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Abstract

Bayesian optimization has been successfully used
to optimize complex black-box functions whose
evaluations are expensive. In many applications,
like in deep learning and predictive analytics, the
optimization domain is itself complex and struc-
tured. In this work, we focus on use cases where
this domain exhibits a known dependency struc-
ture. The benefit of leveraging this structure is
twofold: we explore the search space more effi-
ciently and posterior inference scales more favor-
ably with the number of observations than Gaus-
sian Process-based approaches published in the
literature. We introduce a novel surrogate model
for Bayesian optimization which combines inde-
pendent Gaussian Processes with a linear model
that encodes a tree-based dependency structure
and can transfer information between overlapping
decision sequences. We also design a specialized
two-step acquisition function that explores the
search space more effectively. Our experiments
on synthetic tree-structured objectives and on the
tuning of feedforward neural networks show that
our method compares favorably with competing
approaches.

1. Introduction

In recent years, Bayesian optimization has gained a growing
attention from machine learning experts in, both, academia
and industry (Shahriari et al., 2016). It takes the widespread
application of machine learning to the next level of sophisti-
cation as it enables to automatically fine-tune hyperparam-
eters (Snoek et al., 2012), whether they are parametrizing
data pre-processors, models or the learning algorithms. Fine-
tuning is essential to obtain state-of-the-art performance
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with complex machine learning models, such as deep neural
networks. Historically, this vital step has been done, either
manually, or via regular or random grid search, which can
consume vast amounts of human expert time and are waste-
ful of computing resources. Hence, one of the main benefits
of Bayesian optimization is that it removes this burden from
the shoulders of the practitioners, who can then focus their
attention on more rewarding value-adding tasks.

To set the stage, our goal is to solve a global optimization
problem:
min f(x),

where A is the optimization domain and f is a black-box
function, typically continuous and multimodal. We further
assume that querying f is costly. For example, f may be the
outcome of a physical experiment or require a large amount
of computation. The latter arises when f corresponds to a
model selection score for a machine learning model trained
on a possibly large dataset.

The protocol for sequential Bayesian optimization proceeds
as follows (Mockus et al., 1978; Shahriari et al., 2016).
Given n noisy evaluations y; ~ f(x;), i € {1,...,n},
a surrogate probabilistic model of f is maintained. Our
goal is to find a global optimum of f by querying it as few
times as possible. The location x,,; is chosen by maximiz-
ing an acquisition function which performs an exploration-
exploitation trade-off. A common choice for the surrogate
model is a Gaussian process (GP) (Rasmussen & Williams,
2006). For a GP surrogate model, common acquisition func-
tions can be tractably computed and optimized via gradient-
based optimization algorithms. While existing Bayesian
optimization approaches mitigate the high evaluation cost of
f, they suffer from the curse of dimensionality when facing
a high-dimensional space X'.

In this paper, we introduce a novel methodology able to
exploit a given tree-shaped dependency structure on X by
transferring information between overlapping paths. By
constructing a surrogate model tailored to the structure, we
can reduce the number of evaluations of commonly used
acquisition functions. The same structure also allows us to
take acquisition decisions more efficiently, thus speeding up
the search of candidates.

Tree-based dependencies occur often in practice. For exam-
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ple, faced with a classification problem, we may want to
simultaneously search over many different machine learn-
ing models, each coming with their own hyperparameters.
Some configurations may also share parameters (e.g., logis-
tic regression with /5 and ¢, penalty may share the learning
rate). These choices could be encoded in a decision tree,
where inner nodes select between different models and hy-
perparameters populate leaf nodes. Another example arises
when having to decide on a deep neural network architecture:
the size of a layer, choice of activation function, or drop-
out fraction may depend on the number of layers (Bengio,
2009).

1.1. Baselines and Related Work

A baseline approach to Bayesian optimization in this setting
is to ignore the structure of X" and, as a result, choose a GP
with covariance kernel K(x, x’) defined over the joint input
space. When comparing a pair of points, all coordinates are
taken into account. While easy to run in existing Bayesian
optimization toolboxes, this approach can be highly inef-
ficient. Not only do we encounter a cost of O(n?) after
n acquisitions due to the global nature of the GP, but we
also suffer from the curse of dimensionality when searching
over X. Several authors attempted to design covariance
functions that are aware of the structure: Duvenaud et al.
(2011) consider kernels with an additive structure, while
Swersky et al. (2014a); Hutter & Osborne (2013) introduce
the Arc-kernel. However, the cost remains O(n?).

