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Abstract
Learning discrete representations of data is a cen-
tral machine learning task because of the com-
pactness of the representations and ease of in-
terpretation. The task includes clustering and
hash learning as special cases. Deep neural net-
works are promising to be used because they can
model the non-linearity of data and scale to large
datasets. However, their model complexity is
huge, and therefore, we need to carefully regu-
larize the networks in order to learn useful rep-
resentations that exhibit intended invariance for
applications of interest. To this end, we pro-
pose a method called Information Maximizing
Self-Augmented Training (IMSAT). In IMSAT,
we use data augmentation to impose the invari-
ance on discrete representations. More specifi-
cally, we encourage the predicted representations
of augmented data points to be close to those of
the original data points in an end-to-end fashion.
At the same time, we maximize the information-
theoretic dependency between data and their pre-
dicted discrete representations. Extensive exper-
iments on benchmark datasets show that IMSAT
produces state-of-the-art results for both cluster-
ing and unsupervised hash learning.

1. Introduction
The task of unsupervised discrete representation learning
is to obtain a function that maps similar (resp. dissimilar)
data into similar (resp. dissimilar) discrete representations,
where the similarity of data is defined according to appli-
cations of interest. It is a central machine learning task
because of the compactness of the representations and ease
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Figure 1. Basic idea of our proposed method for unsupervised dis-
crete representation learning. We encourage the prediction of
a neural network to remain unchanged under data augmentation
(Red arrows), while maximizing the information-theoretic depen-
dency between data and their representations (Blue arrow).

of interpretation. The task includes two important machine
learning tasks as special cases: clustering and unsupervised
hash learning. Clustering is widely applied to data-driven
application domains (Berkhin, 2006), while hash learning
is popular for an approximate nearest neighbor search for
large scale information retrieval (Wang et al., 2016).

Deep neural networks are promising to be used thanks to
their scalability and flexibility of representing complicated,
non-linear decision boundaries. However, their model
complexity is huge, and therefore, regularization of the net-
works is crucial to learn meaningful representations of data.
Particularly, in unsupervised representation learning, tar-
get representations are not provided and hence, are uncon-
strained. Therefore, we need to carefully regularize the net-
works in order to learn useful representations that exhibit
intended invariance for applications of interest (e.g., invari-
ance to small perturbations or affine transformation). Naı̈ve
regularization to use is a weight decay (Erin Liong et al.,
2015). Such regularization, however, encourages global
smoothness of the function prediction; thus, may not neces-
sarily impose the intended invariance on the predicted dis-
crete representations.
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Instead, in this paper, we use data augmentation to model
the invariance of learned data representations. More specif-
ically, we map data points into their discrete representa-
tions by a deep neural network and regularize it by encour-
aging its prediction to be invariant to data augmentation.
The predicted discrete representations then exhibit the in-
variance specified by the augmentation. Our proposed reg-
ularization method is illustrated as red arrows in Figure 1.
As depicted, we encourage the predicted representations of
augmented data points to be close to those of the origi-
nal data points in an end-to-end fashion. We term such
regularization Self-Augmented Training (SAT). SAT is in-
spired by the recent success in regularization of neural net-
works in semi-supervised learning (Bachman et al., 2014;
Miyato et al., 2016; Sajjadi et al., 2016). SAT is flexible to
impose various types of invariances on the representations
predicted by neural networks. For example, it is generally
preferred for data representations to be locally invariant,
i.e., remain unchanged under local perturbations on data
points. Using SAT, we can impose the local invariance on
the representations by pushing the predictions of perturbed
data points to be close to those of the original data points.
For image data, it may also be preferred for data represen-
tations to be invariant under affine distortion, e.g., rotation,
scaling and parallel movement. We can similarly impose
the invariance via SAT by using the affine distortion for the
data augmentation.

We then combine the SAT with the Regularized Infor-
mation Maximization (RIM) for clustering (Gomes et al.,
2010; Bridle et al., 1991), and arrive at our Informa-
tion Maximizing Self-Augmented Training (IMSAT), an
information-theoretic method for learning discrete repre-
sentations using deep neural networks. We illustrate the
basic idea of IMSAT in Figure 1. Following the RIM, we
maximize information theoretic dependency between in-
puts and their mapped outputs, while regularizing the map-
ping function. IMSAT differs from the original RIM in two
ways. First, IMSAT deals with a more general setting of
learning discrete representations; thus, is also applicable to
hash learning. Second, it uses a deep neural network for the
mapping function and regularizes it in an end-to-end fash-
ion via SAT. Learning with our method can be performed
by stochastic gradient descent (SGD); thus, scales well to
large datasets.

