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Abstract

We propose a hierarchical generative model that
captures the self-similar structure of image re-
gions as well as how this structure is shared
across image collections. Our model is based on
a novel, variational interpretation of the popular
expected patch log-likelihood (EPLL) method as
a model for randomly positioned grids of image
patches. While previous EPLL methods modeled
image patches with finite Gaussian mixtures, we
use nonparametric Dirichlet process (DP) mix-
tures to create models whose complexity grows
as additional images are observed. An exten-
sion based on the hierarchical DP then captures
repetitive and self-similar structure via image-
specific variations in cluster frequencies. We de-
rive a structured variational inference algorithm
that adaptively creates new patch clusters to more
accurately model novel image textures. Our de-
noising performance on standard benchmarks is
superior to EPLL and comparable to the state-of-
the-art, and we provide novel statistical justifi-
cations for common image processing heuristics.
We also show accurate image inpainting results.

1. Introduction

Models of the statistical structure of natural images play a
key role in computer vision and image processing (Srivas-
tava et al., 2003). Due to the high dimensionality of the im-
ages captured by modern cameras, a rich research literature
instead models the statistics of small image patches. For
example, the K-SVD method (Elad & Aharon, 2006) gen-
eralizes K-means clustering to learn a dictionary for sparse
coding of image patches. The state-of-the-art learned si-
multaneous sparse coding (LSSC, Mairal et al. (2009))
and block matching and 3D filtering (BM3D, Dabov et al.
(2008)) methods integrate clustering, dictionary learning,

"Brown University, Providence, RI, USA. *Harvard Univer-
sity, Cambridge, MA, USA. 3 University of California, Irvine, CA,
USA. Correspondence to: Geng Ji <gji@cs.brown.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

and denoising to extract information directly from a single
corrupted image. Alternatively, the accurate expected patch
log-likelihood (EPLL, Zoran & Weiss (2011)) method
maximizes the log-likelihood of overlapping image patches
under a finite Gaussian mixture model learned from uncor-
rupted natural images.

We show that with minor modifications, the objective func-
tion underlying EPLL is equivalent to a variational log-
likelihood bound for a novel generative model of whole
images. Our model coherently captures overlapping image
patches via a randomly positioned spatial grid. By deriv-
ing a rigorous variational bound, we then develop improved
nonparametric models of natural image statistics using the
hierarchical Dirichlet process (HDP, Teh et al. (2006)). In
particular, DP mixtures allow an appropriate model com-
plexity to be inferred from data, while the hierarchical DP
captures the patch self-similarities and repetitions that are
ubiquitous in natural images (Jégou et al., 2009). Unlike
previous whole-image generative models such as fields of
experts (FoE, Roth & Black (2005)), which uses a single
set of Markov random field parameters to model all images,
our HDP model learns image-specific clusters to accurately
model distinctive textures. Coupled with a scalable struc-
tured variational inference algorithm, we improve on the
excellent denoising accuracy of the LSSC and BM3D al-
gorithms, while providing a Bayesian nonparametric model
with a broader range of potential applications.

2. Expected Patch Log-likelihood

Our approach is derived from models of small (8 x 8 pixel)
patches of a large natural image x. Let P; be a binary indi-
cator matrix that extracts the G = 82 pixels P,z € RY in
patch ¢. To reduce sensitivity to lighting variations, a con-
trast normalizing transform is applied to remove the mean
(or “DC component”) of the pixel intensities in each patch:

v; = Pix — 517" Pjx = BPx, (1)

for a “zero-centering” matrix B. Zoran & Weiss (2012)
show that a finite mixture of X zero-mean Gaussians,

p(vi) = Zszl 7 Norm(v; | O,Agl), 2)

is superior to many classic image models in terms of pre-
dictive likelihood and patch denoising performance.
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The widely-used EPLL image restoration framework mea-
sures the quality of a reconstruction by the expected patch
log-likelihood, “assuming a patch location in the image
is chosen uniformly at random” (Zoran & Weiss, 2011).
Given a corrupted image y, EPLL estimates a clean image
z by minimizing the objective:

LA
min Zlle — | - X logp(BPa). ()
Here, the sum ranges over all overlapping, completely vis-

ible (uncropped) image patches. The constant ) is deter-
mined by the noise level of the corrupted image y.