Another idea is to consider an independent GP for every
valid subset of hyperparameters, as proposed by Bergstra
et al. (2011). This approach corresponds to having an in-
dependent GP per leaf in the dependency tree. It scales as
o, n?), where n,, is the number of evaluations at leaf
node p and Zp n, = n. However, it lacks a mechanism
for information sharing across the leaves. As we will show,
information sharing can be beneficial in order to cut down
on the number of evaluations. Moreover, the independent
approach requires a sizable number of evaluations at each
leaf, which can be problematic when there are many leafs.

Tree-structured dependencies can also be dealt with by as-
signing default values to coordinates of x which do not fall
into the leaf node under consideration, using a Random For-
est model to make this choice (Hutter et al., 2011). This
strategy is implemented in the SMAC library.

Finally, Zhang et al. (2016) proposed a dedicated approach
to tune data analytic pipelines, via a two-layer Bayesian
optimization framework. Their method first uses a para-
metric model to select some promising algorithms, whose
hyperparameters are then refined by a nonparametric model.

1.2. Contributions

First, we introduce a novel Bayesian optimization method-
ology able to leverage conditional dependencies between
hyperparameters. To this end, we build a tree-structured
surrogate model, with separate GPs at the leaf nodes, and
random linear (or constant) functions at the inner nodes.
This allows us to transfer information between leafs that
share nodes on their respective paths, which enables us in
turn to efficiently search the space X. Yet, we also retain
the beneficial scaling of the independent approach (Bergstra
et al., 2011). To our knowledge, no prior published work
satisfied these two aspects. The Arc-kernel allows for in-
formation sharing, but comes with O(n?) computations.
Hutter et al. (2011) rely on Random Forests to represent
correlations, but no particular sharing mechanism exists.

Second, we introduce a novel acquisition function which is
also able to exploit the tree structure and relies on the ex-
pected improvement (Mockus et al., 1978). The acquisition
operates in two steps. We first select the most promising
leaf node to score, effectively restricting our attention to a
portion of X. We then optimize over all possible anchor
points in this portion of space. This can result in a drastic
reduction in the number of surrogate functions to optimize
over. In comparison, the independent baseline requires to
score every anchor point of every leaf in the tree at each
iteration.

The paper is organized as follows. In Section 2, we detail
our surrogate GP model and inference computations. In
Section 3, we show how the model structure gives rise to ef-
ficient acquisition optimization. For a range of experiments
on simulated and real data, we report in Section 4 favorable
comparisons with existing alternatives. We conclude with
possible extensions in Section 5.

2. Tree-structured semi-parametric Gaussian
process regression model

We assume that the hyperparameters exhibit conditional
dependencies, which can be modeled with decision tree 7.
The set of inner nodes V is indexed by v € {1,...,V}; each
v has a decision variable and a weight variable c,,. The set
of leaf nodes P is indexed by p € {1, ..., P}. Equivalently,
p indexes (unique) paths from the root to a leaf.

Further, let D,, = {(x;,y;)}"_, be the set of observations.
We introduce a set of auxiliary variables {p; | p; € P},
that indicate the leaf to which observation 7 is associated
and let n, = {4 | p, =p}|. Note that x; € X}, since the input
domain may vary from one leaf to another.
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2.1. Model with Random Inner Node Parameters

We consider a surrogate model that associates with leaf p
a latent function g, with GP prior, whose mean function
and covariance kernel are b, and K,(x,x’). We impose
a zero-mean Gaussian prior over the weight vector ¢ =
[e1,...,ev]T.

The resulting generative model is given by

c~N(0,%,),
9p(-) ~ GP(bp, Kp),
yilpi, {gp(xi) Y1, € ~ N(gp, (%) + 2,,¢,0%). (1)

where 3., {b,}]_, and o are the prior covariance, the
scalar offsets and the noise variance. Vector z, € {0,1}"
is a binary mask that activates the weights of the inner node
decision variables on the path to leaf node p. In other words,
(zp)v = Liff v lies on the path from the root to p. The prior
covariance ¥, will be diagonal in our experiments.