In summary, our contributions are: 1) an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks with the end-to-end
regularization, and 2) adaptations of the method to cluster-
ing and hash learning to achieve the state-of-the-art perfor-
mance on several benchmark datasets.

The rest of the paper is organized as follows. Related work
is summarized in Section 2, while our method, IMSAT, is

presented in Section 3. Experiments are provided in Sec-
tion 4 and conclusions are drawn in Section 5.

2. Related Work
Various methods have been proposed for clustering and
hash learning. The representative ones include K-means
clustering and hashing (He et al., 2013), Gaussian mix-
ture model clustering, iterative quantization (Gong et al.,
2013), and minimal-loss hashing (Norouzi & Blei, 2011).
However, these methods can only model linear bound-
aries between different representations; thus, cannot fit
to non-linear structures of data. Kernel-based (Xu et al.,
2004; Kulis & Darrell, 2009) and spectral (Ng et al., 2001;
Weiss et al., 2009) methods can model the non-linearity of
data, but they are difficult to scale to large datasets.

Recently, clustering and hash learning using deep neu-
ral networks have attracted much attention. In cluster-
ing, Xie et al. (2016) proposed to use deep neural net-
works to simultaneously learn feature representations and
cluster assignments, while Dilokthanakul et al. (2016) and
Zheng et al. (2016) proposed to model the data generation
process by using deep generative models with Gaussian
mixture models as prior distributions.

Regarding hashing learning, a number of studies have
used deep neural networks for supervised hash learning
and achieved state-of-the-art results on image and text
retrievals (Xia et al., 2014; Lai et al., 2015; Zhang et al.,
2015; Xu et al., 2015; Li et al., 2015). Relatively few stud-
ies have focused on unsupervised hash learning using deep
neural networks. The pioneering work is semantic hash-
ing, which uses stacked RBM models to learn compact
binary representations (Salakhutdinov & Hinton, 2009).
Erin Liong et al. (2015) recently proposed to use deep neu-
ral networks for the mapping function and achieved state-
of-the-art results. These unsupervised methods, however,
did not explicitly intended impose the invariance on the
learned representations. Consequently, the predicted rep-
resentations may not be useful for applications of interest.

In supervised and semi-supervised learning scenarios, data
augmentation has been widely used to regularize neural
networks. Leen (1995) showed that applying data aug-
mentation to a supervised learning problem is equivalent
to adding a regularization to the original cost function.
Bachman et al. (2014); Miyato et al. (2016); Sajjadi et al.
(2016) showed that such regularization can be adapted to
semi-supervised learning settings to achieve state-of-the-
art performance.

In unsupervised representation learning scenarios,
Dosovitskiy et al. (2014) proposed to use data augmen-
tation to model the invariance of learned representations.
Our IMSAT is different from Dosovitskiy et al. (2014)
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in two important aspects: 1) IMSAT directly imposes
the invariance on the learned representations, while
Dosovitskiy et al. (2014) imposes invariance on surrogate
classes, not directly on the learned representations. 2)
IMSAT focuses on learning discrete representations that
are directly usable for clustering and hash learning, while
Dosovitskiy et al. (2014) focused on learning continuous
representations that are then used for other tasks such
as classification and clustering. Relation of our work to
denoising and contractive auto-encoders (Vincent et al.,
2008; Rifai et al., 2011) is discussed in Appendix A.

3. Method
Let X and Y denote the domains of inputs and dis-
crete representations, respectively. Given training samples,
{x1, x2, . . . , xN}, the task of discrete representation learn-
ing is to obtain a function, f : X → Y , that maps similar
inputs into similar discrete representations. The similarity
of data is defined according to applications of interest.

We organize Section 3 as follows. In Section 3.1, we re-
view the RIM for clustering (Gomes et al., 2010). In Sec-
tion 3.2, we present our proposed method, IMSAT, for dis-
crete representation learning. In Sections 3.3 and 3.4, we
adapt IMSAT to the tasks of clustering and hash learning,
respectively. In Section 3.5, we discuss an approximation
technique for scaling up our method.