Direct optimization of Eq. (3) is challenging, so inspired by
half quadratic splitting (Geman & Yang, 1995), the EPLL
objective can be reformulated as follows:

LA 2 R _ 2 _
min §||x—y|\ —|—Z§||Pix—vi|| —log p(Bv;). (4)

Each patch ¢ is allocated an auxiliary variable v;, which
(unlike the v; variable in Eq. (1)) includes an estimate of
the mean patch intensity. This augmented objective leads
to closed-form coordinate descent updates.

Gating. Assign each patch 7 to some cluster z;:
2 = argmax my Norm(BP;z | 0,A; " + kI).  (5)

Filtering. Given an approximate clean image = and clus-
ter assignments z, denoise patches via least squares:

T = (1 + m_lBTAZiB) P 6)

Mixing. Given a fixed set of auxiliary patches v and the
noisy image y, a denoised image z is estimated as

€= ()J+ RZPZ‘TP,)?l ()\y + HZPLT@). 7

Annealing. Optimal solutions of Eq. (4) approach those
of the EPLL objective in Eq. (3) as K — oo. EPLL denois-
ing algorithms slowly increase x via an annealing schedule
that must be tuned for best performance.

Justification? Empirically, the intuitive EPLL objective
is much more effective than baselines which use only a sub-
set of non-overlapping patches, or average independently
denoised patches (Zoran & Weiss, 2011). But why should
we optimize the expected log-likelihood, instead of the ex-
pected likelihood or another function of patch-specific like-
lihoods? And how can the EPLL heuristic be generalized
to capture more complex statistics of natural images? This
paper answers these questions by linking EPLL to a rigor-
ous, nonparametric generative model of whole images.

3. Mixture Models for Grids of Image Patches

We now develop the HDP-Grid generative model summa-
rized in Fig. 1, which uses randomly placed patch grids
to formalize the EPLL objective, and hierarchical DP mix-
tures to capture image patch self-similarity.
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Figure 1. Directed graphical model for our HDP-Grid model of
M natural images. Clean image x,, is generated via a randomly
placed grid wy, of patches v,, generated by a hierarchical Gaus-
sian mixture model. We observe corrupted images Y, .
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3.1. Hierarchical Dirichlet Process Mixtures

The hierarchical Dirichlet process (HDP, Teh et al. (2006))
is a Bayesian nonparametric prior used to cluster groups of
related data; we model natural images as groups of patches.
The HDP shares visual structure, such as patches of grass
or bricks, by sharing a common set of clusters (called ropics
in applications to text data) across images. In addition, the
HDP models image-specific variability by allowing each
image to use this shared set of clusters with unique fre-
quencies; grass might be abundant in one image but absent
in another. Via the HDP, we can learn the proper number
of hidden clusters from data, and discover new clusters as
we collect new images with novel visual textures.

The HDP uses a stick-breaking construction to generate a
corpus-wide vector mg = [mo1, T02, - - -, MOk, - - -] Of fre-
quencies for a countably infinite set of visual clusters:

Br ~Beta(1,7), mox(8) £ Bi [Le=1 (1= Bo)- )
The HDP allocates each image m its own cluster frequen-
cies m,,, where the vector my determines the mean of a DP
prior on the frequencies of shared clusters:

Tm ™~ DP(O”TO)7 ]E[Trmk] = Tok- (9)
When the concentration parameter « < 1, we capture
the “burstiness” and self-similarity of natural image re-

gions (Jégou et al., 2009) by placing most probability mass
in 7, on a sparse subset of global clusters.

