Supplementary Material: Deep Generative Models for Relational Data with Side Information

1. Proof of Lemma 1

We can compute $\mathbb{E}[\mathbf{I}\{A_{ij}=0\}]$ as $\mathbb{E}[\mathbf{I}\{A_{ij}=0\}] = p(X_{ij}=0)$ $= \mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[\prod_{k_{1},k_{2}}^{K} p(X_{ij}=0|z_{ik_{1}},z_{jk_{2}},\Lambda_{k_{1}k_{2}}) \right]$ $= \mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[\prod_{k_{1},k_{2}=1}^{K} \exp(-\Lambda_{k_{1}k_{2}}z_{ik_{1}}z_{jk_{2}}) \right]$ $\geq \exp\left(\mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[\log \prod_{k_{1},k_{2}=1}^{K} \exp(-\Lambda_{k_{1}k_{2}}z_{ik_{1}}z_{jk_{2}}) \right] \right)$ $= \mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[-\sum_{k_{1},k_{2}=1}^{K} \Lambda_{k_{1}k_{2}}z_{ik_{1}}z_{jk_{2}} \right]$ (1)

where the inequality step follows from Jensen's inequality. Following Lemma 1 in (Zhou, 2015), we have $\mathbb{E}\left[\sum_{k_1,k_2=1}^K \Lambda_{k_1k_2}\right] = \frac{\zeta\gamma_c}{\gamma_bck_1k_2} + \frac{\gamma_a^2}{\gamma_b^2ck_1k_2}.$ Then the last line in Equation (1) can be written as

$$\mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[-\sum_{k_{1},k_{2}=1}^{K} \Lambda_{k_{1}k_{2}} z_{ik_{1}} z_{jk_{2}} \right]$$

$$= \exp \left(-\left[\frac{\zeta \gamma_{c}}{\gamma_{b} c_{k_{1}k_{2}}} + \frac{\gamma_{a}^{2}}{\gamma_{b}^{2} c_{k_{1}k_{2}}} \right] \mathbb{E}_{\boldsymbol{z}_{i}^{(1)} \boldsymbol{z}_{j}^{(1)}} \left[z_{ik_{1}}^{(1)} z_{jk_{2}}^{(1)} \right] \right)$$
(2)

Based on Equation (1) and (3), the expected number of zeros in $\bf A$ is lower bounded by

$$\begin{split} & \mathbb{E}[\sum_{i,j=1}^{N} \mathbf{I}\{A_{ij} = 0\}] \geq N^{2} \mathbb{E}_{\boldsymbol{z}_{i},\boldsymbol{z}_{j},\Lambda} \left[-\sum_{k_{1},k_{2}=1}^{K} \Lambda_{k_{1}k_{2}} z_{ik_{1}} z_{jk_{2}} \right] \\ & = N^{2} \exp\left(-\left[\frac{\zeta \gamma_{c}}{\gamma_{b} c_{k_{1}k_{2}}} + \frac{\gamma_{a}^{2}}{\gamma_{b}^{2} c_{k_{1}k_{2}}} \right] \mathbb{E}_{\boldsymbol{z}_{i}^{(1)} \boldsymbol{z}_{j}^{(1)}} \left[z_{ik_{1}}^{(1)} z_{jk_{2}}^{(1)} \right] \right) \end{split} \tag{3}$$

2. HYPERPARAMETER INFERENCE

We sample $\boldsymbol{w}_k^{(\ell)}$, $b_k^{(\ell)}$ and \boldsymbol{m}_k leveraging the Pólya-Gamma augmentation (Polson et al., 2013). This enables us to de-

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by the author(s).

rive the Gibbs sampler updates for the hyper-parameters $\gamma_{k_1}, \xi, \Gamma_{k_\ell}^{(w)}$ and $\Gamma_k^{(m)}$, in closed form.

Sample $\boldsymbol{w}_k^{(\ell)}$ and $b_k^{(\ell)}$: We consider the update of layer-1 weights $\boldsymbol{w}_k^{(1)}$ as an example, and assume the side information is available (which is the more general case). Weights for the other layers can be sampled in a similar manner.

Given the Pólya-Gamma auxiliary variables $\alpha_k^{(1)}$, the posterior for $w_k^{(1)}$ will be $w_k^{(1)} \sim \mathcal{N}(\mu_k^{(w)}, \mathbf{V}_k^{(w)})$, where

$$\begin{array}{lcl} \boldsymbol{\mu}_k^{(\boldsymbol{w})} & = & \mathbf{V}_k^{(\boldsymbol{w})} (\mathbf{Z}^{(2)})^T (\boldsymbol{z}_k^{(2)} - \frac{1}{2} \mathbf{1}_N - \operatorname{diag}(\boldsymbol{\alpha}_k^{(1)}) (\mathbf{S} \boldsymbol{m}_k + \boldsymbol{b}_k^{(1)} \mathbf{1}_N)) \\ \mathbf{V}_k^{(\boldsymbol{w})} & = & ((\mathbf{Z}^{(2)})^T \operatorname{diag}(\boldsymbol{\alpha}_k^{(1)}) \mathbf{Z}^{(2)} + (\boldsymbol{\Gamma}_{k,\ell}^{(\boldsymbol{w})})^{-1})^{-1} \end{array}$$

