
Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Simultaneous Learning of Trees and Representations for Extreme Classification
with Application to Language Modeling

(Supplementary material)

9. Geometric interpretation of probabilities p(n)
j and p

(n)
j|i

K1

K2

K3

K4

100

100
70

100

100
70

70

70

100

100

100

100

h Discrete:
p

(n)
1 = 6

12 = 0.5

p
(n)
1|1 = 3

3 = 1, p
(n)
1|2 = 3

3 = 1, p
(n)
1|3 = 0

3 = 0, p
(n)
1|4 = 0

3 = 0

Continuous:
p

(n)
1 = 1

12 (σ(100) + σ(70) + . . .+ σ(−70) + σ(−100)) ≈ 0.5

p
(n)
1|1 = 1

3 (σ(100) + σ(70) + σ(100)) ≈ 1

p
(n)
1|2 = 1

3 (σ(100) + σ(70) + σ(100)) ≈ 1

p
(n)
1|3 = 1

3 (σ(−100) + σ(−70) + σ(−100)) ≈ 0

p
(n)
1|4 = 1

3 (σ(−100) + σ(−70) + σ(−100)) ≈ 0

Figure 3. The comparison of discrete and continuous definitions of probabilities p(n)
j and p(n)

j|i on a simple example with K = 4 classes
and binary tree (M = 2). n is an exemplary node, e.g. root. σ denotes sigmoid function. Color circles denote data points.

Remark 3. One could define p(n)
j as the ratio of the number of examples that reach node n and are sent to its jth child

to the total the number of examples that reach node n and p(n)
j|i as the ratio of the number of examples that reach node n,

correspond to label i, and are sent to the jth child of node n to the total the number of examples that reach node n and
correspond to label i. We instead look at the continuous counter-parts of these discrete definitions as given by Equations 8
and 9 and illustrated in Figure 3 (note that continuous definitions have elegant geometric interpretation based on margins),
which simplifies the optimization problem.

10. Theoretical proofs
Proof of Lemma 1. Recall the form of the objective defined in 6:

Jn =
2

M

K∑
i=1

q
(n)
i

(M∑
j=1

|p(n)
j − p(n)

j|i |
)

=
2

M
Ei∼q(n)

[
fJn (i, p

(n)
·|· , q

(n))
]

Where:

fJn (i, p
(n)
·|· , q

(n)) =

M∑
j=1

∣∣∣p(n)
j − p(n)

j|i

∣∣∣ =

M∑
j=1

∣∣∣p(n)
j|i −

K∑
i′=1

q
(n)
i′ p

(n)
j|i′

∣∣∣
=

M∑
j=1

∣∣∣ K∑
i′=1

(1i=i′ − q(n)
i′)p

(n)
j|i′

∣∣∣

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Hence:
∂fJn (i, p

(n)
·|· , q

(n))

∂p
(n)
j|i

= (1− q(n)
i) sign(p

(n)
j|i − p

(n)
j)

And:

∂fJn (i, p
(n)
·|· , q

(n))

∂ log p
(n)
j|i

= (1− q(n)
i) sign(p

(n)
j|i − p

(n)
j)

∂p
(n)
j|i

∂ log p
(n)
j|i

= (1− q(n)
i) sign(p

(n)
j|i − p

(n)
j)p

(n)
j|i

By assigning each label j to a specific child i under the constraint that no child has more than L labels, we take a step in
the direction ∂E ∈ {0, 1}M×K , where:

∀i ∈ [1,K],
∑M
j=1 ∂Ej,i = 1

and
∀j ∈ [1,M],

∑K
i=1 ∂Ej,i ≤ L

Thus:

∂Jn

∂p
(n)
·|·

∂E =
2

M

Ei∼q(n)

[
fJn (i, p

(n)
·|· , q

(n))
]

∂p
(n)
·|·

∂E

=
2

M

K∑
i=1

q
(n)
i (1− q(n)

i)

M∑
j=1

(
sign(p

(n)
j|i − p

(n)
j)∂Ej,i

)
(13)

And:
∂Jn

∂ log p
(n)
·|·

∂E =
2

M

K∑
i=1

q
(n)
i (1− q(n)

i)

M∑
j=1

(
sign(p

(n)
j|i − p

(n)
j)p

(n)
j|i ∂Ej,i

)
(14)