3.2. Image Generation via Random Grids

We sample pixels in image m via a randomly placed grid of
patches. When each patch has G pixels, Fig. 2 shows there
are exactly GG grid alignments for an image of arbitrary size.
The alignment w,,, € {1,..., G} has a uniform prior:

wy, ~ Cat(1/G,...,1/G). (10)
Modeling multiple overlapping grids is crucial to capture

real image statistics. As the true grid alignment for each
image is uncertain, posterior inference will favor images
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Figure 2. Generation of a complete image via a randomly posi-
tioned grid of non-overlapping patches. Top left: A 5 x 5 pixel
image, where each pixel is identified by a distinct colored sym-
bol. Top right: An infinite 2D grid of pixels, divided into 2 x 2
patches. Bottom: The four possible ways a 5 X 5 image may be
generated from 2 x 2 patches. Shaded pixels are clipped by the
image boundary (see Sec. 3.4).

that are likely under all possible w,,,. Models based on a
single, fixed grid produce severe artifacts at patch bound-
aries, as shown in Fig. 2 of Zoran & Weiss (2011).

3.3. Patch Generation via Gaussian Mixtures

Gaussian mixtures provide excellent density models for
natural image patches (Zoran & Weiss, 2012). We as-
sociate clusters with zero-mean, full-covariance Gaussian
distributions on patches with G pixels. We parameterize
cluster k by a precision (inverse covariance) matrix Ay ~
Wish(v, W), whose conjugate Wishart prior has v degrees
of freedom and scale matrix W. Given that w,,, = g, each
of the IV,,,4 patches vy, 4y, in grid g is sampled from an infi-
nite mixture with image-specific cluster frequencies:

(oo}
P(Vmgn|wm = g) = Zﬂ-mkNorm(vmgMO,A,:l). (11
k=1
Let Zmgn | wm = g ~ Cat(m,,) denote the cluster that
generates patch n. To account for the contrast normaliza-
tion of Eq. (1), the intensities in patch n are shifted by an
independent, scalar “DC offset” ,gr,:

P(Umgn | W = g) = Norm(tgn | 7, 57). (12)

Finally, if w,, # g so that grid g is unobserved, we sam-
ple (Zmgn, Umgns Umgn) from some reference distribution

independent of the HDP mixture model parameters.

3.4. From Patches to Corrupted Images

Given patches v,,, with offsets u,,, generated via grid
wy, = g, we sample a whole “clean image” x,,, as

Ning
Norm ([ S " PLotmgn:0°1), (13)

where Uy, g5, £ 'mgnVUmgn +Umgn. Binary indicator matri-
ces Prngn., as in Sec. 2, stitch together patches in the chosen
grid g. Image x,, is then generated by adding independent
Gaussian noise with small variance §2. Most patches in the
chosen grid will be fully observed in x,,, but as illustrated
in Fig. 2, some may be clipped by the image boundary. In-
dicator matrices Ciy, g, are defined so CrgnUmgn + Umgn
is a vector containing the observed pixels from patch n.

For image restoration tasks, the observed image y,, is a
corrupted version of some clean image x.,, that we would
like to estimate. Models of natural image statistics are com-
monly validated on the problem of image denoising, where
Ty, is polluted by additive white Gaussian noise:

P(Ym | Tm) = Norm(y,, | :cm,azl). (14)

The variance o2 > §? indicates the noise level. We
also validate our model on image inpainting prob-
lems (Bertalmio et al., 2000), where some pixels are ob-
served without noise but others are completely missing. By
replacing Eq. (14) with other linear likelihood models, our
novel generative model for natural images may be easily
applied to other tasks including image deblurring (Zoran
& Weiss, 2011), image super resolution (Yang & Huang,
2010), and color image demosaicing (Mairal et al., 2009).

4. Variational Inference

We now develop scalable learning algorithms for our non-
parametric, grid-based image model. We first examine a
baseline DP Grid model in which the same cluster frequen-
cies 7o are shared by all images. Our full HDP Grid model
then learns image-specific cluster frequencies 7,,, and in-
stantiates new clusters to model unique visual textures.

