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Supplementary Material

A. Type-I Errors
In this section, we show that all the tests have correct type-I errors (i.e., the probability of reject H0 when it is true) in real
problems. We permute the joint sample so that the dependency is broken to simulate cases in which H0 holds. The results
are shown in Figure 5.
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(a) MSD problem (permuted sample).
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(b) Videos & Captions problem (permuted
sample).

Figure 5: Probability of rejecting H0 as n increases. α = 0.01.

B. Redundant Test Locations
Here, we provide a simple illustration to show that two locations t1 = (v1,w1) and t2 = (v2,w2) which are too close
to each other will reduce the optimization objective. We consider the Sinusoid problem described in Section 3.1 with
ω = 1, and use J = 2 test locations. In Figure 6, t1 is fixed at the red star, while t2 is varied along the horizontal line. The
objective value λ̂n as a function of t2 is shown in the bottom figure. It can be seen that λ̂n decreases sharply when t2 is
in the neighborhood of t1. This property implies that two locations which are too close will not maximize the objective
function (i.e., the second feature contains no additional information when it matches the first). For J > 2, the objective
sharply decreases if any two locations are in the same neighborhood.
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Figure 6: Plot of optimization objective values as location t2 moves along the green line. The objective sharply drops when
the two locations are in the same neighborhood.

C. Test Power vs. J
It might seem intuitive that as the number of locations J increases, the test power should also increase. Here, we empirically
show that this statement is not always true. Consider the Sinusoid toy example described in Section 3.1 with ω = 2 (also see
the left figure of Figure 7). By construction, X and Y are dependent in this problem. We run NFSIC test with a sample size
of n = 800, varying J from 1 to 600. For each value of J , the test is repeated for 500 times. In each trial, the sample is
redrawn and the J test locations are drawn from Uniform((−π, π)2). There is no optimization of the test locations. We use
Gaussian kernels for both X and Y , and use the median heuristic to set the Gaussian widths to 1.8. Figure 7 shows the test
power as J increases.
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Figure 7: The Sinusoid problem and the plot of test power vs. the number of test locations.

We observe that the test power does not monotonically increase as J increases. When J = 1, the difference of pxy and pxpy
cannot be adequately captured, resulting in a low power. The power increases rapidly to roughly 0.6 at J = 10, and stays at
1 until about J = 100. Then, the power starts to drop sharply when J is higher than 400 in this problem.

Unlike random Fourier features, the number of test locations in NFSIC is not the number of Monte Carlo particles used to
approximate an expectation. There is a tradeoff: if the test locations are in key regions (i.e., regions in which there is a big
difference between pxy and pxpy), then they increase power; yet the statistic gains in variance (thus reducing test power) as
J increases. As can be seen in Figure 7, there are eight key regions (in blue) that can reveal the difference of pxy and pxpy .
Using an unnecessarily high J not only makes the covariance matrix Σ̂ harder to estimate accurately, it also increases the
computation as the complexity on J is O(J3).

We note that NFSIC is not intended to be used with a large J . In practice, it should be set to be large enough so as to capture
the key regions as stated. As a practical guide, with optimization of the test locations, a good starting point is J = 5 or 10.

D. Proof of Proposition 3
Recall Proposition 3,

Proposition (A product of Gaussian kernels is characteristic and analytic). Let k(x,x′) = exp
(
−(x− x′)>A(x− x′)

)
and

l(y,y′) = exp
(
−(y − y′)>B(y − y′)

)
be Gaussian kernels on Rdx×Rdx and Rdy×Rdy respectively, for positive definite

matrices A and B. Then, g((x,y), (x′,y′)) = k(x,x′)l(y,y′) is characteristic and analytic on (Rdx×Rdy )×(Rdx×Rdy ).

Proof. Let z := (x>,y>)> and z′ := (x′>,y′>)> be vectors in Rdx+dy . We prove by reducing the product kernel to one

Gaussian kernel with g(z, z′) = exp
(
−(z− z′)>C(z− z′)

)
where C :=

(
A 0
0 B

)
. Write g(z, z′) = Ψ(z− z′) where

Ψ(t) := exp
(
−t>Ct

)
. Since C is positive definite, we see that the finite measure ζ corresponding to Ψ as defined in

Lemma 12 has support everywhere in Rdx+dy . Thus, Sriperumbudur et al. (2010, Theorem 9) implies that g is characteristic.