When ¢ =0, model (1) boils down to assuming P indepen-
dent GPs. While inference only scales as O(3_ nj) in this
case, information is not transferred between overlapping
paths. Introducing the weight vector c allows us to couple
inference for such paths, while keeping the favorable scaling
and better exploring the optimization space (see Section 4).

Next, we show how to perform efficient inference in this
model and give an interpretation of the induced kernel when
computing the marginal likelihood. Posterior inference over
the surrogate models {g,(-)} and the random weights c is
needed to compute the acquisition functions (see Section 3).

2.2. Posterior Inference

Before starting, we need some notation. Let y € R™ be the
vector of all observations and g € R” the vector of latent
function values at {x;}!"_,. Further, let I, = {i | p; = p},
noting that n, = |I,|. We partition the data accordingly,
so that y, = [yi|icz,, and similarly g, = [g,(xi)]ier,-
Also, we define the matrix Z, = zplT RY*"» | where
1,, = [1] € R"», and the vector b, = b pln, € R,

The joint distribution P(y, g, c) of our model is given by
C)HpN(gp; bp KP)N(yp; gp + Z;C, U2Inp)v ()

where K, = [K,(x;,%;)]i jecr1, are kernel matrices, with
the prior P(c) = N(c; 0,3X,). Our goal is to obtain the pos-
terior process P(g,(-)|c,y,) and the posterior distribution
P(ely).

We can directly read off the posterior over the latent func-
tions and parameters after rewriting the joint distribution
into the following form (see Section 2 of the Appendix for
details):

P(y)P(c[y)] [, P(gple,yy)-

First, we obtain the posterior GP over the latent functions:
gp()le, yp ~ gP(mP(')a Sp(s ))7

where m,(x) = ky(x) "M, '(y, — Z)c — by) + by,
Sp(x,x') = Kp(x,x") — kp(x)Tszlkp(x') and M, =
K, + O'QI»,LP.

Next, we obtain the posterior for the weights c:
cly ~N(AJf, AT,

where f, = > Z,M,(y,
o ZyM 2

—b,)and A, = ;! +

In the sequel, we compute expressions such as M ! and
log |[M,,| by using the Cholesky decomposition M,, =
LpL;,r . Similarly, the expressions depending on A, are
computed using its Cholesky decomposition.

2.3. Marginal Likelihood and Its Interpretation

As shown in Section 2 of the Appendix, we can derive
the expression for the log-marginal likelihood log P(y) in
closed form:
log P(y Zlog/\f yp,Z c+b,,M,)
P
+1log N (c;0,%.) —log P(cly), (3)
The p-dependent terms require computing the Cholesky
decompositions of all M, € R"»*"»  whereas the final
term needs the Cholesky decomposition of A, € RV*V.
Therefore, log P(y) can be computed in O(V? + 37 n3).
Note that this computation is required for optimizing the
hyperparameters of the GPs.

We can also obtain an interesting interpretation for the in-
duced kernel of the marginal likelihood by computing it in
a different way. Let Z = [Z,] € RV*", b = [b,] € R"
and Kbk ¢ R™*" the block-diagonal matrix with blocks
K,,. With these notations, it can be shown that P(y,|c) =
N(yp|Z, ¢ + by, M,,). Integrating out ¢ leads to

:N (b,ZTECZ + KblOCk +

P(y) o’I). 4)

If we further assume that 3, = O’SI\/, then

T _ 2 T _ 2 T
7757 = [0°Z] zp/}pm,_{ 2(2) 2y )1, 1 L’p/.

Np Ty

Hence, the diagonal blocks are proportional to z; z,,, which
is the length of path p, and the off-diagonal blocks are pro-
portional to z; z,, which is the path overlap length between
p and p’. The resulting kernel is thus the intersection kernel

(see Shawe-Taylor & Cristianini (2004), Section 9.5).
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2.4. Model with Random Linear Inner Node Functions

‘We have so far associated a random scalar ¢,, with each inner
node. More generally, we can use linear functions CI ry,
where c,, is a weight vector and r,, € R% is a feature vector.
The special case above is obtained with d,, =1 and r,, =[1].

We collect the weight vectors in ¢ = [c,] € R?, where
d=7>3,dy,. LetV, C V be the set of inner nodes on the
path from the root to leaf p. Concatenating the r,’s, we
define the induced feature vector z, = [r,],cy, such that

csz = Zvevp chr,.