3.1. Review of Regularized Information Maximization
for Clustering

The RIM (Gomes et al., 2010) learns a probabilis-
tic classifier pθ(y|x) such that mutual information
(Cover & Thomas, 2012) between inputs and cluster as-
signments is maximized. At the same time, it regular-
izes the complexity of the classifier. Let X ∈ X and
Y ∈ Y ≡ {0, . . . ,K − 1} denote random variables for
data and cluster assignments, respectively, where K is the
number of clusters. The RIM minimizes the objective:

R(θ)− λI(X;Y ), (1)

where R(θ) is the regularization penalty, and I(X;Y ) is
mutual information between X and Y , which depends on
θ through the classifier, pθ(y|x). Mutual information mea-
sures the statistical dependency between X and Y , and is
0 iff they are independent. Hyper-parameter λ ∈ R trades
off the two terms.

3.2. Information Maximizing Self-Augmented Training

Here, we present two components that make up our IMSAT.
We present the Information Maximization part in Section
3.2.1 and the SAT part in Section 3.2.2 .

3.2.1. INFORMATION MAXIMIZATION FOR LEARNING
DISCRETE REPRESENTATIONS

We extend the RIM and consider learning M -dimensional
discrete representations of data. Let the output domain be
Y = Y1× · · ·×YM , where Ym ≡ {0, 1, . . . , Vm−1}, 1 ≤
m ≤ M . Let Y = (Y1, . . . , YM ) ∈ Y be a random variable
for the discrete representation. Our goal is to learn a multi-
output probabilistic classifier pθ(y1, . . . , yM |x) that maps
similar inputs into similar representations. For simplicity,
we model the conditional probability pθ(y1, . . . , yM |x) by
using the deep neural network depicted in Figure 1. Un-
der the model, {y1, . . . , yM} are conditionally independent
given x:

pθ(y1, . . . , yM |x) =
M∏

m=1

pθ(ym|x). (2)

Following the RIM (Gomes et al., 2010), we maximize the
mutual information between inputs and their discrete repre-
sentations, while regularizing the multi-output probabilistic
classifier. The resulting objective to minimize looks exactly
the same as Eq. (1), except that Y is multi-dimensional in
our setting.

3.2.2. REGULARIZATION OF DEEP NEURAL NETWORKS
VIA SELF-AUGMENTED TRAINING

We present an intuitive and flexible regularization objec-
tive, termed Self-Augmented Training (SAT). SAT uses data
augmentation to impose the intended invariance on the
data representations. Essentially, SAT penalizes represen-
tation dissimilarity between the original data points and
augmented ones. Let T : X → X denote a pre-defined data
augmentation under which the data representations should
be invariant. The regularization of SAT made on data point
x is

RSAT(θ;x, T (x))

= −
M∑

m=1

Vm−1∑

ym=0

pθ̂(ym|x) log pθ(ym|T (x)), (3)

where pθ̂(ym|x) is the prediction of original data point x,
and θ̂ is the current parameter of the network. In Eq. (3),
the representations of the augmented data are pushed to be
close to those of the original data. Since probabilistic clas-
sifier pθ(y|x) is modeled using a deep neural network, it
is flexible enough to capture a wide range of invariances
specified by the augmentation function T . The regulariza-
tion by SAT is then the average of RSAT(θ;x, T (x)) over
all the training data points:

RSAT(θ;T ) =
1

N

N∑

n=1

RSAT(θ;xn, T (xn)). (4)
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The augmentation function T can either be stochastic or
deterministic. It can be designed specifically for the ap-
plications of interest. For example, for image data, affine
distortion such as rotation, scaling and parallel movement
can be used for the augmentation function.

Alternatively, more general augmentation functions that do
not depend on specific applications can be considered. A
representative example is local perturbations, in which the
augmentation function is

T (x) = x+ r, (5)

where r is a small perturbation that does not alter the mean-
ing of the data point. The use of local perturbations in SAT
encourages the data representations to be locally invariant.
The resulting decision boundaries between different repre-
sentations tend to lie in low density regions of a data dis-
tribution. Such boundaries are generally preferred and fol-
low the low-density separation principle (Grandvalet et al.,
2004).