To see that g is analytic, we observe that for each z′ ∈ Rdx+dy , z 7→ −(z− z′)>C(z− z′) is a multivariate polynomial
in z, which is known to be analytic. Using the fact that t 7→ exp(t) is analytic on R, and that a composition of analytic
functions is analytic, we see that z 7→ exp

(
−(z− z′)>C(z− z′)

)
is analytic on Rdx+dy for each z′.

E. Proof of Theorem 5
Recall Theorem 5,

Theorem 5 (Independence test based on N̂FSIC2 is consistent). Let Σ̂ be a consistent estimate of Σ based on the joint
sample Zn, where Σ is defined in Proposition 4. Assume that VJ = {(vi,wi)}Ji=1 ∼ η where η is absolutely continuous wrt

the Lebesgue measure. The N̂FSIC2 statistic is defined as λ̂n := nû>
(
Σ̂ + γnI

)−1
û where γn ≥ 0 is a regularization

parameter. Assume that

1. Assumption A holds.

2. Σ is invertible η-almost surely.
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3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions,

1. Under H0, λ̂n
d→ χ2(J) as n→∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1 η-almost surely. That is, the independence test based on N̂FSIC2

is consistent.

Proof. Assume thatH0 holds. The consistency of Σ̂ and the continuous mapping theorem imply that
(
Σ̂ + γnI

)−1 p→ Σ−1

which is a constant. Let a be a random vector in RJ followingN (0,Σ). By van der Vaart (2000, Theorem 2.7 (v)), it follows

that
[√

nû,
(
Σ̂ + γnI

)−1] d→
[
a,Σ−1

]
where u = 0 almost surely by Proposition 2, and

√
nû

d→ N (0,Σ) by Proposition

4. Since f(x,S) := x>Sx is continuous, f
(√

nû,
(
Σ̂ + γnI

)−1) d→ f(a,Σ−1). Equivalently, nû>
(
Σ̂ + γnI

)−1
û

d→

a>Σ−1a ∼ χ2(J) by Anderson (2003, Theorem 3.3.3). This proves the first claim.

The proof of the second claim has a very similar structure to the proof of Proposition 2 of Chwialkowski et al. (2015).
Assume that H1 holds. Then, u 6= 0 almost surely by Proposition 2. Since k and l are bounded, it follows that
|ht(z, z

′)| ≤ 2BkBl for any z, z′ (see (8)), and we have that û
a.s.→ u by Serfling (2009, Section 5.4, Theorem A). Thus,

û>
(
Σ̂ + γnI

)−1
û− r

n

d→ u>Σ−1u by the continuous mapping theorem, and the consistency of Σ̂. Consequently,

lim
n→∞

P
(
λ̂n ≥ r

)
= 1− lim

n→∞
P
(

û>
(
Σ̂ + γnI

)−1
û− r

n
< 0

)
(a)
= 1− P

(
u>Σ−1u < 0

) (b)
= 1,

where at (a) we use the Portmanteau theorem (van der Vaart, 2000, Lemma 2.2 (i)) guaranteeing that xn
d→ x if and only if

P(xn < t)→ P(x < t) for all continuity points of t 7→ P(x < t). Step (b) is justified by noting that the covariance matrix
Σ is positive definite so that u>Σ−1u > 0, and t 7→ P(u>Σ−1u < t) (a step function) is continuous at 0.

F. Proof of Theorem 7
Recall Theorem 7,

Theorem 7 (A lower bound on the test power). Let NFSIC2(X,Y ) := λn := nu>Σ−1u. Let K be a kernel class for k, L
be a kernel class for l, and V be a collection with each element being a set of J locations. Assume that

1. There exist finite Bk and Bl such that supk∈K supx,x′∈X |k(x,x′)| ≤ Bk and supl∈L supy,y′∈Y |l(y,y′)| ≤ Bl.

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F <∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V , and λn ≥ r, the test power satisfies P
(
λ̂n ≥ r

)
≥ L(λn) where

L(λn) = 1− 62e−ξ1γ
2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c21J

2B∗
, B∗ is a constant depending on only Bk and Bl, ξ2 := 72c22JB

2, B := BkBl,

ξ3 := 8c1B
2J , c3 := 4B2Jc̃2, ξ4 := 28B4J2c21, c1 := 4B2J

√
Jc̃, and c2 := 4B

√
Jc̃. Moreover, for sufficiently large

fixed n, L(λn) is increasing in λn.
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Overview of the proof We first derive a probabilistic bound for |λ̂n − λn|/n. The bound is in turn upper bounded by
an expression involving ‖û− u‖2 and ‖Σ̂−Σ‖F . The difference ‖û− u‖2 can be bounded by applying the bound for
U-statistics given in Serfling (2009, Theorem A, p. 201). For ‖Σ̂−Σ‖F , we decompose it into a sum of smaller components,
and bound each term with a product variant of the Hoeffding’s inequality (Lemma 9). L(λn) is obtained by combining all
the bounds with the union bound.