If there exists such an assignment for which 13 is positive, then the greedy method proposed in 2 finds it. Indeed, suppose
that Algorithm 2 assigns label i to child j and i′ to j′. Suppose now that another assignment ∂E′ sends i to j′ and i to j′.
Then:

∂Jn

∂p
(n)
·|·

(
∂E − ∂E′

)
=
(∂Jn
∂p

(n)
j|i

+
∂Jn

∂p
(n)
j′|i′

)
−
(∂Jn

∂p
(n)
j|i′

+
∂Jn

∂p
(n)
j′|i

)
(15)

Since the algorithm assigns children by descending order of ∂Jn
∂p

(n)

j|i
until a child j is full, we have:

∂Jn

∂p
(n)
j|i

≥ ∂Jn

∂p
(n)
j|i′

and
∂Jn

∂p
(n)
′j|i′
≥ ∂Jn

∂p
(n)
j′|i

Hence:
∂Jn

∂p
(n)
·|·

(
∂E − ∂E′

)
≥ 0

Thus, the greedy algorithm finds the assignment that most increases Jn most under the children size constraints.

Moreover, ∂Jn
∂p

(n)

·|·
is always positive for L ≤M or L ≥ 2M(M − 2).

Proof of Lemma 2. Both Jn and JT are defined as the sum of non-negative values which gives the lower-bound. We next
derive the upper-bound on Jn. Recall:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i |p

(n)
j − p(n)

j|i | =
2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣∣
K∑
l=1

q
(n)
l p

(n)
j|l − p

(n)
j|i

∣∣∣∣∣

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

since p(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l . The objective Jn is maximized on the extremes of the [0, 1] interval. Thus, define the

following two sets of indices:

Oj = {i : i ∈ {1, 2, . . . ,K}, p(n)
j|i = 1} and Zj = {i : i ∈ {1, 2, . . . ,K}, p(n)

j|i = 0}.

We omit indexing these sets with n for the ease of notation. We continue as follows

Jn ≤ 2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

1−
∑
l∈Oj

q
(n)
l

+
∑
i∈Zj

q
(n)
i

∑
l∈Oj

q
(n)
l


=

4

M

M∑
j=1

∑
i∈Oj

q
(n)
i −

∑
i∈Oj

q
(n)
i

2


=
4

M

1−
M∑
j=1

∑
i∈Oj

q
(n)
i

2
 ,

where the last inequality is the consequence of the following:
∑M
j=1 p

(n)
j = 1 and p(n)

j =
∑K
l=1 q

(n)
l p

(n)
j|l =

∑
i∈Oj q

(n)
i ,

thus
∑M
j=1

∑
i∈Oj q

(n)
i = 1. Apllying Jensen’s ineqality to the last inequality obtained gives

Jn ≤ 4

M
− 4

 M∑
j=1

 1

M

∑
i∈Oj

q
(n)
i

2

=
4

M

(
1− 1

M

)
That ends the proof.

Proof of Lemma 3. We start from proving that if the split in node n is perfectly balanced, i.e. ∀j={1,2,...,M}p
(n)
j = 1

M , and

perfectly pure, i.e. ∀j={1,2,...,M}
i={1,2,...,K}

min(p
(n)
j|i , 1− p

(n)
j|i) = 0, then Jn admits the highest value Jn = 4

M

(
1− 1

M

)
. Since the

split is maximally balanced we write:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣ .
Since the split is maximally pure, each p(n)

j|i can only take value 0 or 1. As in the proof of previous lemma, define two sets
of indices:

Oj = {i : i ∈ {1, 2, . . . ,K}, p(n)
j|i = 1} and Zj = {i : i ∈ {1, 2, . . . ,K}, p(n)

j|i = 0}.

We omit indexing these sets with n for the ease of notation. Thus

Jn =
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

(
1− 1

M

)
+
∑
i∈Zj

q
(n)
i

1

M


=

2

M

M∑
j=1

∑
i∈Oj

q
(n)
i

(
1− 1

M

)
+

1

M

1−
∑
i∈Oj

q
(n)
i


=

2

M

(
1− 2

M

) M∑
j=1

∑
i∈Oj

q
(n)
i +

2

M

=
4

M

(
1− 1

M

)
,

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

where the last equality comes from the fact that
∑M
j=1 p

(n)
j = 1 and p

(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l =

∑
i∈Oj q

(n)
i , thus∑M

j=1

∑
i∈Oj q

(n)
i = 1.