Hence, the dataset we collect during the optimization is now
the extended set D,, = {(xi, s, Pi, Zp, :[rv,i]vevpi)}?ﬂ.
It is easy to see that all our results above transfer to this
more general case, if only we redefine

Z,= [Zpi]ie]p = [rv,i]ielp’vevpi € Réxmr,

Except for an increased dimensionality d > V' of the weight

vector ¢, the extension with random linear inner node func-
tions is not more difficult to implement or run.

In Section 4, we will use r,, to encode both numerical (i.e.,
d, = 1) and categorical parameters (via one-hot represen-
tations, so that d,, equals the number of categories). In our
deep learning use case, parameters such as the learning rate,
the number of units and the type of activation functions are
encoded via the r,’s (see Figure 3, bottom). We will refer
to the parameter associated with r,, as a shared parameter
since it is shared across all the leaves whose paths contain v.

3. Acquisition Functions

Bayesian optimization generally proceeds by discretizing
the search space X into a set of anchor points, for example
by using quasi-random sequences (Sobol, 1967). We then
maximize an acquisition function starting from the most
promising anchor point(s), typically with a numerical solver
like L-BFGS (Nocedal & Wright, 2006). Acquisition func-
tions are defined in terms of expectations over the surrogate
model posterior. Frequently used choices include Thompson
sampling (Thompson, 1933), probability of improvement
(PI) (Kushner, 1964), expected improvement (EI) (Mockus
et al., 1978), or GP-UCB (Srinivas et al., 2010). We will
focus on EI in the sequel as it has been shown to perform
better than PI. Our initial experiments also showed that
Thompson sampling was not performing well.

The naive approach of globally optimizing EI over anchor
points does not scale well with a high-dimensional &'. In the
previous section, we specified a tree-structured model for
the (random) surrogate function, with which the evaluation
of an acquisition function at some x € X is sped up. In
this section, we show how the model structure can also be
exploited in order to speed up the optimization itself.

3.1. Acquisition Strategies

The acquisition function a(x|D,,) plays a critical role in
Bayesian Optimization as it selects anchor points by per-
forming an exploration-exploitation trade-off. The key ques-
tion that concerns us is whether we can leverage the explicit
structure in high-dimensional structured space in order to
make the search more efficient. The naive approach ignores
structure in the search space, using a surrogate model based
on a global kernel, like the one proposed by Swersky et al.
(2014a). While the design of a kernel that incorporate struc-
ture is non-trivial, it is not explicitly used to guide the search
and the cost of evaluations still scales as O(n?).

As noted above, we can speed up evaluations to O(}_,, nd)
by adopting an independent model, which corresponds to
our tree model with ¢ = 0, so that the surrogate models
{gp(-)}]=; can be learnt and queried independently from
each other. With this approach, the search decouples across
the leaf nodes and can be parallelized accordingly. However,
if acquisitions are done sequentially, then all leafs have
to be searched in order to find the overall best candidate.
The independent model also fails to represent dependencies
between the leaf nodes, so that a larger total number of
evaluations may be required to reach a good solution.

Given our tree-structured surrogate model, we can improve
on both the naive and the independent approach. The acqui-
sition function becomes a(x, p|D,,), p being the leaf node
where x is evaluated. For our model, a(x,p|D,,) can be
evaluated in O(V?3 + 2o n;”,), which is often much cheaper
than O(n?) required in the naive approach, and is compa-
rable to O(3_, n3) for independent. We could maximize
a(x, p|D,,) separately at each leaf p, and then pick the best
candidate across leaf nodes:

(X4, p«) € argmax a(x, p|Dy).
pEP xEX),

In practice, the set of leaf nodes P can become large, in
which case the requirement to search in every leaf node can
be costly. We propose to further exploit the tree structure
of our surrogate model in order to speed up the optimiza-
tion. Namely, our model implies a path acquisition function
a(p|D,,). Based on this, we select p, and x, in two steps:

Py = argmax a(p|Dy), X, € argmax (X, p«|Dp).
peEP xeX,,

This strategy can greatly speed up the optimization. There
are obvious intermediates, such as searching in a subset of
top-ranked leafs p, which we defer for future work.