F.1. Notations

Let 〈A,B〉F := tr(A>B) denote the Frobenius inner product, and ‖A‖F :=
√

tr(A>A) be the Frobenius norm. Write
z := (x,y) to denote a pair of points from X ×Y . We write t := (v,w) to denote a pair of test locations from X ×Y . For
brevity, an expectation over (x,y) (i.e., E(x,y)∼Pxy

) will be written as Ez or Exy. Define k̃(x,v) := k(x,v)−Ex′k(x′,v),
and l̃(y,w) := l(y,w)− Ey′ l(y

′,w). Let B2(r) := {x | ‖x‖2 ≤ r} be a closed ball with radius r centered at the origin.
Similarly, define BF (r) := {A | ‖A‖F ≤ r} to be a closed ball with radius r of J × J matrices under the Frobenius norm.
Denote the max operation by (x1, . . . , xm)+ = max(x1, . . . , xm).

For a product of marginal mean embeddings µx(v)µy(w), we write µ̂xµy(v,w) := 1
n(n−1)

∑n
i=1

∑
j 6=i k(xi,v)l(yj ,w)

to denote the unbiased plug-in estimator, and write µ̂x(v)µ̂y(w) := 1
n

∑n
i=1 k(xi,v) 1

n

∑n
j=1 l(yj ,w) which is a biased

estimator. Define ûb(v,w) := µ̂xy(v,w) − µ̂x(v)µ̂y(w) so that ûb :=
(
ûb(t1), . . . , ûb(tJ)

)>
where the superscript b

stands for “biased”. To avoid confusing with a positive definite kernel, we will refer to a U-statistic kernel as a core.

F.2. Proof

We will first derive a bound for P(|λ̂n − λn| ≥ t), which will then be reparametrized to get a bound for the target quantity
P(λ̂n ≥ r). We closely follow the proof in Jitkrittum et al. (2016, Section C.1) up to (12), then we diverge. We start by
considering |λ̂n − λn|/n.

|λ̂n − λn|/n =
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣
=

∣∣∣∣û> (Σ̂ + γnI
)−1

û− u> (Σ + γnI)
−1

u + u> (Σ + γnI)
−1

u− u>Σ−1u

∣∣∣∣
≤
∣∣∣∣û> (Σ̂ + γnI

)−1
û− u> (Σ + γnI)

−1
u

∣∣∣∣+
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣
:= (F)1 + (F)2 .

We next bound (F1) and (F2) separately.

(F)1 =

∣∣∣∣û> (Σ̂ + γnI
)−1

û− u> (Σ + γnI)
−1

u

∣∣∣∣
=

∣∣∣∣û> (Σ̂ + γnI
)−1

û− û> (Σ + γnI)
−1

û + û> (Σ + γnI)
−1

û− u> (Σ + γnI)
−1

u

∣∣∣∣
≤
∣∣∣∣û> (Σ̂ + γnI

)−1
û− û> (Σ + γnI)

−1
û

∣∣∣∣+
∣∣∣û> (Σ + γnI)

−1
û− u> (Σ + γnI)

−1
u
∣∣∣

=

∣∣∣∣〈ûû>,
(
Σ̂ + γnI

)−1
− (Σ + γnI)

−1
〉
F

∣∣∣∣+
∣∣∣〈ûû> − uu>, (Σ + γnI)

−1
〉
F

∣∣∣
≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1 − (Σ + γnI)−1‖F + ‖ûû> − uu>‖F ‖(Σ + γnI)−1‖F
= ‖ûû>‖F ‖(Σ̂ + γnI)−1[(Σ + γnI)− (Σ̂ + γnI)](Σ + γnI)−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖(Σ + γnI)−1‖F
(a)

≤ ‖ûû>‖F ‖(Σ̂ + γnI)−1‖F ‖Σ− Σ̂‖F ‖Σ−1‖F + ‖ûû> − ûu> + ûu> − uu>‖F ‖Σ−1‖F
(b)

≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F +

(
‖û(û− u)>‖F + ‖(û− u)u>‖F

)
‖Σ−1‖F
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≤
√
J

γn
‖û‖22‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F , (5)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F , at (b) we used ‖(Σ̂ + γnI)−1‖F ≤
√
J‖(Σ̂ + γnI)−1‖2 ≤

√
J/γn.