Thus we are done with proving one induction direction. Next we prove that if Jn admits the highest value Jn =
4
M

(
1− 1

M

)
, then the split in node n is perfectly balanced, i.e. ∀j={1,2,...,M}p

(n)
j = 1

M , and perfectly pure, i.e.

∀j={1,2,...,M}
i={1,2,...,K}

min(p
(n)
j|i , 1− p

(n)
j|i) = 0.

Without loss of generality assume each q(n)
i ∈ (0, 1). The objective Jn is certainly maximized in the extremes of the

interval [0, 1], where each p(n)
j|i is either 0 or 1. Also, at maximum it cannot be that for any given j, all p(n)

j|i ’s are 0 or all

p
(n)
j|i ’s are 1. The function J(h) is differentiable in these extremes. Next, define three sets of indices:

Aj = {i :

K∑
l=1

q
(n)
i p

(n)
j|l ≥ p

(n)
j|i } and Bj = {i :

K∑
l=1

q
(n)
i p

(n)
j|l < p

(n)
j|i } and Cj = {i :

K∑
l=1

q
(n)
i p

(n)
j|l > p

(n)
j|i }.

We omit indexing these sets with n for the ease of notation. Objective Jn can then be re-written as

Jn =
2

M

M∑
j=1

∑
i∈Aj

q
(n)
i

(
K∑
l=1

q
(n)
i p

(n)
j|l − p

(n)
j|i

)
+ 2

∑
i∈Bj

q
(n)
i

(
p

(n)
j|i −

K∑
l=1

q
(n)
i p

(n)
j|l

) ,

We next compute the derivatives of Jn with respect to p(n)
j|z , where z = {1, 2, . . . ,K}, everywhere where the function is

differentiable and obtain

∂Jn

∂p
(n)
j|z

=

{
2q

(n)
z (

∑
i∈Cj q

(n)
i − 1) if z ∈ Cj

2q
(n)
z (1−

∑
i∈Bj q

(n)
i) if z ∈ Bj

,

Note that in the extremes of the interval [0, 1] where Jn is maximized, it cannot be that
∑
i∈Cj q

(n)
i = 1 or

∑
i∈Bj q

(n)
i = 1

thus the gradient is non-zero. This fact and the fact that Jn is convex imply that Jn can only be maximized at the extremes
of the [0, 1] interval. Thus if Jn admits the highest value, then the node split is perfectly pure. We still need to show that
if Jn admits the highest value, then the node split is also perfectly balanced. We give a proof by contradiction, thus we
assume that at least for one value of j, p(n)

j 6= 1
M , or in other words if we decompose each p(n)

j as p(n)
j = 1

M + xj , then at
least for one value of j, xj 6= 0. Lets once again define two sets of indices (we omit indexing xj and these sets with n for
the ease of notation):

Oj = {i : i ∈ {1, 2, . . . ,K}, p(n)
j|i = 1} and Zj = {i : i ∈ {1, 2, . . . ,K}, p(n)

j|i = 0},

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

and recall that p(n)
j =

∑K
l=1 q

(n)
l p

(n)
j|l =

∑
i∈Oj q

(n)
i . We proceed as follows

4

M

(
1− 1

M

)
= Jn =

2

M

M∑
j=1

∑
i∈Oj

q
(n)
i (1− p(n)

j) +
∑
i∈Zj

q
(n)
i p

(n)
j


=

2

M

M∑
j=1

[
p

(n)
j (1− p(n)

j) + p
(n)
j (1− p(n)

j)
]

=
4

M

M∑
j=1

[
p

(n)
j − (p

(n)
j)2

]

=
4

M

1−
M∑
j=1

(p
(n)
j)2


=

4

M

1−
M∑
j=1

(
1

M
+ xj

)2


=
4

M

1− 1

M
− 2

M

M∑
j=1

xj −
M∑
j=1

x2
j


<

4

M

(
1− 1

M

)

Thus we obtain the contradiction which ends the proof.