4.1. DP Grid: Variational Inference

Our goal is to infer the DP Grid model parameters that
best explain observed images which may be clean (x.,)
or corrupted by noise (y,,). The DP Grid model uses
the same cluster probabilities 7y, generated from stick-
breaking weights 3 as in Eq. (8), for all images.

Learning from clean images. Given a training set D of
uncorrupted images 1, ..., we estimate the posterior
distribution p(3, A, w, UP¥h | ) for our global mixture
model parameters 3 and A, grid assignment indicators w,,,,

and patch-level latent variables UP2'" = {u,,, v, Zm }-
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Exact posterior inference is intractable, so we instead find
an approximate posterior ¢(-) = q(3, A, w, UP¥") mini-
mizing the KL divergence (Wainwright & Jordan, 2008)
from the true posterior p(-|z). Equivalently, our variational
method maximizes the following objective L:

p (33 ) )
q(")
We constrain the solution of our optimization to come from
a tractable family of structured mean-field distributions Q,
parameterized by free parameters. Unlike naive mean-field
methods which assume complete posterior independence,
our structured mean-field approximation is more accurate
and includes dependencies between some latent variables:

=[] a(An)g H q(w
k=1

m=1

max L(q, x
max L{q, )

=max E, {log } <logp(xz). (15)
q€eQ

\I/patch |wm)

As in Hughes & Sudderth (2013), this approximate poste-
rior family contains infinitely many clusters, just like the
true posterior. Rather than applying a fixed truncation to
the stick-breaking prior (Blei & Jordan, 2006), we dynam-
ically truncate the patch assignment distributions ¢(z) to
only use the first K clusters to explain the M observed im-
ages. Clusters with indices k > K then have factors ¢(Ay)
set to the prior, and need not be explicitly represented.

Global mixture model. The global cluster weights 3
and precision matrices A have standard exponential fam-
ily forms (free parameters are marked by hats):

q(Ar) = Wish(2x, W), q(Br)

Here pi, = E4[Bx], and wy, controls the variance of g(5 ).

Image-specific alignment. For natural images, all grid
alignments are typically of similar quality, so we fix a uni-
form alignment posterior g(w,,) = Cat(é, ce é) This
simplifies many updates while still avoiding artifacts that
would arise from a single, non-overlapping patch grid.

Patch-specific factors. The patch-specific variables
yratch have structured posteriors, conditioned on the value
of the grid indicator w,,, for the current image:

q(Zmgn | wm = g) = Categorical (Fgn1, -, Fmgnk ),

= Norm (ﬁmgn, qu

q(umgn ‘ W, = g) mgn)?

Q(Umgn | Wm = G,2mgn = k) = Norm({)mgnka dgfn,gnk)'

Below, we let E,[-] denote the conditional expectation with
respect to the variational distribution g, given w,,.

Learning. Given clean images x, we perform coodinate
ascent on the objective L, alternatively updating one factor
among q(3)q(A)g(w)q(PPah), Most updates have closed
forms due to the exponential families defining Q (see sup-
plement). As one intuitive example, consider the update for

= Beta(pr@wk, (1 — pr)wk)-

the cluster precision matrix posterior ¢(Ag |7, Wi):
M G Nmg

Dy = v+ Nk, Ne=> 3" fmgne,  (16)

m=1 g=1 n=1
Nmg

S 3

m=1g=1 n=1

]1;c zmgn)vmgnvﬁgn] .

Sk
Statistic Vi () counts patches assigned to cluster &, while
Sk(, 0, gf)“) aggregates second moments. These updates
follow the standard form of prior parameter plus expected
sufficient statistic, except the statistics are averaged (not
simply added) across the G grid alignments.