3.2. Two-step Expected Improvement

Given our surrogate model, the EI acquisition function is:

a(x,p|Dn) = E {[ymin — 9p(x) =25 ¢4}, (5)
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Table 1. Comparison of different surrogate models and acquisition
strategies (see text for details). Here, M (X) is the complexity of
optimizing a surrogate function over the space X. p, is the path
selected by tree, and X, is the corresponding leaf domain.

sharing? complexity
independent X o(>, np - M(X,))
naive v O((ZP np)® - M(PXHPXP))
tree v O(V3+nj, - M(X,,))

where [u]; = max{u,0}, and ymiy, is the best evaluation
so far (across all leafs). The expectation is computed with
respect to the posterior of g, (x) + z;c, which is a GP with
mean and covariance functions respectively given by

iy (x) = kp(x) "M, (yp — by) + (%) TAZ L + by,
gp(x,x') =S,(x,x") + tp(x)TAc_ltp(x/),

where t,,(x) = z, — Z,M, 'k, (x). We can analytically
compute (5), leading to

a(x,p|Dn) = 6p(x) (§2(S) + N(£;0,1)),

M (X) —Ymin and P (f)

Gp(x)

where &, (x) = {S,(x,x)}/2, ¢ =
is the CDF of a standard Gaussian.

As noted above, we could optimize «(x, p|D,,) at all leaves
and pick the overall winner. Instead, we propose a two-step
approach, based on a path EI acquisition function:

Oé(p|Dn) =E {[ymin - bp — Z;Ch_} s (6)

where the expectation is taken with respect to z;c + by ~
N(z;Aglfc + bp,z;Aglzp). We first select the path
px = argmax, a(p|D,), then find x, by maximizing
a(x, p+|Dy,) at leaf p, only. Our free acquisition strategy is
related to the naive and independent ones in Table 1. Inter-
estingly, tree can be faster than independent overall. Finally,
(6) is easily extended to the case where we have random
linear functions at the inner nodes by considering the aug-
mented induced variable z, = [r,],cv, (see Section 2.4 for
details). In particular, the resulting optimization of (6) is
carried out jointly over p and z, = [r,]vev, .

4. Experiments

In this section, we conduct two sets of experiments. First,
we focus on optimizing synthetic functions designed to have
tree-structured conditional relationships. We then consider
the tuning of a multi-layer perceptron for binary classifica-
tion, which we evaluate over a large number of datasets.

Throughout the experiments, we use the following acronyms
to refer to the different competing methods: tree is our
proposed approach, independent is a baseline that con-
sider an independent GP for every leaf, arc corresponds

Oy
Ol

[¢2+0.3] |22 +04]

0
FOE

[#2+01] |22 +02]

|an‘21 + O.1—|—rg| |x§ + O.2+rg| |z§ + 0.3+7r9g | |z§ + 0.447r9g

Figure 1. Two examples of functions with tree-structured condi-
tional relationships. Each inner node is a binary variable, and a
path in those trees represents successive binary decisions. The
leaves contain univariate quadratic functions that are shifted by
different constant terms. Top: Setting without shared variables.
Bottom: rs and rg are shared variables that are common to the
functions at the leaves of their respective subtrees. In this example,
the shared variables have a linear dependency in the leaf objectives.
rg and rg are encoded following the description of Section 2.4.

to (Swersky et al., 2014a), smac refers to (Hutter et al.,
2011) and gp-baseline is a standard GP-based Bayesian
optimization solver taken from (GPyOpt, 2016). For tree,
independent and gp-baseline, we use 5/2 Matérn
kernels. marginal is another baseline obtained by replac-
ing the kernel of gp-baseline by that stemming from
the marginal (4), where c is viewed as a nuisance variable
and integrated out. Finally, random is standard random
search (Bergstra & Bengio, 2012).

Unless otherwise specified, all the results displayed in this
section correspond to the means and twice the standard
errors computed over 25 random replications. Also, in
order to minimize the initialization bias, all methods (except
smac') start from the same set of random candidates; there
is one random candidate drawn per conditional path. Our
implementation is in Python and we ran the experiments
on a fleet of Amazon AWS c4 . 8x1arge machines.