The two representative regulariztion methods based on lo-
cal perturbations are: Random Perturbation Training (RPT)
(Bachman et al., 2014) and Virtual Adversarial Training
(VAT) (Miyato et al., 2016). In RPT, perturbation r is sam-
pled randomly from hyper-sphere ||r||2 = ϵ, where ϵ is a
hyper-parameter that controls the range of the local pertur-
bation. On the other hand, in VAT, perturbation r is chosen
to be an adversarial direction:

r = argmax
r′

{RSAT(θ̂;x, x+ r′); ||r′||2 ≤ ϵ}. (6)

The solution of Eq. (6) can be approximated efficiently by
a pair of forward and backward passes. For further details,
refer to Miyato et al. (2016).

3.3. IMSAT for Clustering

In clustering, we can directly apply the RIM (Gomes et al.,
2010) reviewed in Section 3.1. Unlike the original
RIM, however, our method, IMSAT, uses deep neu-
ral networks for the classifiers and regularizes them via
SAT. By representing mutual information as the differ-
ence between marginal entropy and conditional entropy
(Cover & Thomas, 2012), we have the objective to mini-
mize:

RSAT(θ;T )− λ [H(Y )−H(Y |X)] , (7)

where H(·) and H(·|·) are entropy and conditional entropy,
respectively. The two entropy terms can be calculated as

H(Y ) ≡ h(pθ(y)) = h

(
1

N

N∑

i=1

pθ(y|x)
)
, (8)

H(Y |X) ≡ 1

N

N∑

i=1

h(pθ(y|xi)), (9)

where h(p(y)) ≡ −
∑

y′ p(y′) log p(y′) is the entropy
function. Increasing the marginal entropy H(Y ) encour-
ages the cluster sizes to be uniform, while decreasing
the conditional entropy H(Y |X) encourages unambiguous
cluster assignments (Bridle et al., 1991).

In practice, we can incorporate our prior knowledge on
cluster sizes by modifying H(Y ) (Gomes et al., 2010).
Note that H(Y ) = logK − KL[pθ(y)|| U ], where K is
the number of clusters, KL[·||·] is the Kullback-Leibler
divergence, and U is a uniform distribution. Hence,
maximization of H(Y ) is equivalent to minimization of
KL[pθ(y)|| U ], which encourages predicted cluster distri-
bution pθ(y) to be close to U . Gomes et al. (2010) re-
placed U in KL[pθ(y)|| U ] with any specified class prior
q(y) so that pθ(y) is encouraged to be close to q(y). In our
preliminary experiments, we found that the resulting pθ(y)
could still be far apart from pre-specified q(y). To ensure
that pθ(y) is actually close to q(y), we consider the follow-
ing constrained optimization problem:

min
θ

RSAT(θ;T ) + λH(Y |X),

subject to KL[pθ(y)|| q(y)] ≤ δ, (10)

where δ > 0 is a tolerance hyper-parameter that is set suffi-
ciently small so that predicted cluster distribution pθ(y) is
the same as class prior q(y) up to δ-tolerance. Eq. (10) can
be solved by using the penalty method (Bertsekas, 1999),
which turns the original constrained optimization problem
into a series of unconstrained optimization problems. Refer
to Appendix B for the detail.

3.4. IMSAT for Hash Learning

In hash learning, each data point is mapped into a D-bit-
binary code. Hence, the original RIM is not directly appli-
cable. Instead, we apply our method for discrete represen-
tation learning presented in Section 3.2.1.

The computation of mutual information I(Y1, . . . , YD;X),
however, is intractable for large D because it involves a
summation over an exponential number of terms, each of
which corresponds to a different configuration of hash bits.

Brown (2009) showed that mutual information
I(Y1, . . . , YD;X) can be expanded as the sum of
interaction information (McGill, 1954):

I(Y1, . . . , YD;X) =
∑

C⊆SY

I(C ∪X), |C| ≥ 1, (11)

where SY ≡ {Y1, . . . , YD}. Note that I denotes interac-
tion information when its argument is a set of random vari-
ables. Interaction information is a generalization of mutual
information and can take a negative value. When the argu-
ment is a set of two random variables, the interaction in-
formation reduces to mutual information between the two
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random variables. Following Brown (2009), we only retain
terms involving pairs of output dimensions in Eq. (11), i.e.,
all terms where |C| ≤ 2. This gives us

D∑

d=1

I(Yd;X) +
∑

1≤d ̸=d′≤D

I({Yd, Yd′ , X}). (12)

This approximation ignores the interactions among hash
bits beyond the pairwise interactions. It is related to the
orthogonality constraint that is widely used in the literature
to remove redundancy among hash bits (Wang et al., 2016).
In fact, the orthogonality constraint encourages the covari-
ance between a pair of hash bits to 0. Thus, it also takes
into account the pairwise interactions.