4.2. Image Denoising and Connections to EPLL

Given a corrupted image y,,, we seek to compute the pos-
terior p(z,, | Ym, D), where we condition on the training
set D. Our variational posterior family ) now includes an
additional factor for the unobserved, “clean” image x,,:

(@) = Norm(zy, | im,qgfn). (17)
The variational inference objective becomes

p(D,yrmﬂﬁm,')
E, |log DY) o6 (g, D), (18
gy B s ) < et 09
and the coordinate ascent update for ¢(x.,, ) equals
A x m hm e 6202
B = 7, ( 52) =l (9)

The updated covariance is diagonal, improving computa-
tional efficiency. The mean depends on the average image
vector across all patches in all grids, denoted by A,

G qu

g=1n=1
Note that the update for ,, in Eq. (19) is similar to the
EPLL update in Eq. (7), except that some terms involving
projection matrices become constants because we account
for partially observed patches. Modeling partial patches is
necessary to produce a valid likelihood bound in Eq. (18).

In fact, as we show below all three terms in the EPLL ob-
jective in Eq. (4) are very similar to our proposed mini-
mization objective function —L, up to a scale factor of G.
Of course, a key difference is that our objective seeks full
posteriors rather than point estimates, and enables the HDP
model of multiple images detailed in Sec. 4.3.

EPLL Term 1. When we set A =
EPLL objective in Eq. (4) becomes
G gm(e—y) (@ —y). 1)
Similarly, suppressing the subscript m denoting the image
for simplicity, E,[— log p(y|z)] in our —L simplifies as

sz E[(z — )T (x - y)). (22)

%, the first term of the
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EPLL Term 2. Taking the second term in Eq. (4) and
substituting kK = 1/52, we have:

75z 2i(Pix = v;)T (Piw — ;). (23)
The corresponding term E,[— log p(z|w, u,v)] in our ob-
jective —L can be written similarly up to a scaling by G

G Nq
11 - _ _
G52 Z Z E, [(Pgngc — vgn)T(Pgnm — Ugn)|. (24)
g=1ln=1
EPLL Term 3. The third EPLL term assumes zero-
centered patches Bv; are drawn from Gaussian mixtures:

— > log p(Bv; | mo, A). (25)
Similarly, in our minimization objective —£ we draw vgy,

from a DP mixture model. Explicitly including the cluster
assignment z,,,, E,[— log p(v, z|w)] equals

G Ng
1
=5 2= > Eallogp(vgn, zgn [ m0, )} (26)
g=1n=1
EPLL is similar, but maximizes assignments (Eq. (5))
rather than computing posterior assignment probabilities.

4.3. HDP Grid: Variational Inference

Image-specific frequencies. The DP model above, and
the parametric EPLL objective it generalizes, assume the
same cluster frequency vector my for each image m. Our
HDP Grid model allows image-specific frequencies 7, to
be learned from data, via the hierarchical regularization of
the HDP prior (Teh et al., 2006). Our approximate posterior
family © now has the following HDP-specific factors:
q(8) = [TpZ: Beta (Bk | prcow, (1 — pr)aw), (27)

Q([ﬂ'ml o TmK 7Tm>K]) = Dir(oml ce emKa 9m>K)-
This approximate posterior represents infinitely many clus-
ters via a finite partition of 7, into K + 1 terms: one for
each of the K active clusters, and a remainder term at index
>K that aggregates the mass of all inactive clusters. The
free parameter 6,,, is also a vector of size K + 1 whose last
entry represents all inactive clusters. We follow Hughes
et al. (2015) to obtain a closed-form update for ém, and
gradient-based updates for p, w; see the supplement for de-
tails. We highlight that the 0,0, update naturally includes
a é rescaling of count sufficient statistics as in Eq. (16).
Other factors remain unchanged from the DP Grid model.

Image-specific clusters. Due to the heavy-tailed distri-
bution of natural images (Ruderman, 1997), even with large
training sets, test images may still contain unique textural
patterns like the striped scarf in the Barbara image in Fig. 3.
Fortunately, our Bayesian nonparametric HDP Grid model
provides a coherent way to capture such patterns by ap-
pending K’ novel, image-specific clusters to the original
K clusters learned from training images. These novel clus-
ters lead to more accurate posterior approximations ¢ € Q
that better optimize our objective L.