Proof of Lemma 4. Since we node that the split is perfectly pure, then each p(n)
j|i is either 0 or 1. Thus we define two sets

Oj = {i : i ∈ {1, 2, . . . ,K}, p(n)
j|i = 1} and Zj = {i : i ∈ {1, 2, . . . ,K}, p(n)

j|i = 0}.

and thus

Jn =
2

M

M∑
j=1

∑
i∈Oj

q
(n)
i (1− pj) +

∑
i∈Zj

q
(n)
i pj


Note that pj =

∑
i∈Oj q

(n)
i . Then

Jn =
2

M

M∑
j=1

[pj (1− pj) + (1− pj)pj] =
4

M

M∑
j=1

pj (1− pj) =
4

M

1−
M∑
j=1

p2
j


and thus

M∑
j=1

p2
j = 1− MJn

4
. (16)

Lets express pj as pj = 1
M + εj , where εj ∈ [− 1

M , 1− 1
M]. Then

M∑
j=1

p2
j =

M∑
j=1

(
1

M
+ εj

)2

=
1

M
+

2

M

M∑
j=1

εj +

M∑
j=1

ε2j =
1

M
+

M∑
j=1

ε2j , (17)

since 2
M

∑M
j=1 εj = 0. Thus combining Equation 16 and 17

1

M
+

M∑
j=1

ε2j = 1− MJn
4

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

and thus
M∑
j=1

ε2j = 1− 1

M
− MJn

4
.

The last statement implies that

max
j=1,2,...,M

εj ≤
√

1− 1

M
− MJn

4
,

which is equivalent to

min
j=1,2,...,M

pj =
1

M
−max

j
εj ≥

1

M
−
√

1− 1

M
− MJn

4
=

1

M
−
√
M(J∗ − Jn)

2
.

Proof of Lemma 5. Since the split is perfectly balanced we have the following:

Jn =
2

M

M∑
j=1

K∑
i=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣ =
2

M

K∑
i=1

M∑
j=1

q
(n)
i

∣∣∣∣ 1

M
− p(n)

j|i

∣∣∣∣
Define two sets

Ai = {j : j ∈ {1, 2, . . . ,K}, p(n)
j|i <

1

M
} and Bi = {j : j ∈ {1, 2, . . . ,K}, p(n)

j|i ≥
1

M
}.

Then

Jn =
2

M

K∑
i=1

∑
j∈Ai

q
(n)
i

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

q
(n)
i

(
p

(n)
j|i −

1

M

)
=

2

M

K∑
i=1

q
(n)
i

∑
j∈Ai

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

(
p

(n)
j|i −

1

M

)
=

2

M

K∑
i=1

q
(n)
i

∑
j∈Ai

(
1

M
− p(n)

j|i

)
+
∑
j∈Bi

(
(1− 1

M
)− (1− p(n)

j|i)

)
Recall that the optimal value of Jn is:

J∗ =
4

M

(
1− 1

M

)
=

2

M

N∑
i=1

q
(n)
i

[
(M − 1)

1

M
+

(
1− 1

M

)]
=

2

M

N∑
i=1

q
(n)
i

 ∑
j∈Ai∪Bi

1

M

− 1

M
+

(
1− 1

M

)
Note Ai can have at most M − 1 elements. Furthermore, ∀j ∈ Ai, p(n)

j|i < 1− p(n)
j|i . Then, we have:

J∗ − Jn =
2

M

K∑
i=1

q
(n)
i

∑
j∈Ai

p
(n)
j|i +

∑
j∈Bi

(
(1− p(n)

j|i) +
1

M
− (1− 1

M
)

)
− 1

M
+

(
1− 1

M

)
Hence, since Bi has at least one element:

J∗ − Jn ≥ 2

M

K∑
i=1

q
(n)
i

∑
j∈Ai

p
(n)
j|i +

∑
j∈Bi

(
1− p(n)

j|i

)
≥ 2

M

K∑
i=1

q
(n)
i

 M∑
j=1

min(p
(n)
j|i , 1− p

(n)
j|i)


≥ 2α

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Proof of Theorem 1. Let the weight of the tree leaf be defined as the probability that a randomly chosen data point x drawn
from some fixed target distribution P reaches this leaf. Suppose at time step t, n is the heaviest leaf and has weight w.
Consider splitting this leaf to M children n1, n2, . . . , nM . Let the weight of the jth child be denoted as wj . Also for the
ease of notation let pj refer to p(n)

j (recall that
∑m
j=1 pj = 1) and pj|i refer to p(n)

j|i , and furthermore let qi be the shorthand

for q(n)
i . Recall that pj =

∑K
i=1 qipj|i and

∑K
i=1 qi = 1. Notice that for any j = {1, 2, . . . ,M}, wj = wpj . Let q

be the k-element vector with ith entry equal to qi. Define the following function: G̃e(q) =
∑K
i=1 qi ln