4.1. Synthetic Tree-structured Functions

The functions we consider are defined over binary trees:
Each inner node, including the root, corresponds to a binary
variable. A path in this tree thus represents successive binary
decisions. The leaves contain univariate quadratic functions
that are shifted by different constant terms. We give an
example of such a function in Figure 1. In the sequel, we
study the two functions from Figure 1 (referred to as small
balanced), in addition to a higher-dimensional version of
those, with a depth of 4 and 8 leaves whose constant shifts
are {a x 0.1}5_, (referred to as large balanced). In
the supplementary material, we provide further results based

'"We use https://github.com/sfalkner/pySMAC.
To the best of our knowledge, we cannot specify the starting point.
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on unbalanced binary trees of increasing sizes, for which
similar conclusions hold. All the non-shared continuous
variables x;’s are defined in [—1, 1], while the shared ones
are in [0, 1]. The best function value will thus always be 0.1.

Those functions encode conditional relationships since
given a path p and its leaf £, all the binary variables outside
of the path p and all the continuous variables defined in
the leaves ¢’ # ¢, are irrelevant. We report in Figure 2 the
optimization results for the different competing methods.
We make the following observations:

Approaches blind to structure perform poorly: The re-
sults show that, both gp—baseline and random, which
cannot use the conditional structure, do not fare well. As ex-
pected, the performance gap widens as the trees get deeper.

Independent vs. tree vs. arc: independent, tree and
arc represent 3 ways of increasingly incorporating con-
ditional structure. Indeed, independent takes into ac-
count the tree structure but does not allow for any sharing
of information across different paths, arc defines a joint
kernel over the union of all the leaves, while t ree makes
intermediate modeling assumptions. We can observe that,
thanks to its joint nature, arc tends to perform well ini-
tially, but it is quickly overtaken by t ree and later also by
independent that lags behind because of the absence of
sharing, but catches up once sufficient observations were col-
lected. Also, as the dimension of the optimization space gets
larger, the performance of independent worsens, while
that of tree is barely affected (we do observe the same
scalability with respect to the dimension on unbalanced bi-
nary trees, as reported in the supplementary material). At
this juncture, we would also like to emphasize that while
independent catches up with t ree in some cases, it is
more wasteful of resources as it requires to score every leaf
at each iteration unlike t ree (see also Table 1).

Importance of exploiting the latent variables c: It is in-
teresting to observe that marginal, which considers c to
be a nuisance variable and integrates it out, performs signifi-
cantly worse than t ree. Note that marginal cannot de
facto be applied in presence of shared variables, which ex-
plains why it does not appear in the right panels of Figure 1.

Approach not based on GPs: smac is known to be state-
of-the-art for optimization tasks in presence of conditional
relationships (Eggensperger et al., 2013). In particular, it is
known to work better than GP-based approaches, especially
when the dimension gets large. We observe in our experi-
ments (e.g., for large balanced, 7 categorical and 10
continuous parameters, 2 of which being shared) that smac
does not reach good solutions on these synthetic tasks.

1, small balanced - no shared variables 1, small balanced - linearly shared variables

o-a arc
m—a gp-baseline
v=v independent
<4=< marginal
b==p random
e=e smac

00 tree

-0 arc
m=a gp-baseline
w=v independent

log10(Distance to optimum)

<

6,
<o
Y B I

10 20

30 a0 50 60 7 10 20 30 70 50 60 70
Iterations Iterations

1 large balanced - no shared variables 1, large balanced - linearly shared variables

0-0 arc
B— gp-baseline
0 v=v independent
<=4 marginal
b==p random
e=e smac

-0 tree

B8 gp-baseline
v=v independent

O
log10(Distance to optimum)

30 a0
Iterations

Figure 2. Optimization performance over synthetic tree-structured
functions, as measured by the log; , distance to the (known) mini-
mum versus the number of iterations. Top: Results for the balanced
binary trees displayed in Figure 1, without and with shared vari-
ables (respectively left and right). Bottom: Results for larger
balanced binary trees with depth 4 and 8 leaves. Best seen in color.