In the above, $\mathbf{1}_N$ is a vector of length N with all entries being 1, and $\boldsymbol{\alpha}_k^{(1)} \in \mathbb{R}_+^N$, each entry $\alpha_{ik}^{(1)}$ is drawn from the Pólya-Gamma distribution

$$\alpha_{ik}^{(1)} \sim \text{PG}(1, \boldsymbol{m}_k^T \boldsymbol{s}_i + (\boldsymbol{w}_k^{(1)})^{\top} \boldsymbol{z}_i^{(2)} + b_k^{(1)})$$

Conditioned on these PG variables, the posterior over $b_k^{(\ell)}$ will also be a Gaussian.

Sample m_k : Akin to the way we sample $w_k^{(\ell)}$, the side information based regression weights m_k can also be sampled using the Pólya-Gamma scheme (using the layer 1 PG variables $\alpha_k^{(1)}$). The posterior will be a Gaussian $m_k \sim \mathcal{N}(\mu_k^{(m)}, \mathbf{V}_k^{(m)})$, where

$$\begin{array}{lcl} {\boldsymbol{\mu}}_k^{({\boldsymbol{m}})} & = & {\bf V}_k^{({\boldsymbol{m}})} {\bf S}^T ({\boldsymbol{z}}_k^{(2)} - \frac{1}{2} {\bf 1}_N - \text{diag}({\boldsymbol{\alpha}}_k^{(1)}) ({\bf Z}^{(2)} {\boldsymbol{w}}_k^{(1)} + b_k^{(1)} {\bf 1}_N)) \\ {\bf V}_k^{({\boldsymbol{m}})} & = & (({\bf S}^T \text{diag}({\boldsymbol{\alpha}}_k^{(1)}) {\bf S} + (\boldsymbol{\Gamma}_k^{({\boldsymbol{m}})})^{-1})^{-1} \end{array}$$

Sample γ_{k_1} : γ_{k_1} can be sampled as

$$\gamma_{k_1} \sim \mathrm{Gamma}(\gamma_a + \ell_{k_1 k_2}, \frac{1}{\gamma_b - \sum_{k_2} \xi^{\delta_{k_1 k_2}} \gamma_{k_2}^{1 - \delta_{k_1 k_2}} \ln(\frac{c_{k_1 k_2}}{Q_{k_1 k_2} + c_{k_1 k_2}})})$$

where $\ell_{k_1} = \sum_{k_2} \ell_{k_1 k_2}$ with $\ell_{k_1 k_2}$ drawn from the Chinese Restaurant Table (CRT) distribution (Zhou, 2015)

$$\ell_{k_1k_2} \sim \text{CRT}(X_{..k_1k_2}, g_{k_1k_2})$$

Sample ξ : The hyperparameter ξ can be sampled as

$$\xi \sim \text{Gamma}(\xi_a + \sum_k \ell_{kk}, \frac{1}{\xi_b - \sum_k \gamma_k \ln(\frac{c_{kk}}{Q_{kk} + c_{kk}})})$$

[.] Correspondence to: Changwei Hu <changweih@yahoo-inc.com>, Piyush Rai <piyush@cse.iitk.ac.in>, Lawrence Carin <lcarin@duke.edu>.

Sample $\Gamma_{k,\ell}^{(w)}$, $\Gamma_k^{(m)}$: Each diagonal entry of the precision matrix $\Gamma_{k,\ell}^{(w)}$ is sampled as

$$\boldsymbol{\Gamma_{k,\ell}^{(\boldsymbol{w})}} \!\!\sim\! \! \mathsf{Gamma}(a \!+\! \frac{K_{\ell+1}}{2}, \frac{1}{\mathsf{diag}((b+0.5(\boldsymbol{w}_k^{(\ell)})^T\boldsymbol{w}_k^{(\ell)}) \mathbf{1}_{K_{\ell+1}})})$$

where a and b are the scale and rate parameters for the prior of $\Gamma_{k,\ell}^{(\boldsymbol{w})}$ respectively. $\Gamma_k^{(\boldsymbol{m})}$ can be sampled similarly.

References

Polson, Nicholas G, Scott, James, and Windle, Jesse. Bayesian inference for logistic models using pólyagamma latent variables. *Journal of the American Statistical Association*, 108(504):1339–1349, 2013.

Zhou, Mingyuan. Infinite edge partition models for overlapping community detection and link prediction. In *AISTATS*, 2015.