(
1
qi

)
. Recall the

expression for the entropy of tree leaves: Ge =
∑
l∈L wl

∑K
i=1 q

(l)
i ln

(
1

q
(l)
i

)
, where L is a set of all tree leaves. Before

the split the contribution of node n to Ge was equal to wG̃e(q). Note that for any j = {1, 2, . . . ,M}, q(nj)
i =

qipj|i
pj

is

the probability that a randomly chosen x drawn from P has label i given that x reaches node nj . For brevity, let qn
j

i be
denoted as qj,i. Let qj be the k-element vector with ith entry equal to qj,i. Notice that q =

∑M
j=1 pjqj . After the split

the contribution of the same, now internal, node n changes to w
∑M
j=1 pjG̃

e(qj). We denote the difference between the
contribution of node n to the value of the entropy-based objectives in times t and t+ 1 as

∆e
t := Get −Get+1 = w

G̃e(q)−
M∑
j=1

pjG̃
e(qj)

 . (18)

The entropy function G̃e is strongly concave with respect to l1-norm with modulus 1, thus we extend the inequality given
by Equation 7 in (Choromanska et al., 2016) by applying Theorem 5.2. from (Azocar et al., 2011) and obtain the following
bound

∆e
t = w

G̃e(q)−
M∑
j=1

pjG̃
e(qj)


≥ w

1

2

M∑
j=1

pj‖qj −
M∑
l=1

plql‖21

= w
1

2

M∑
j=1

pj

(
K∑
i=1

∣∣∣∣∣qipj|ipj
−

M∑
l=1

pl
qipl|i

pl

∣∣∣∣∣
)2

= w
1

2

M∑
j=1

pj

(
K∑
i=1

qi

∣∣∣∣∣pj|ipj −
M∑
l=1

pl|i

∣∣∣∣∣
)2

= w
1

2

M∑
j=1

pj

(
K∑
i=1

qi

∣∣∣∣pj|ipj − 1

∣∣∣∣
)2

= w
1

2

M∑
j=1

1

pj

(
K∑
i=1

qi
∣∣pj|i − pj∣∣

)2

.

Before proceeding, we will bound each pj . Note that by the Weak Hypothesis Assumption we have

γ ∈
[
M

2
min

j=1,2,...,M
pj , 1−

M

2
min

j=1,2,...,M
pj

]
,

thus
min

j=1,2,...,M
pj ≥

2γ

M
,

thus all pjs are such that pj ≥ 2γ
M . Thus

max
j=1,2,...,M

pj ≤ 1− 2γ

M
(M − 1) =

M(1− 2γ) + 2γ

M
.

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Thus all pjs are such that pj ≤ M(1−2γ)+2γ
M .

∆e
t ≥ w

M2

2[(M(1− 2γ) + 2γ]

M∑
j=1

1

M

(
K∑
i=1

qi
∣∣pj|i − pj∣∣

)2

≥ w
M2

2[(M(1− 2γ) + 2γ]

 M∑
j=1

1

M

K∑
i=1

qi
∣∣pj|i − pj∣∣

2

= w
M2

8[(M(1− 2γ) + 2γ]

 2

M

M∑
j=1

K∑
i=1

qi
∣∣pj|i − pj∣∣

2

=
M2

[(M(1− 2γ) + 2γ]

wJ2
n

8
,

where the last inequality is a consequence of Jensen’s inequality. w can further be lower-bounded by noticing the following

Get =
∑
l∈L

wl

K∑
i=1

q
(l)
i ln

(
1

q
(l)
i

)
≤
∑
l∈L

wl lnK ≤ w lnK
∑
l∈L

1 = [t(M − 1) + 1]w lnK ≤ (t+ 1)(M − 1)w lnK,

where the first inequality results from the fact that uniform distribution maximizes the entropy.