For (F)2, we have

(F)2 =
∣∣∣u> (Σ + γnI)

−1
u− u>Σ−1u

∣∣∣
=
∣∣〈uu>, (Σ + γnI)−1 −Σ−1

〉
F

∣∣
≤ ‖uu>‖F ‖(Σ + γnI)−1 −Σ−1‖F
= ‖u‖22‖(Σ + γnI)−1 [Σ− (Σ + γnI)] Σ−1‖F
≤ γn‖u‖22‖(Σ + γnI)−1‖F ‖Σ−1‖F
(a)

≤ γn‖u‖22‖Σ−1‖2F , (6)

where at (a) we used ‖(Σ + γnI)−1‖F ≤ ‖Σ−1‖F .

Combining (5) and (6), we have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u
∣∣∣

≤
√
J

γn
‖û‖2‖Σ− Σ̂‖F ‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F + γn‖u‖22‖Σ−1‖2F . (7)

Bounding ‖û‖22 and ‖u‖22 Here, we show that by the boundedness of the kernels k and l, it follows that ‖û‖22 is bounded.
Recall that supx,x′∈X |k(x,x′)| ≤ Bk, supy,y′ |l(y,y′)| ≤ Bl, our notation t = (v,w) for the test locations, and
zi := (xi,yi). We first show that the U-statistic core h is bounded.

|ht((x,y), (x′,y′))| =
∣∣∣∣12(k(x,v)− k(x′,v))(l(y,w)− l(y′,w))

∣∣∣∣
≤ 1

2
(|k(x,v)|+ |k(x′,v)|) (|l(y,w)|+ |l(y′,w)|)

≤ 2BkBl := 2B, (8)

where we define B := BkBl. It follows that

‖û‖22 =

J∑
m=1

 2

n(n− 1)

∑
i<j

htm(zi, zj)

2

≤
J∑

m=1

[2BkBl]
2

= 4B2J, (9)

‖u‖22 =

J∑
m=1

[EzEz′htm(z, z′)]
2 ≤ 4B2J. (10)

Using the upper bounds on ‖û‖22, ‖u‖22 ,(7) and the definition of c̃, we have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u
∣∣∣

≤
√
J

γn
4B2Jc̃‖Σ− Σ̂‖F + 4B

√
Jc̃‖û− u‖2 + 4B2Jc̃2γn

=:
c1
γn
‖Σ− Σ̂‖F + c2‖û− u‖2 + c3γn, (11)

where we define c1 := 4B2J
√
Jc̃, c2 := 4B

√
Jc̃, and c3 := 4B2Jc̃2. This upper bound implies that

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n‖û− u‖2 + c3nγn. (12)

We will separately upper bound ‖Σ− Σ̂‖F and ‖û− u‖2, and combine them with a union bound.
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F.2.1. BOUNDING ‖û− u‖2
Let t∗ = arg maxt∈{t1,...,tJ} |û(t)− u(t)|. Recall that u = (u(t1), . . . , u(tJ))> = (u1, . . . , uJ)>.

‖û− u‖2 = sup
b∈B2(1)

〈b, û− u〉2 ≤ sup
b∈B2(1)

J∑
j=1

|bj ||û(tj)− u(tj)|

≤ |û(t∗)− u(t∗)| sup
b∈B2(1)

J∑
j=1

|bj |

(a)

≤
√
J |û(t∗)− u(t∗)| sup

b∈B2(1)

‖b‖2

=
√
J |û(t∗)− u(t∗)|, (13)

where at (a) we used ‖a‖1 ≤
√
J‖a‖2 for any a ∈ RJ . From (13), it can be seen that bounding ‖û − u‖2 amounts to

bounding the difference of a U-statistic û(t∗) (see (4)) to its expectation u(t∗). Combining (13) and (12), we have

|λ̂n − λn| ≤
c1
γn
n‖Σ− Σ̂‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (14)

F.2.2. BOUNDING ‖Σ̂−Σ‖F
The plan is to write Σ̂ = Ŝ − ûbûb>,Σ = S − uu>, so that ‖Σ̂ −Σ‖F ≤ ‖Ŝ − S‖F + ‖ûbûb> − uu>‖F and bound
separately ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .

Recall that Σij = η(ti, tj), η(t, t′) = Exy[
(
k̃(x,v)l̃(y,w)− u(v,w)

)(
k̃(x,v′)l̃(y,w′)− u(v′,w′)

)
] where k̃(x,v) =

k(x,v)− Ex′k(x′,v), and l̃(y,w) = l(y,w)− Ey′ l(y
′,w). Its empirical estimator (see Proposition 6) is Σ̂ij = η̂(ti, tj)

where

η̂(t, t′) =
1

n

n∑
i=1

[
(
k(xi,v)l(yi,w)− ûb(v,w)

)(
k(xi,v

′)l(yi,w
′)− ûb(v′,w′)

)
]

=
1

n

n∑
i=1

k(xi,v)l(yi,w)k(xi,v
′)l(yi,w

′)− ûb(v,w)ûb(v′,w′),

k(x,v) := k(x,v) − 1
n

∑n
i=1 k(xi,v), and l(y,w) := l(y,w) − 1

n

∑n
i=1 l(yi,w). We

note that 1
n

∑n
i=1 k(xi,v)l(yi,w) = ûb(v,w). We define Ŝ ∈ RJ×J such that Ŝij :=

1
n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(yi,wj), and define similarly its population counterpart S such that

Sij := Exy[k̃(x,v)l̃(y,w)k̃(x,v′)l̃(y,w′)]. We have

Σ̂ = Ŝ− ûbûb>,

Σ = S− uu>,

‖Σ̂−Σ‖F = ‖Ŝ− S− (ûbûb> − uu>)‖F (15)

≤ ‖Ŝ− S‖F + ‖ûbûb> − uu>‖F . (16)

With (16), (14) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

c1n

γn
‖ûbûb> − uu>‖F + c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (17)

We will further separately bound ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F .

F.2.3. BOUNDING ‖ûbûb> − uu>‖F

‖ûbûb> − uu>‖F = ‖ûbûb> − ûbu> + ûbu> − uu>‖F
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≤ ‖ûb(ûb − u)>‖F + ‖(ûb − u)u>‖F
= ‖ûb‖2‖ûb − u‖2 + ‖ûb − u‖2‖u‖2
≤ 4B

√
J‖ûb − u‖2,

where we used (10) and the fact that ‖ûb‖2 ≤ 2B
√
J which can be shown similarly to (9) as

‖ûb‖22 =

J∑
m=1

[µ̂xy(vm,wm)− µ̂x(vm)µ̂y(wm)]
2

=

J∑
m=1

 1

n2

n∑
i=1

n∑
j=1

htm(zi, zj)

2

≤
J∑

m=1

[2BkBl]
2

= 4B2J.

Let (ṽ, w̃) := t̃ = arg maxt∈{t1,...,tJ} |ûb(t)− u(t)|. We bound ‖ûb − u‖2 by

‖ûb − u‖2
(a)

≤
√
J |ûb(t̃)− u(t̃)|

=
√
J
∣∣µ̂xy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
=
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃) + µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
≤
√
J
∣∣µ̂xy(t̃)− µ̂xµy(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
=
√
J
∣∣û(t̃)− u(t̃)

∣∣+
√
J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ , (18)

where at (a) we used the same reasoning as in (13). The bias
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ in the second term can be bounded
as ∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

∑
j 6=i

k(xi, ṽ)l(yj , w̃)− 1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)− 1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)− 1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− n

n− 1

)
1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃) +
1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

1− n

n− 1

)
1

n2

n∑
i=1

n∑
j=1

k(xi, ṽ)l(yj , w̃)

∣∣∣∣∣∣+

∣∣∣∣∣ 1

n(n− 1)

n∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣
≤ B

n− 1
+

B

n− 1
=

2B

n− 1
.

Combining this upper bound with (18), we have

‖ûbûb> − uu>‖F ≤ 4BJ
∣∣û(t̃)− u(t̃)

∣∣+
8B2J

n− 1
. (19)

With (19), (17) becomes

|λ̂n − λn| ≤
c1n

γn
‖Ŝ− S‖F +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣+

c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (20)

F.2.4. BOUNDING ‖Ŝ− S‖F
Recall that VJ = {t1, . . . , tJ}, Ŝij = Ŝ(ti, tj) = 1

n

∑n
m=1 k(xm,vi)l(ym,wi)k(xm,vj)l(ym,wj), and Sij =

S(ti, tj) = Exy[k̃(x,vi)l̃(y,wi)k̃(x,vj)l̃(y,wj)]. Let (t(1), t(2)) = arg max(s,t)∈VJ×VJ
|Ŝ(s, t)− S(s, t)|.
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‖Ŝ− S‖F = sup
B∈BF (1)

〈
B, Ŝ− S

〉
F

≤ sup
B∈BF (1)

J∑
i=1

J∑
j=1

|Bij ||Ŝij − Sij |

≤
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

J∑
i=1

J∑
j=1

|Bij |

(a)

≤ J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF (1)

‖B‖F

= J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ , (21)

where at (a) we used
∑J
i=1

∑J
j=1 |Aij | ≤ J‖A‖F for any matrix A ∈ RJ×J . We arrive at

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn. (22)

F.2.5. BOUNDING
∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣
Having an upper bound for

∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ will allow us to bound (22). To keep the notations uncluttered, we will

define the following shorthands.