4.2. Multi-layer Perceptron Tuning

We now focus our attention on the tuning of a multi-
layer perceptron (MLP) for binary classification. The set-
ting we consider is reminiscent of that proposed by Swer-
sky et al. (2014a). We optimize for the number of
hidden layers in {0,1,2,3,4}, the number of units per
layer in {1,2,...,30} (provided the corresponding layer
is activated), the choice of the activation function in
{identity, logistic, tanh, relu}, which we
constrain to be identical across all layers, the amount
of {5 regularization in [107¢,107!], the learning rate in
[1075, 107 of the underlying Adam solver (Kingma & Ba,
2014), the tolerance in [107°,1072] of the solver (based
on relative decrease), and the type of data pre-processing,
which can be unit /5-norm observation-wise normaliza-
tion, ¢.,-norm feature-wise normalization, mean/standard-
deviation feature-wise whitening or no normalization at all.

The optimization task can be specified in various ways, re-
sulting in different topologies for the trees of conditional
relationships.We consider the two instantiations of condi-
tional relationships illustrated in Figure 3. The first one has
all the variables duplicated (top tree), which is similar to
how independent proceeds. The second one consists in
having most of the variables shared (bottom tree). Note that
in the two settings, we have one regularization parameter
A per number k of hidden layer(s) of the network. We do
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Figure 3. Conditional relationships for MLP tuning. L refers to the
number of hidden layers, u; is the number of units of the j-th layer,
Ak controls the {5 regularization of a network with k hidden layers,
7 and ¢ are respectively the learning rate and stopping criterion
of the Adam optimizer, while nor(-) and act(-) respectively stand
for the normalization of the dataset and the activation function.
Top: An independent topology where the domain X, of each leaf
is made of duplicated parameters (indexed by £ in the figure).
Bottom: A topology where the parameters (in blue) are shared
across leaves, following Section 2.4..

so to account for the fact that the Ay ’s regularize matrices of
different dimensions. In between those two extreme settings,
we could consider intermediate modeling assumptions (e.g.,
a learning rate 7jnear for the case with no hidden layers and
a shared learning rate 7non linear Otherwise).

To provide a robust evaluation of the different competing
methods, we consider a subset of the datasets from the
Libsvm repository (Chang & Lin, 2011). More specifi-
cally, we consider all the datasets whose number of features
is smaller than 10%, which results in 45 data sets. In absence
of pre-defined default train-test split, we took a random
80% —20% split. To limit the overall computational burden,
we cap the training and test set sizes to a maximum of re-
spectively 10% and 10# instances (randomly selected when
the subsampling applies). Note that this subsampling step
is not related to a computational limitation of our approach,
but is a practical consideration only modifying the properties
of the black-box function we optimize. We use the MLP im-
plementation of scikit—-learn (Pedregosa et al., 2011)
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Figure 4. Tuning of a MLP for binary classification. Average rank
aggregated over 45 datasets versus the number of iterations (lower
is better; see text for details). Shaded regions correspond to two
standard errors tube around the average rank. Top: Comparison of
independent with the t ree-based independent topology (see
bottom tree of Figure 3). Bottom: Comparison of all the methods
based on the shared topology (see top tree of Figure 3). Best seen
in color.

and we add a CPU-time constraint of 5 minutes to each
evaluation, beyond which the worst classification error 1.0
is returned. Under this constraint, the total computational
time of the experiment was roughly 100 CPU days.

We run all the methods for 85 iterations and initialize them
with one random choice for each of the 5 conditional paths.
We aggregate the average classification errors per dataset by
displaying the average rank of each method as a function of
the number of iterations. We say that the rank of a method is
equal to i if it performs the i*" best (see, e.g., Bardenet et al.
(2013); Feurer et al. (2015)). We can draw the following
conclusions:

Effect of z; c without shared variables: The top panel
in Figure 4 compares independent with tree-based
method when it is defined on the independent topology
shown in Figure 3(top). Since there are no shared variables
in the inner nodes, the sharing mechanism of tree only
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happens via the term z;)r c which contributes to the mean.
As expected, sharing results in t ree makes faster progress
towards the optimum. However, when more observations
are collected, independent outperforms t ree because
it better explores all the leafs (though, at a higher com-
putational cost; see Table 1). We next show how we can

additionally benefit from sharing parameters at inner nodes.

