Supplementary Material: Deep Generative Models for Relational Data with
Side Information

1. Proof of Lemma 1

We can compute E[I{A;; = 0}] as
E[I{A;; = 0}] = p(Xy; = 0)
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where the inequality step follows from Jensen’s inequal-
ity. Following Lemma 1 in (Zhou, 2015), we have
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Based on Equation (1) and (3), the expected number of ze-
ros in A is lower bounded by
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2. HYPERPARAMETER INFERENCE

We sample w,(f), b,(f) and my, leveraging the Pélya-Gamma

augmentation (Polson et al., 2013). This enables us to de-
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rive the Gibbs sampler updates for the hyper-parameters
Vier s s 1“5;";) and T\™, in closed form.

)

Sample w;~’ and b,(f): We consider the update of layer-1
weights wgﬂl) as an example, and assume the side informa-

tion is available (which is the more general case). Weights
for the other layers can be sampled in a similar manner.

Given the P6lya-Gamma auxiliary variables ag)

terior for w'" will be w'"” ~ N ("), V™)), where

, the pos-
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In the above, 1 is a vector of length N with all entries

being 1, and o € RY, each entry aly

Pélya-Gamma distribution

is drawn from the

045,1) ~ PG(1, mfsi + (w,(cl))Tzz@) + bg))

Conditioned on these PG variables, the posterior over b,(f)

will also be a Gaussian.

Sample m: Akin to the way we sample w,(f), the side in-
formation based regression weights my can also be sam-
pled using the Pdlya-Gamma scheme (using the layer 1

PG variables agcl)). The posterior will be a Gaussian
my, ~ /\/(ugcm), V,(cm)), where
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Sample vy, : v, can be sampled as
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where l;,. = >, li,k, With £, x, drawn from the Chi-
nese Restaurant Table (CRT) distribution (Zhou, 2015)

‘gk‘lk‘2 ~ CRT(X“k1k2a gk1k‘2)

Sample £: The hyperparameter £ can be sampled as
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Sample 1"2,“;) , I‘fﬁm): Each diagonal entry of the precision

matrix T{*)) is sampled as
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where a and b are the scale and rate parameters for the prior
of I‘,(:‘;) respectively. I‘,(Cm) can be sampled similarly.
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