We initialize inference by creating K’ = 100 image-
specific clusters with the k-means++ algorithm (Arthur
& Vassilvitskii, 2007), which minimizes the cost function

T A) = 3 S0, Le(=)D@] &), (28)
where the first sum is over the set of fully-observed patches
within the image. The function D is the Bregman di-
vergence associated with our zero-mean Gaussian likeli-
hood (Banerjee et al., 2005), and v; = BP;y is a zero-
centered patch. We initialize the algorithm by sampling K’
diverse patches in a distance-biased fashion, and refine with
50 iterations of coordinate descent updates of 2z’ and A’.

Then we expand the variational posterior ¢(A) into K + K’
clusters. The first K indices are kept the same as training,
and the last K’ indices are set via Eq. (16) using sufficient
statistics N/, S’ derived from hard assignments z’:

Né/ — Z]lk'(z':)’ S]/g/ — {Zﬂk/(z;)ﬁlﬁ? — Nk,/O'QI .

i i +
Here, following Portilla et al. (2003) and Kivinen et al.
(2007), S}, estimates the clean data statistic Sy by sub-
tracting the expected noise covariance. The [-], operator
thresholds any negative eigenvalues to zero.

Similarly, the other global variational factor ¢(8) is also
expanded to K + K’ clusters via sufficient statistics N’
and counts of cluster usage from training data. Given
{5, A}kK;lK ', each factor in g may then be updated in turn
to maximize the variational objective £ (see supplement).

Finally, while we initialize K’ to a large number to avoid
local optima, this may lead to extraneous clusters. We thus
delete new clusters that our sparsity-biased variational up-
dates do not assign to any patch. In the Barbara image in
Fig. 3, this leaves 9 image-specific clusters. Deletion im-
proves model interpretability and algorithm speed, because
costs scale linearly with the number of instantiated clusters.

5. Experiments

Following EPLL, we train our HDP-Grid model using 400
clean training and validation images from the Berkeley seg-
mentation dataset (BSDS, Martin et al. (2001)). We fix
d = 0.5/255 to account for the quantization of image in-
tensities to 8-bit integers. Observed DC offsets u provide
maximum likelihood estimates of the mean r and variance
s? in Eq. (12). Similarly, we compute empirical covari-
ance matrices for patches in the same image segments to
estimate hyperparameters W and v in Eq. (16). Using vari-
ational learning algorithms that adapt the number of clus-
ters to the observed data (Hughes & Sudderth, 2013), we
discover K = 449 clusters for the DP-Grid model, which
we use to initialize our HDP model. We set our annealing
schedule for x to match that used by the public EPLL code.

Image denoising methods are often divided into two
types (Zontak & Irani, 2011): external methods (like
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HDP: new clusters

HDP: 30.15 dB
Figure 3. For an image with noise level o = 25, the HDP im-
proves denoising performance by leveraging both internal clusters
(e.g., scarf and tablecloth) and external clusters (e.g., floor and ta-
ble legs). The bottom right image colors the pixels assigned to
each of 9 internal HDP clusters. Best viewed electronically.

EPLL) that learn all parameters from a training database
of clean images, and infernal methods that denoise patches
using other patches of the single noisy image. For example,
the K-SVD (Elad & Aharon, 2006) has an external variant
that uses a dictionary learned from clean images, and an
internal variant that learns its dictionary from the noisy im-
age. A major contribution of our paper is to show that the
hierarchical DP leads to a principled hybrid of internal and
external methods, in which cues from clean and noisy im-
ages are automatically combined in an adaptive way.

5.1. Image Denoising

We test our algorithm on 12 “classic” images used in many
previous denoising papers (Mairal et al., 2009; Zoran &
Weiss, 2011), as well as the 68 BSDS test images used by
(Roth & Black, 2005; Zoran & Weiss, 2011). We evaluate

eDP: 32.47 dB

HDP: 32.65 dB

Figure 4. By capturing self-similar patches in the “house” image,
our HDP model reduces artifacts in smooth regions such as the
sky, roof, and walls. Input noise level o = 25 (20.21 dB).