Expression Shorthand

k(x,v) a

k(x,v′) a′

k(xi,v) ai

k(xi,v
′) a′i

Ex∼Pxk(x,v) ã

Ex∼Pxk(x,v′) ã′

1
n

∑n
i=1 k(xi,v) a

1
n

∑n
i=1 k(xi,v

′) a′

Expression Shorthand

l(y,w) b

l(y,w′) b′

l(yi,w) bi

l(yi,w
′) b′i

Ey∼Py
l(y,w) b̃

Ey∼Py
l(y,w′) b̃′

1
n

∑n
i=1 l(yi,w) b

1
n

∑n
i=1 l(yi,w

′) b
′

We will also use · to denote a empirical expectation over x, or y, or (x,y). The argument under · will deter-
mine the variable over which we take the expectation. For instance, aa′ = 1

n

∑n
i=1 k(xi,v)k(xi,v

′) and aba′ =
1
n

∑n
i=1 k(xi,v)l(yi,w)k(xi,v

′), and so on. We define in the same way for the population expectation using ·̃ i.e.,
ãa′ = Ex [k(x,v)k(x,v′)] and ãba′ = Exy [k(x,v)l(y,w)k(x,v′)].

With these shorthands, we can rewrite Ŝ(t, t′) and S(t, t′) as

Ŝ(t, t′) =
1

n

n∑
i=1

(ai − a)(bi − b)(a′i − a′)(b′i − b
′
),

S(t, t′) = Exy

[
(a− ã)(b− b̃)(a′ − ã′)(b′ − b̃′)

]
.

By expanding S(t, t′), we have

S(t, t′) = Exy

[
+ aba′b′ − aba′b̃′ − abã′b′ + abã′b̃′
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− ab̃a′b′ + ab̃a′b̃′ + ab̃ã′b′ − ab̃ã′b̃′

− ãba′b′ + ãba′b̃′ + ãbã′b′ − ãbã′b̃′

+ ãb̃a′b′ − ãb̃a′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′
]

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃− ãb̃ã′b̃′

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − ãb̃ã′b̃′

+ ã′b′ãb̃− ãb̃ã′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′

= +ãba′b′ − ãba′b̃′ − ãbb′ã′ + ãbã′b̃′

− ãa′b′b̃+ ãa′b̃b̃′ + ãb′ã′b̃+ ã′b′ãb̃

− ã′bb′ã+ ã′bãb̃′ + ãã′b̃b′ − 3ãb̃ã′b̃′.

The expansion of Ŝ(t, t′) can be done in the same way. By the triangle inequality, we have∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ ≤ ∣∣∣aba′b′ − ãba′b′∣∣∣+

∣∣∣aba′ b′ − ãba′b̃′∣∣∣+
∣∣∣abb′a′ − ãbb′ã′∣∣∣+

∣∣∣aba′b′ − ãbã′b̃′∣∣∣∣∣∣aa′b′ b− ãa′b′b̃∣∣∣+
∣∣∣aa′ b b′ − ãa′b̃b̃′∣∣∣+

∣∣∣ab′a′b− ãb′ã′b̃∣∣∣+
∣∣∣a′b′ab− ã′b′ãb̃∣∣∣∣∣∣a′bb′a− ã′bb′ã∣∣∣+

∣∣∣a′bab′ − ã′bãb̃′∣∣∣+
∣∣∣a a′bb′ − ãã′b̃b′∣∣∣+ 3

∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ .
The first term

∣∣∣aba′b′ − ãba′b′∣∣∣ can be bounded by applying the Hoeffding’s inequality. Other terms can be bounded by
applying Lemma 9. Recall that we write (x1, . . . , xm)+ for max(x1, . . . , xm).

Bounding
∣∣∣aba′b′ − ãba′b′∣∣∣ (1st term). Since −B2 ≤ aba′b′ ≤ B2, by the Hoeffding’s inequality (Lemma 14), we have

P
(∣∣∣aba′b′ − ãba′b′∣∣∣ ≤ t) ≥ 1− 2 exp

(
− nt2

2B4

)
.