It follows from the definition of interaction information and
the conditional independence in Eq. (2) that

I({Yd, Yd′ , X}) ≡ I(Yd;Yd′ |X)− I(Yd;Yd′)

= −I(Yd;Yd′). (13)

In summary, our approximated objective to minimize is

RSAT(θ;T )− λ

⎛

⎝
D∑

d=1

I(X;Yd)−
∑

1≤d ̸=d′≤D

I(Yd;Yd′)

⎞

⎠ .

(14)

The first term regularizes the neural network. The second
term maximizes the mutual information between data and
each hash bit, and the third term removes the redundancy
among the hash bits.

3.5. Approximation of the Marginal Distribution

To scale up our method to large datasets, we would like the
objective in Eq. (1) to be amenable to optimization based
on mini-batch SGD. For the regularization term, we use
the SAT in Eq. (4), which is the sum of per sample penal-
ties and can be readily adapted to mini-batch computation.
For the approximated mutual information in Eq. (14), we
can decompose it into three parts: (i) conditional entropy
H(Yd|X), (ii) marginal entropy H(Yd), and (iii) mutual in-
formation between a pair of output dimensions I(Yd;Yd′).
The conditional entropy only consists of a sum over per ex-
ample entropies (see Eq. (9)); thus, can be easily adapted
to mini-batch computation. However, the marginal en-
tropy (see Eq. (8)) and the mutual information involve the
marginal distribution over a subset of target dimensions,
i.e., pθ(c) ≡ 1

N

∑N
n=1 pθ(c|xn), where c ⊆ {y1, . . . , yM}.

Hence, the marginal distribution can only be calculated us-
ing the entire dataset and is not amenable to the mini-batch
setting. Following Springenberg (2015), we approximate
the marginal distributions using mini-batch data:

pθ(c) ≈
1

|B|
∑

x∈B
pθ(c|x) ≡ p̂θ

(B)(c), (15)

Table 1. Summary of the variants.
Method Used classifier Regularization
Linear RIM Linear Weight-decay
Deep RIM Deep neural nets Weight-decay
Linear IMSAT (VAT) Linear VAT
IMSAT (RPT) Deep neural nets RPT
IMSAT (VAT) Deep neural nets VAT

where B is a set of data in the mini-batch. In the case
of clustering, the approximated objective that we actually
minimize is an upper bound of the exact objective that we
try to minimize. Refer to Appendix C of the supplementary
material for the detailed discussion.

4. Experiments
In this section, we evaluate IMSAT for clustering and hash
learning using benchmark datasets.

4.1. Implementation

In unsupervised learning, it is not straightforward to de-
termine hyper-parameters by cross-validation. Therefore,
in all the experiments with benchmark datasets, we used
commonly reported parameter values for deep neural net-
works and avoided dataset-specific tuning as much as pos-
sible. Specifically, inspired by Hinton et al. (2012), we set
the network dimensionality to d-1200-1200-M for clus-
tering across all the datasets, where d and M are input
and output dimensionality, respectively. For hash learn-
ing, we used smaller network sizes to ensure fast com-
putation of mapping data into hash codes. We used
rectified linear units (Jarrett et al., 2009; Nair & Hinton,
2010; Glorot et al., 2011) for all the hidden activations
and applied batch normalization (Ioffe & Szegedy, 2015)
to each layer to accelerate training. For the output layer,
we used the softmax for clustering and the sigmoids for
hash learning. Regarding optimization, we used Adam
(Kingma & Ba, 2015) with the step size 0.002. Refer
to Appendix D for further details. Our implementa-
tion based on Chainer (Tokui et al., 2015) is available at
https://github.com/weihua916/imsat.

4.2. Clustering

4.2.1. DATASETS AND COMPARED METHODS

We evaluated our method for clustering presented in Sec-
tion 3.3 on eight benchmark datasets. We performed ex-
periments with two variants of the RIM and three variants
of IMSAT, each of which uses different classifiers and reg-
ularization. Table 1 summarizes these variants. We also
compared our IMSAT with existing clustering methods in-
cluding K-means, DEC (Xie et al., 2016), denoising Auto-
Encoder (dAE)+K-means (Xie et al., 2016).



