt-gap) and constraint
violation (con-vio), displayed below, to measure the quality
of the solution generated by different algorithms

N
Z Vfi(zi)
i=1
We compare the the Prox-GPDA, and Prox-GPDA-IP
with the distributed subgradient (DSG) method (Nedic &
Ozdaglar, 2009a;b) (which is only known to work for con-
vex cases) and the Push-sum algorithm (Tatarenko & Touri,
2015). The performance of all three algorithms in terms of
the consensus error and the optimality gap (averaged over
30 problem instances) are presented in Fig. 2. The penalty
parameter for Prox-GPDA is chosen such that satisfy (14),
and " for Prox-GPDA-IP is set as 0.05log(r), the step-
sizes of the DSG algorithm and the Push-sum algorithm are
chosen as 1/0.05log(r) and 1/r, respectively. Note that
these parameters are tuned for each algorithm to achieve
the best results. All Algorithms will stop after 1000 itera-
tions. It can be observed that the Prox-GPDA with constant
stepsize outperforms other algorithms. The Push-sum algo-
rithm does not seem to converge within 1000 iterations.

2

opt-gap := + ||Az||?, con-vio = || Az]|*.

To see more results, we compare different algorithms with
different number of agents in the network (/V). The prob-
lem and the algorithms setup are set as the previous case.
We measure the optimality gap as well as the constraint
violation and the results are respectively reported in Ta-
ble 1 and Table 2. In the tables Algl, Alg2, Alg3, Alg4
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Figure 2. Results for the matrix factorization problem.
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Figure 3. Results for the matrix factorization problem.

Table 1. Optimality Gap for different Algorithms

N Algl  Alg2  Alg3 Algd
10 5.1e36 24e22 134 279
20 47e-32  5.0e9 004 042
30 23e21  5.0e8  0.008 0.20
40 13e-12 29e7 0007 0.21
50 5.5e-10 4.2e-6 0.005 0.40

Table 2. Constraint Violation for different Algorithms

N Algl Alg2 Alg3 Algd
10 1.3e-36 3.4e-27 035 0.65
20 1.2e-34 3.7e-16 0.02 0.40
30 23e24 7.8e-15 0.01 0.18
40 22e-16 2.1e-14 0.03 0.20
50 22e-14 22e-12 0.01 0.12

denote Prox-GPDA, Prox-GPDA-IP, DGS, and Push-sum
algorithms respectively. As seen, the performance of the
proposed algorithms (Algl, Alg2) are significantly better
than DGS and Push-Sum.

8.2. Distributed Matrix Factorization

In this section we consider the distributed matrix factor-
ization problem (25). The training data is constructed

by randomly extracting 300 overlapping patches from the
512 x 512 image of barbara.png, each with size 16 x 16
pixels. Each of the extracted patch is vectorized, result-
ing a training data set Z of size 256 x 300. We consider
a network of N = 10 agents, and the columns of Z are
evenly distributed among the agents (each having P = 30
columns). We compare Prox-PDA-IP with the EXTRA-
AO algorithm proposed in (H.-T. Wai & Scaglione, 2015).
Note that the EXTRA-AO is also designed for a similar
distributed matrix factorization problem and it works well
in practice. However, it does not have formal convergence
proof. We initialize both algorithms with X being the 2D
discrete cosine transform (DCT) matrix. We set v = 0.05,
7 = 10° and 8 = 0.001r, and the results are averaged
over 30 problem instances. The stepsizes of the EXTRA-
AO is set as apo = 0.03 and Spro = 0.002. In Fig. 3,
we compare the performance of the proposed Prox-PDA-
IP and the EXTRA-AO. It can be observed that our pro-
posed algorithm converges faster than the EXTRA-AO. We
have observed that the EXTRA-AO does have reasonably
good practical performance, however it lacks formal con-
vergence proof.
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