Bounding
∣∣∣aba′ b′ − ãba′b̃′∣∣∣ (2nd term). Let f1(x,y) = aba′ = k(x,v)l(y,w)k(x,v′) and f2(y) = b′ = l(y,w′). We

note that |f1(x,y)| ≤ (BBk, Bl)+ and |f2(y)| ≤ (BBk, Bl)+. Thus, by Lemma 9 with E = 2, we have

P
(∣∣∣aba′ b′ − ãba′b̃′∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4+

)
.

Bounding
∣∣∣aba′b′ − ãbã′b̃′∣∣∣ (4th term). Let f1(x,y) = ab = k(x,v)l(y,w), f2(x) = a′ = k(x,v′) and f3(y) = b′ =

l(y,w′). We can see that |f1(x,y)|, |f2(x)|, |f3(y)| ≤ (B,Bk, Bl)+. Thus, by Lemma 9 with E = 3, we have

P
(∣∣∣aba′b′ − ãbã′b̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
.

Bounding
∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ (last term). Let f1(x) = a = k(x,v), f2(y) = b = l(y,w), f3(x) = a′ = k(x,v′) and

f4(y) = b′ = l(y,w′). It can be seen that |f1(x)|, |f2(y)|, |f3(x)|, |f4(y)| ≤ (Bk, Bl)+. Thus, by Lemma 9 with E = 4,
we have

P
(

3
∣∣∣aba′b′ − ãb̃ã′b̃′∣∣∣ ≤ t) ≥ 1− 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)
.

Bounds for other terms can be derived in a similar way to yield

(3rd term) P
(∣∣∣abb′a′ − ãbb′ã′∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4+

)
,
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(5th term) P
(∣∣∣aa′b′ b− ãa′b′b̃∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBk, Bl)4+

)
,

(6th term) P
(∣∣∣aa′ b b′ − ãa′b̃b̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B2
k, Bl)

6
+

)
,

(7th term) P
(∣∣∣ab′a′b− ãb′ã′b̃∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(8th term) P
(∣∣∣a′b′ab− ã′b′ãb̃∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(9th term) P
(∣∣∣a′bb′a− ã′bb′ã∣∣∣ ≤ t) ≥ 1− 4 exp

(
− nt2

8(BBl, Bk)4+

)
,

(10th term) P
(∣∣∣a′bab′ − ã′bãb̃′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
,

(11th term) P
(∣∣∣a a′bb′ − ãã′b̃b′∣∣∣ ≤ t) ≥ 1− 6 exp

(
− nt2

18(Bk, B2
l )6+

)
.

By the union bound, we have

P
(∣∣∣Ŝ(t, t′)− S(t, t′)

∣∣∣ ≤ 12t
)

≥ 1−
[
2 exp

(
− nt2

2B4

)
+ 4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
4 exp

(
− nt2

8(BBk, Bl)4+

)
+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
4 exp

(
− nt2

8(BBl, Bk)4+

)
+ 6 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]
= 1−

[
2 exp

(
− nt2

2B4

)
+ 8 exp

(
− nt2

8(BBk, Bl)4+

)
+ 8 exp

(
− nt2

8(BBl, Bk)4+

)
+ 24 exp

(
− nt2

18(B,Bk, Bl)6+

)
+ 6 exp

(
− nt2

18(B2
k, Bl)6+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)8+

)]
≥ 1−

[
2 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 24 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)]
= 1− 62 exp

(
−122nt2

B∗

)
,

where

B∗ :=
1

122
max(2B4, 8(BBk, Bl)

4
+, 8(BBl, Bk)4+, 18(B,Bk, Bl)

6
+, 18(B2

k, Bl)
6
+, 18(Bk, B

2
l )6+, 32 · 32(Bk, Bl)

8
+).

By reparameterization, it follows that

P
(
c1Jn

γn

∣∣∣Ŝ(t, t′)− S(t, t′)
∣∣∣ ≤ t) ≥ 1− 62 exp

(
− γ2nt

2

c21J
2nB∗

)
. (23)

F.2.6. UNION BOUND FOR
∣∣∣λ̂n − λn∣∣∣ AND FINAL LOWER BOUND

Recall from (22) that

|λ̂n − λn| ≤
c1Jn

γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣

+
c1n

γn

8B2J

n− 1
+ c2n

√
J |û(t∗)− u(t∗)|+ c3nγn.
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We will bound terms in (22) separately and combine all the bounds with the union bound. As shown in (8), the U-statistic
core h is bounded between −2B and 2B. Thus, by Lemma 13 (with m = 2), we have