This gives the lower-bound on ∆e
t of the following form:

∆e
t ≥

M2GetJ
2
n

8(t+ 1)[M(1− 2γ) + 2γ](M − 1) lnK
,

and by using Weak Hypothesis Assumption we get

∆e
t ≥≥

M2Getγ
2

8(t+ 1)[M(1− 2γ) + 2γ](M − 1) lnK

Following the recursion of the proof in Section 3.2 in (Choromanska et al., 2016) (note that in our case Ge1 ≤ 2(M −
1) lnK), we obtain that under the Weak Hypothesis Assumption, for any κ ∈ [0, 2(M − 1) lnK], to obtain Get ≤ κ it
suffices to make

t ≥
(

2(M − 1) lnK

κ

) 16[M(1−2γ)+2γ](M−1) lnK

M2 log2 eγ
2

splits. We next proceed to directly proving the error bound. Denote w(l) to be the probability that a data point x reached
leaf l. Recall that q(l)

i is the probability that the data point x corresponds to label i given that x reached l, i.e. q(l)
i =

P (y(x) = i|x reached l). Let the label assigned to the leaf be the majority label and thus lets assume that the leaf is
assigned to label i if and only if the following is true ∀z={1,2,...,k}

z 6=i
q

(l)
i ≥ q

(l)
z . Therefore we can write that

ε(T) =

K∑
i=1

P (t(x) = i, y(x) 6= i) (19)

=
∑
l∈L

w(l)

K∑
i=1

P (t(x) = i, y(x) 6= i|x reached l)

=
∑
l∈L

w(l)

K∑
i=1

P (y(x) 6= i|t(x) = i, x reached l)P (t(x) = i|x reached l)

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K))

K∑
i=1

P (t(x) = i|x reached l)

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K)) (20)

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Consider again the Shannon entropy G(T) of the leaves of tree T that is defined as

Ge(T) =
∑
l∈L

w(l)

K∑
i=1

q
(l)
i log2

1

q
(l)
i

. (21)

Let il = arg maxi={1,2,...,K} q
(l)
i . Note that

Ge(T) =
∑
l∈L

w(l)

K∑
i=1

q
(l)
i log2

1

q
(l)
i

≥
∑
l∈L

w(l)

K∑
i=1
i 6=il

q
(l)
i log2

1

q
(l)
i

≥
∑
l∈L

w(l)

K∑
i=1
i 6=il

q
(l)
i

=
∑
l∈L

w(l)(1−max(q
(l)
1 , q

(l)
2 , . . . , q

(l)
K))

= ε(T), (22)

where the last inequality comes from the fact that ∀i={1,2,...,K}
i6=il

q
(l)
i ≤ 0.5 and thus ∀i={1,2,...,K}

i6=il

1

q
(l)
i

∈ [2; +∞] and

consequently ∀i={1,2,...,K}
i 6=il

log2
1

q
(l)
i

∈ [1; +∞].

We next use the proof of Theorem 6 in (Choromanska et al., 2016). The proof modifies only slightly for our purposes and
thus we only list these modifications below.

• Since we define the Shannon entropy through logarithm with base 2 instead of the natural logarithm, the right hand
side of inequality (2.6) in (Shalev-Shwartz, 2012) should have an additional multiplicative factor equal to 1

ln 2 and
thus the right-hand side of the inequality stated in Lemma 14 has to have the same multiplicative factor.

• For the same reason as above, the right-hand side of the inequality in Lemma 9 should take logarithm with base 2 of
k instead of the natural logarithm of k.

Propagating these changes in the proof of Theorem 6 results in the statement of Theorem 1.

Proof of Corollary 1. Note that the lower-bound on ∆e
t from the previous prove could be made tighter as follows:

∆e
t ≥ w

1

2

M∑
j=1

1

pj

(
K∑
i=1

qi
∣∣pj|i − pj∣∣

)2

= w
M2

2

M∑
j=1

1

M

(
K∑
i=1

qi
∣∣pj|i − pj∣∣

)2

≥ w
M2

2

 M∑
j=1

1

M

K∑
i=1

qi
∣∣pj|i − pj∣∣

2

= w
M2

8

 2

M

M∑
j=1

K∑
i=1

qi
∣∣pj|i − pj∣∣

2

=
M2wJ2

n

8
,

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

d Model Arity Prec Rec Train Test

50

TagSpace - 30.1 - 3h8 6h

FastText 2 27.2 4.17 8m 1m

Huffman Tree 5 28.3 4.33 8m 1m
20 29.9 4.58 10m 3m

Learned Tree 5 31.6 4.85 18m 1m
20 32.1 4.92 30m 3m

200

TagSpace - 35.6 - 5h32 15h

FastText 2 35.2 5.4 12m 1m

Huffman Tree 5 35.8 5.5 13m 2m
20 36.4 5.59 18m 3m

Learned Tree 5 36.1 5.53 35m 3m
20 36.6 5.61 45m 8m

Table 3. Classification performance on the YFCC100M dataset.