15 20
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N 10 i w -
o -=-iDP o =iDP
< EpLy| <110 EPLL
-e-eDP g -e-eDP
-=-HDP -=-HDP
5 5
0 50 100 0 50 100
noise level noise level

Figure 5. Denoising performance of grid-based models on the
Barbara image of Fig. 3 (left) and the house image of Fig. 4
(right), as a function of the noise standard deviation. For both
images and all noise levels, the HDP model is superior to base-
lines that solely use external (eDP) or internal (iDP) training, in
terms of PSNR improvement relative to the noisy input image.
When the image is extremely noisy (o = 100), internal clusters
are of poor quality, and the HDP and eDP models are comparable.

the denoising performance by the peak signal-to-noise ra-
tio (PSNR), a logarithmic transform of the mean squared
error (MSE) between images with normalized intensities,

PSNR £ —20log;, MSE. 29)

We also evaluate the structural similarity index (SSIM,
Wang et al. (2004)), which quantifies image quality degra-
dation via changes in structure, luminance, and contrast.

Internal vs. external clusters. In result figures, we use
eDP to refer to our DP-Grid model trained solely on exter-
nal clean images and HDP to refer to the HDP-Grid model
that also learns novel image-specific clusters. We also
train an internal DP-Grid model, referred to as iDP, using
only information from the noisy test image. The first four
columns of Table 1 compare their average denoising per-
formance, where EPLL can be viewed as a simplification
of eDP. For all noise levels and datasets, the HDP model
has superior performance. As shown in Fig. 6, HDP is more
accurate than EPLL and eDP for every single classic-12 im-
age. Also, the consistent gain in performance from EPLL
to eDP demonstrates the benefits of Bayesian nonparamet-
ric learning of an appropriate model complexity (for EPLL,
the number of clusters was arbitrarily fixed at K = 200).

Fig. 3 further illustrates the complementary role of internal
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Table 1. Average PSNR and SSIM values on benchmark datasets (larger values indicate better denoising). Methods are highlighted if
they are indistinguishable with 95% confidence, according to a Wilcoxon signed-rank test on the fraction of images where one method
outperforms another. For all noise levels the patch size of BM3D is fixed to 8 x 8 and LSSC is fixed to 9 x 9.

metric dataset o iDP EPLL eDP HDP FoE eKSVD iKSVD BM3D LSSC
10 | 33.66 33.68 3377 3399 33.11 33.45 33.62 3398  34.05
classic-12 25 | 29.02  29.39 2947 29.68 28.32 28.89 29.11 29.73  29.74
PSNR 50 | 2544 2622 2628 2642 24.69 25.44 25.64 26.55 2643
10 | 33.10  33.37 3342 3347  32.69 33.06 33.08 3326 3345
BSDS-68 25 | 28.33 28.72 2876  28.82  27.76 28.28 28.28 28.55 28.70
50 | 25.10 25.72 25775 25.83 2448 25.17 25.17 25.59  25.50
10 | 09118 0.9136 0.9143 09169 0.8962 0.9084 09111 0.9168 0.9185
classic-12 25 | 0.8189 0.8286 0.8299 0.8337 0.8018 0.8082 0.8131 0.8357 0.8359
SSIM 50 | 0.6962 0.7301 0.7316 0.7366 0.6885 0.6926 0.6975 0.7425 0.7390
10 | 09119 0.9219 0.9224 0.9230 0.8971 09128 09135 0.9157 0.9206
BSDS-68 25 | 0.7964 0.8090 0.8103 0.8131 0.7804 0.7859 0.7879 0.8010 0.8109
50 | 0.6636 0.6870 0.6880 0.6962 0.6585 0.6544  0.6539 0.6840 0.6885
; ;
Z 30 =
n
Yol 1
./. ® cDP
.o ® HDP
26 : : :
1 15 2
ELBO/pixel

Figure 6. Clean-image evidence lower bound (ELBO) versus out-
put PSNR (o = 25) for 12 “classic” images. The horizontal axis
plots log p(Ziest| Train) = L(Ttest, Ttrain) — L(Tirain ), divided by the
number of pixels. Our HDP is uniformly superior to the eDP.

and external clusters for a single test image (“Barbara”).
The internal iDP perfectly captures some unique textures
like the striped clothing, but produces artifacts in smooth
background regions. The external EPLL and eDP better
represent smooth surfaces and contours, which are com-
mon in training data, but poorly recover striped textures.