Shared topology: The lower panel in Figure 4 compares
all the methods using the shared topology shown in Fig-
ure 3(bottom). We found that arc, gp-baseline,
random and smac all benefitted from running with the
shared topology. The results show that tree not only
greatly improves upon all other GP-based approaches, but
also converges faster than smac that finally reaches the
same level of performance after about 75 iterations. We
can observe that a standard GP-based technique that is
blind to the conditional structure, like gp-baseline, per-
forms poorly. Of independent interest is the comparison of
arc with smac, which was not reported by Swersky et al.
(2014a). Finally, it is worth emphasizing that t ree obtains
good results while only modeling shared variables at the
inner nodes in a linear fashion. This conclusion is in agree-
ment with the recent observations from (Zhang et al., 2016)
where linear models lead to good results in the context of
the optimization of data analytic pipelines. Next, we discuss
an extension to model the shared variables non-linearly.

4.3. Nonlinear Extensions

The approach we have introduced in Section 2.4 can easily
be extended to account for non-linearities through the use
of basis expansions. More specifically, we focus on the use
of random Fourier features (Rahimi et al., 2007) that proved
successful for large-scale kernel methods (Lu et al., 2014).
Combining basis expansion with linear models for Bayesian
optimization is by no means new (see (Shahriari et al., 2016)
and references therein). We also follow this methodology
since it naturally fits our proposed semi-parametric model.

In the supplementary material, we report results on syn-
thetic tree-structured functions where the objectives at
the leaves depend now quadratically on the shared vari-
ables and on the MLP tuning task. In a nutshell, on the
synthetic functions with linearly-dependent shared vari-
ables, tree—-nonlinear converges slower than the lin-
ear version tree, which might be due to the fact that
c is of higher dimensionality. Moreover, in presence of
quadratically-dependent shared variables, we observe that
tree fails to model adequately the non-linearities, while
tree-nonlinear, as expected, can. As for the MLP
task, we notice that the non-linear extension of t ree tends
to perform worse than its linear counterpart.

5. Concluding Remarks

The black-box functions typically encountered in machine
learning rely on incremental learning procedures, such as
the application of (stochastic) gradient descent over sev-
eral epochs. A recent line of work has been focusing on
leveraging this property to speed up Bayesian optimiza-
tion (Swersky et al., 2013; 2014b; Domhan et al., 2014;
Li et al., 2016; Klein et al., 2016). In particular, Li et al.
(2016) and Klein et al. (2016) have reported state-of-the-art
results with methods based respectively on bandits and GPs,
exploiting a dynamic subsampling of the training sets.

The goal of our work is orthogonal to this idea and consists
instead in efficiently encoding conditional relationships with
GPs. We next outline ways of combining our work with the
aforementioned subsampling idea:

Combination with Klein et al. (2016): The proposal of
Klein et al. (2016) uses some contextual variable (also re-
ferred to as environmental variable) to encode the subsam-
pling rate of the training set. Let us denote it by 5 € [0, 1].
Klein et al. (2016) define the following joint kernel:

IC((X7 B)v (X/a 5/)) = ’CO(Xa X/) : ’Ccomexl(ﬂa 5/)

The optimization is then driven by a cost-normalized acqui-
sition function maxg: x a(x, 8 = 1|D,,) /cost(x, 8') where
both x and /3 are sought to perform well on the final task of
interest where no subsampling is applied (i.e., 8 = 1).

Looking at our case, we could easily replace our kernel /C,,
by ICP((Xa 6); (X/7 61)) £ KP(X, Xl) : Kcontext(ﬁv /8/) To ap-
ply the two-step procedure, we could normalize (6) by a cost
following a separate model (1) where the contextual vari-
able 3 would be a shared variables at the root. Formally, we
could consider a joint path/subsampling selection criterion:

E{[ymin —bp —2p(8 =1)"¢]4 }
E{Zp(ﬁl)—rccost} ’

where z,,(3) refers to the feature representation of the path
p with context variable f3.

(p*,B*) € argmax
pEP.B'€[0,1]

Combination with Li et al. (2016): The approach of Li
et al. (2016) is based on successive halving procedures
where a pool containing initially many models is progres-
sively refined and trimmed. The output of their theoretically-
justifed algorithm, named hyperband, can be seen as
triplets H,, £ {(xs, i, Bi) Y1, representing all the tested
configurations x; along with their corresponding evaluations
y; and subsampling rates /3;.

A natural approach to leverage hyperband is therefore
to use H,, to warm-start our context-aware extension with
kernel Iap while fixing 5 = 1. In other words, our approach
would be used to refine the smart and computationally-
efficient initialization provided by hyperband.
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