Model perp. train ms/batch test ms/batch

Random Tree 172 5.1 2.7

Flat soft-max 151 11.5 5.1

Learned Tree 159 6.3 2.6

Table 4. Comparison of a flat soft-max to a 25-ary hierarchical soft-max (learned, random and heuristic-based tree).

where the first inequality was taken from the proof of Theorem 1 and the following equality follows from the fact that each
node is balanced. By next following exactly the same steps as shown in the proof of Theorem 1 we obtain the corollary.

11. Experimental Setting
11.1. Classification

For the YFCC100M experiments, we learned our models with SGD with a linearly decreasing rate for five epochs. We run
a hyper-parameter search on the learning rate (in {0.01, 0.02, 0.05, 0.1, 0.25, 0.5}). In the learned tree settings, the learning
rate stays constant for the first half of training, during which the AssignLabels() routine is called 50 times. We run the
experiments in a Hogwild data-parallel setting using 12 threads on an Intel Xeon E5-2690v4 2.6GHz CPU. At prediction
time, we perform a truncated depth first search to find the most likely label (using the same idea as in a branch-and-bound
algorithm: if a node score is less than that of the best current label, then all of its descendants are out).

11.2. Density Estimation

In our experiments, we use a context window size of 4. We optimize the objectives with Adagrad, run a hyper-parameter
search on the batch size (in {32, 64, 128}) and learning rate (in {0.01, 0.02, 0.05, 0.1, 0.25, 0.5}). The hidden represen-
tation dimension is 200. In the learned tree settings, the AssignLabels() routine is called 50 times per epoch. We used a
12GB NVIDIA GeForce GTX TITAN GPU and all tree-based models are 65-ary for the Gutenberg data and 25-ary for
Pen TreeBank. Table 4 provides the perplexity and speed results on the PTB text.

For the Cluster Tree, we learn dimension 50 word embeddings with FastTree for 5 epochs using a hierarchical softmax loss,
then obtain 45 = 652 centroids using the ScikitLearn implementation of MiniBatchKmeans, and greedily assign words to
clusters until full (when a cluster has 65 words).

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

Algorithm 3 Label Assignment Algorithm under Depth Constraint
Input Node statistics, max depth D

Paths from root to labels: P = (ci)Ki=1

node ID n and depth d
List of labels currently reaching the node

Ouput Updated paths
Lists of labels now assigned to each of n’s
children under depth constraints

procedure AssignLabels (labels, n, d)
// first, compute p(n)

j and p(n)
j|i . � is the element-wise

// multiplication
pavg0 ← 0
count← 0
for i in labels do

pavg0 ← pavg0 + SumProbasn,i
count← count + Countsn,i
pavgi ← SumProbasn,i/Countsn,i

pavg0 ← pavg0 /count

// then, assign each label to a child of n under depth
// constraints
unassigned← labels
full← ∅
for j = 1 to M do

assignedj ← ∅
while unassigned 6= ∅ do//

∂Jn
∂p

(n)

j|i
is given in Equation 10

(i∗, j∗)← argmax
i∈unassigned,j 6∈full

(
∂Jn
∂p

(n)

j|i

)
ci
∗

d ← (n, j∗)
assignedj∗ ← assignedj∗ ∪ {i∗}
unassigned← unassigned \ {i∗}
if |assignedj∗ | = MD−d then

full← full ∪ {j∗}
for j = 1 to M do

AssignLabels (assignedj , childn,j , d+ 1)
return assigned

Leaf 229 Leaf 230 Leaf 300 Leaf 231
suggested vegas payments operates
watched & buy-outs includes
created calif. swings intends
violated park gains makes
introduced n.j. taxes means
discovered conn. operations helps
carried pa. profits seeks
described pa. penalties reduces
accepted ii relations continues
listed d. liabilities fails
.

Table 5. Example of labels reaching leaf nodes in the final tree. We can identify a leaf for 3rd person verbs, one for past participates, one
for plural nouns, and one (loosely) for places.