As shown in Fig. 5, while the relative accuracy of the eDP
and iDP models varies depending on image statistics, the
HDP model adaptively combines external and internal clus-
ters for superior performance at all noise levels. By captur-
ing the expected self-similarity of image patches, the HDP
model also reduces artifacts in large regions with regular
textures, such as the smoothly shaded areas of Fig. 4.

Computational speed. To denoise a 512 x 512 pixel im-
age on a modern laptop, our Python code for eDP infer-
ence with K = 449 clusters takes about 12 min. The
public EPLL. Matlab code (Zoran & Weiss, 2011) with
K = 200 clusters takes about 5 min. With equal num-
bers of clusters, the two methods have comparable run-
times. Our open-source Python code is available online at

EPLL

Figure 7. A qualitative comparison of image inpainting algo-
rithms. As illustrated in the three close-up views, the HDP ex-
ploits patch self-similarity to better recover fine details.

github.com/bnpy/hdp-grid-image-restoration.

Learning image-specific clusters for the HDP model is
more expensive: our non-optimized Python denoising code
currently requires about 30 min. per image. Nearly all
of the extra time is spent on the k-means++ initialization
of Eq. (28). We expect this can be sped up significantly
by coding core routines in C, parallelizing some sub-steps
(possibly via GPUs), using fewer internal clusters (100 is
often too many), or using faster initialization heuristics.
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Noisy BM3D

28.15dB 30.40 dB

20.19 dB

20.19 dB 23.35dB

HDP

LSSC

30.95dB 31.05 dB

25.88 dB

23.79 dB 23.87 dB

20.19 dB 36.84 dB

37.85dB

35.60 dB

Figure 8. Comparison of image denoising methods on BSDS-68. Unlike our HDP model, the BM3D and LSSC methods learn solely
from the noisy image and do not accurately capture some textures such as the sandy ground in Row 1, fallen leaves and tiger tail in Row
2, trees and grass in Row 3, and sky and clouds in Row 4. Noise level o = 10 in Row 1, o = 25 elsewhere. Best viewed electronically.

Performance. We compare our HDP model to other
patch-based denoising methods in Table 1. On classic-12,
where many top methods have been hand-tuned to perform
well, our model is statistically indistinguishable from the
best baselines. On the larger BSDS-68, our performance
is superior to the state-of-the-art, showing the value of
nonparametric learning from large image collections. See
Fig. 8 for examples. At higher noise levels (o = 50), LSSC
has modestly improved performance (0.2 dB in PSNR)
when modeling 12 x 12 patches (Mairal et al., 2009). HDP
models of larger patches are a promising research area.

5.2. Image Inpainting

While many image processing systems are designed for
just one problem, our generative model is useful for many
tasks. For example, we can “inpaint” occluded image re-
gions (like the red pixels in Fig. 7) by modifying Eq. (14) to

let 02 — oo for only those regions and setting 02 = 0 else-
where. To process color images, we follow the approach of
FoE and EPLL and convert to the YCbCr color space be-
fore independently inpainting each channel. While ground
truth is unavailable for the classic image in Fig. 7, our grid-
based HDP produces fewer visual artifacts than baselines.

6. Conclusion

We have developed a coherent Bayesian nonparamet-
ric model that, via randomly positioned grids of image
patches, provides a novel statistical foundation for the pop-
ular EPLL method. We show that HDP mixture models of
visual textures can grow in complexity as additional im-
ages are observed and capture the self-similarity of natural
images. Our HDP-grid image denoising and inpainting al-
gorithms are competitive with the state-of-the-art, and our
model is applicable to many other computer vision tasks.
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