Learning Discrete Representations via Information Maximizing Self-Augmented Training

Table 2. Summary of dataset statistics.
Dataset #Points #Classes Dimension %Largest class
MNIST (LeCun et al., 1998) 70000 10 784 11%
Omniglot (Lake et al., 2011) 40000 100 441 1%
STL (Coates et al., 2010) 13000 10 2048 10%
CIFAR10 (Torralba et al., 2008) 60000 10 2048 10%
CIFAR100 (Torralba et al., 2008) 60000 100 2048 1%
SVHN (Netzer et al., 2011) 99289 10 960 19%
Reuters (Lewis et al., 2004) 10000 4 2000 43%
20news (Lang, 1995) 18040 20 2000 5%

Table 3. Comparison of clustering accuracy on eight benchmark datasets (%). Averages and standard deviations over twelve trials were
reported. Results marked with † were excerpted from Xie et al. (2016).

Method MNIST Omniglot STL CIFAR10 CIFAR100 SVHN Reuters 20news
K-means 53.2 12.0 85.6 34.4 21.5 17.9 54.1 15.5
dAE+K-means 79.8 † 14.1 72.2 44.2 20.8 17.4 67.2 22.1
DEC 84.3 † 5.7 (0.3) 78.1 (0.1) 46.9 (0.9) 14.3 (0.6) 11.9 (0.4) 67.3 (0.2) 30.8 (1.8)
Linear RIM 59.6 (2.3) 11.1 (0.2) 73.5 (6.5) 40.3 (2.1) 23.7 (0.8) 20.2 (1.4) 62.8 (7.8) 50.9 (3.1)
Deep RIM 58.5 (3.5) 5.8 (2.2) 92.5 (2.2) 40.3 (3.5) 13.4 (1.2) 26.8 (3.2) 62.3 (3.9) 25.1 (2.8)
Linear IMSAT (VAT) 61.1 (1.9) 12.3 (0.2) 91.7 (0.5) 40.7 (0.6) 23.9 (0.4) 18.2 (1.9) 42.9 (0.8) 43.9 (3.3)
IMSAT (RPT) 89.6 (5.4) 16.4 (3.1) 92.8 (2.5) 45.5 (2.9) 24.7 (0.5) 35.9 (4.3) 71.9 (6.5) 24.4 (4.7)
IMSAT (VAT) 98.4 (0.4) 24.0 (0.9) 94.1 (0.4) 45.6 (0.8) 27.5 (0.4) 57.3 (3.9) 71.0 (4.9) 31.1 (1.9)

A brief summary of dataset statistics is given in Table 2. In
the experiments, our goal was to discover clusters that cor-
respond well with the ground-truth categories. For the STL,
CIFAR10 and CIFAR100 datasets, raw pixels are not suited
for our goal because color information is dominant. We
therefore applied 50-layer pre-trained deep residual net-
works (He et al., 2016) to extract features and used them
for clustering. Note that since the residual network was
trained on ImageNet, each class of the STL dataset (which
is a subset of ImageNet) was expected to be well-separated
in the feature space. For Omniglot, 100 types of charac-
ters were sampled, each containing 20 data points. Each
data point was augmented 20 times by the stochastic affine
distortion described in Appendix F. For SVHN, each im-
age was represented as a 960-dimensional GIST feature
(Oliva & Torralba, 2001). For Reuters and 20news, we
removed stop words and retained the 2000 most frequent
words. We then used tf-idf features. Refer to Appendix E
of the supplementary material for further details.

4.2.2. EVALUATION METRIC

Following Xie et al. (2016), we set the number of clus-
ters to the number of ground-truth categories and evaluated
clustering performance with unsupervised clustering accu-
racy (ACC):

ACC = max
m

∑N
n=1 1{ln = m(cn)}

N
, (16)

where ln and cn are the ground-truth label and cluster
assignment produced using the algorithm for xn, respec-
tively. The m ranges over all possible one-to-one mappings
between clusters and labels. The best mapping can be ef-
ficiently computed using the Hungarian algorithm (Kuhn,
1955).

4.2.3. HYPER-PARAMETER SELECTION

In unsupervised learning, it is not straightforward to de-
termine hyper-parameters by cross-validation. Hence, we
fixed hyper-parameters across all the datasets unless there
was an objective way to select them. For K-means,
we tried 12 different initializations and reported the re-
sults with the best objectives. For dAE+K-means and
DEC (Xie et al., 2016), we used the recommended hyper-
parameters for the network dimensionality and annealing
speed.

Inspired by the automatic kernel width selection in spec-
tral clustering (Zelnik-Manor & Perona, 2004), we set the
perturbation range, ϵ, on data point x in VAT and RPT as

ϵ(x) = α · σt(x), (17)

where α is a scalar and σt(x) is the Euclidian distance to
the t-th neighbor of x. In our experiments, we fixed t =
10. For Linear IMSAT (VAT), IMSAT (RPT) and IMSAT
(VAT), we fixed α = 0.4, 2.5 and 0.25, respectively, which
performed well across the datasets.
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Table 4. Comparison of clustering accuracy on the Omniglot
dataset using IMSAT with different types of SAT.

Method Omniglot
IMSAT (VAT) 24.0 (0.9)
IMSAT (affine) 45.1 (2.0)
IMSAT (VAT & affine) 70.0 (2.0)

For the methods shown in Table 1, we varied one hyper-
parameter and chose the best one that performed well
across the datasets. More specifically, for Linear RIM and
Deep RIM, we varied the decay rate over 0.0025 · 2i, i =
0, 1, . . . , 7. For the three variants of IMSAT, we varied λ in
Eq. (19) for 0.025 · 2i, i = 0, 1, . . . , 7. We set q to be the
uniform distribution and let δ = 0.01 · h(q(y)) in Eq. (10)
for the all experiments.

Consequently, we chose 0.005 for decay rates in both Lin-
ear RIM and Deep RIM. Also, we set λ = 1.6, 0.05
and 0.1 for Linear IMSAT (VAT), IMSAT (RPT) and IM-
SAT (VAT), respectively. We hereforth fixed these hyper-
parameters throughout the experiments for both clustering
and hash learning. In Appendix G, we report all the exper-
imental results and the criteria to choose the parameters.

4.2.4. EXPERIMENTAL RESULTS

In Table 3, we compare clustering performance across eight
benchmark datasets. We see that IMSAT (VAT) performed
well across the datasets. The fact that our IMSAT outper-
formed Linear RIM, Deep RIM and Linear IMSAT (VAT)
for most datasets suggests the effectiveness of using deep
neural networks with an end-to-end regularization via SAT.
Linear IMSAT (VAT) did not perform well even with the
end-to-end regularization probably because the linear clas-
sifier was not flexible enough to model the intended invari-
ance of the representations. We also see from Table 3 that
IMSAT (VAT) consistently outperformed IMSAT (RPT) in
our experiments. This suggests that VAT is an effective
regularization method in unsupervised learning scenarios.

We further conducted experiments on the Omniglot dataset
to demonstrate that clustering performance can be im-
proved by incorporating domain-specific knowledge in the
augmentation function of SAT. Specifically, we used the
affine distortion in addition to VAT for the augmented func-
tion of SAT. We compared the clustering accuracy of IM-
SAT with three different augmentation functions: VAT,
affine distortion, and the combination of VAT & affine dis-
tortion, in which we simply set the regularization to be

1

2
· RSAT(θ;TVAT) +

1

2
· RSAT(θ;Taffine), (18)

where TVAT and Taffine are augmentation functions of VAT
and affine distortion, respectively. For Taffine, we used the
stochastic affine distortion function defined in Appendix F.

We report the clustering accuracy of Omniglot in Table 4.
We see that including affine distortion in data augmentation
significantly improved clustering accuracy. Figure 2 shows
ten randomly selected clusters of the Omniglot dataset that
were found using IMSAT (VAT) and IMSAT (VAT & affine
distortion). We observe that IMSAT (VAT & affine distor-
tion) was able to discover cluster assignments that are in-
variant to affine distortion as we intended. These results
suggest that our method successfully captured the invari-
ance in the hand-written character recognition in an unsu-
pervised way.

4.3. Hash Learning

4.3.1. DATASETS AND COMPARED METHODS

We evaluated our method for hash learning presented
in Section 3.4 on two benchmark datasets: MNIST
and CIFAR10 datasets. Each data sample of CI-
FAR10 is represented as a 512-dimensional GIST fea-
ture (Oliva & Torralba, 2001). Our method was compared
against several unsupervised hash learning methods: spec-
tral hashing (Weiss et al., 2009), PCA-ITQ (Gong et al.,
2013), and Deep Hash (Erin Liong et al., 2015). We also
compared our method to the hash versions of Linear RIM
and Deep RIM. For our IMSAT, we used VAT for the reg-
ularization. We used the same hyper-parameters as in Sec-
tion 4.2.3.

4.3.2. EVALUATION METRIC

Following Erin Liong et al. (2015), we used three evalua-
tion metrics to measure the performance of the different
methods: 1) mean average precision (mAP); 2) precision at
N = 500 samples; and 3) Hamming look-up result where
the hamming radius is set as r = 2. We used the class la-
bels to define the neighbors. We repeated the experiments
ten times and took the average as the final result.

4.3.3. EXPERIMENTAL RESULTS

The MNIST and CIFAR10 datasets both have 10 classes,
and contain 70000 and 60000 data points, respectively.
Following Erin Liong et al. (2015), we randomly sampled
1000 samples, 100 per class, as the query data and used the
remaining data as the gallery set.

We tested performance for 16 and 32-bit hash codes. In
practice, fast computation of hash codes is crucial for fast
information retrieval. Hence, small networks are prefer-
able. We therefore tested our method on three different net-
work sizes: the same ones as Deep Hash (Erin Liong et al.,
2015), d-200-200-M , and d-400-400-M . Note that Deep
Hash used d-60-30-M and d-80-50-M for learning 16 and
32-bit hash codes, respectively.

Table 5 lists the results for 16-bit hash. Due to the space
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(a) IMSAT (VAT) (b) IMSAT (VAT & affine)
Figure 2. Randomly sampled clusters of Omniglot discovered using (a) IMSAT (VAT) and (b) IMSAT (VAT & affine). Each row contains
randomly sampled data points in same cluster.

Table 5. Comparison of hash performance for 16-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods were excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Dimensions of hidden layers) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 26.6 12.6 56.3 18.8 57.5 18.5
PCA-ITQ (Gong et al., 2013) 41.2 15.7 66.4 22.5 65.7 22.6
Deep Hash (60-30) 43.1 16.2 67.9 23.8 66.1 23.3
Linear RIM 35.9 (0.6) 24.0 (3.5) 68.9 (1.1) 15.9 (0.5) 71.3 (0.9) 14.2 (0.3)
Deep RIM (60-30) 42.7 (2.8) 15.2 (0.5) 67.9 (2.7) 21.8 (0.9) 65.9 (2.7) 21.2 (0.9)
Deep RIM (200-200) 43.7 (3.7) 15.6 (0.6) 68.7 (4.9) 21.6 (1.2) 67.0 (4.9) 21.1 (1.1)
Deep RIM (400-400) 43.9 (2.7) 15.4 (0.2) 69.0 (3.2) 21.5 (0.4) 66.7 (3.2) 20.9 (0.3)
IMSAT (VAT) (60-30) 61.2 (2.5) 19.8 (1.2) 78.6 (2.1) 21.0 (1.8) 76.5 (2.3) 19.3 (1.6)
IMSAT (VAT) (200-200) 80.7 (2.2) 21.2 (0.8) 95.8 (1.0) 27.3 (1.3) 94.6 (1.4) 26.1 (1.3)
IMSAT (VAT) (400-400) 83.9 (2.3) 21.4 (0.5) 97.0 (0.8) 27.3 (1.1) 96.2 (1.1) 26.4 (1.0)

constraint, we report the results for 32-bit hash codes in
Appendix H, but the results showed a similar tendency as
that of 16-bit hash codes. We see from Table 5 that IMSAT
with the largest network sizes (400-400) achieved competi-
tive performance in both datasets. The performance of IM-
SAT improved significantly when slightly bigger networks
(200-200) were used, while the performance of Deep RIM
did not improve much with the larger networks. We de-
duce that this is because we can better model the local
invariance by using more flexible networks. Deep RIM,
on the other hand, did not significantly benefit from the
larger networks, because the additional flexibility of the
networks was not used by the global function regulariza-
tion via weight-decay.1 In Appendix I, our deduction is
supported using a toy dataset.

1Hence, we deduce that Deep Hash, which is only regular-
ized by weight-decay, would not benefit much by using larger
networks.

5. Conclusion & Future Work
In this paper, we presented IMSAT, an information-
theoretic method for unsupervised discrete representation
learning using deep neural networks. Through extensive
experiments, we showed that intended discrete representa-
tions can be obtained by directly imposing the invariance to
data augmentation on the prediction of neural networks in
an end-to-end fashion. For future work, it is interesting to
apply our method to structured data, i.e., graph or sequen-
tial data, by considering appropriate data augmentation.
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