P
(
c2n
√
J |û(t∗)− u(t∗)| ≤ t

)
≥ 1− 2 exp

(
− b0.5nct

2

8c22n
2JB2

)
. (24)

Bounding c1n
γn

8B2J
n−1 + c3nγn + 4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣. By Lemma 13 (with m = 2), it follows that

P
(
c1n

γn

8B2J

n− 1
+ c3nγn +

4BJc1n

γn

∣∣û(t̃)− u(t̃)
∣∣ ≤ t)

≥ 1− 2 exp

−b0.5ncγ2n
[
t− c1n

γn
8B2J
n−1 − c3nγn

]2
27B4J2c21n

2


= 1− 2 exp

(
−b0.5nc

[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2n
]2

27B4J2c21n
2(n− 1)2

)
(a)

≥ 1− 2 exp

(
−
[
tγn(n− 1)− 8c1B

2nJ − c3n(n− 1)γ2n
]2

28B4J2c21n
2(n− 1)

)
, (25)

where at (a) we used b0.5nc ≥ (n − 1)/2. Combining (23), (24), and (25) with the union bound (set T = 3t), we can
bound (22) with

P
(∣∣∣λ̂n − λn∣∣∣ ≤ T) ≥ 1− 62 exp

(
− γ2nT

2

32c21J
2nB∗

)
− 2 exp

(
− b0.5ncT

2

72c22n
2JB2

)
− 2 exp

(
−
[
Tγn(n− 1)/3− 8c1B

2nJ − c3γ2nn(n− 1)
]2

28B4J2c21n
2(n− 1)

)
.

Since
∣∣∣λ̂n − λn∣∣∣ ≤ T implies λ̂n ≥ λn − T , a reparametrization with r = λn − T gives

P
(
λ̂n ≥ r

)
≥ 1− 62 exp

(
−γ

2
n(λn − r)2

32c21J
2nB∗

)
− 2 exp

(
−b0.5nc(λn − r)

2

72c22n
2JB2

)
− 2 exp

(
−
[
(λn − r)γn(n− 1)/3− 8c1B

2nJ − c3γ2nn(n− 1)
]2

28B4J2c21n
2(n− 1)

)
:= L(λn).

Grouping constants into ξ1, . . . ξ5 gives the result.

The lower bound L(λn) takes the form

1− 62 exp
(
−C1(λn − Tα)2

)
− 2 exp

(
−C2(λn − Tα)2

)
− 2 exp

(
− [(λn − Tα)C3 − C4]2

C5

)
,

where C1, . . . , C5 are positive constants. For fixed large enough n such that λn > Tα, and fixed significance level α,
increasing λn will increase L(λn). Specifically, since n is fixed, increasing u>Σ−1u in λn = nu>Σ−1u will increase
L(λn).

G. Helper Lemmas
This section contains lemmas used to prove the main results in this work.

Lemma 8 (Product to sum). Assume that |ai| ≤ B, |bi| ≤ B for i = 1, . . . , E. Then
∣∣∣∏E

i=1 ai −
∏E
i=1 bi

∣∣∣ ≤
BE−1

∑E
j=1 |aj − bj |.
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Proof. ∣∣∣∣∣∣
E∏
i=1

ai −
E∏
j=1

bj

∣∣∣∣∣∣ ≤
∣∣∣∣∣
E∏
i=1

ai −
E−1∏
i=1

aibE

∣∣∣∣∣+

∣∣∣∣∣
E−1∏
i=1

aibE −
E−2∏
i=1

aibE−1bE

∣∣∣∣∣+ . . .+

∣∣∣∣∣∣a1
E∏
j=2

bj −
E∏
j=1

bj

∣∣∣∣∣∣
≤ |aE − bE |

∣∣∣∣∣
E−1∏
i=1

ai

∣∣∣∣∣+ |aE−1 − bE−1|
∣∣∣∣∣
(
E−2∏
i=1

ai

)
bE

∣∣∣∣∣+ . . .+ |a1 − b1|

∣∣∣∣∣∣
E∏
j=2

bj

∣∣∣∣∣∣
≤ |aE − bE |BE−1 + |aE−1 − bE−1|BE−1 + . . .+ |a1 − b1|BE−1

= BE−1
E∑
j=1

|aj − bj |

applying triangle inequality, and the boundedness of ai and bi-s.

Lemma 9 (Product variant of the Hoeffding’s inequality). For i = 1, . . . , E, let {x(i)
j }ni

j=1 ⊂ Xi be an i.i.d. sample from
a distribution Pi, and fi : Xi 7→ R be a measurable function. Note that it is possible that P1 = P2 = · · · = PE and
{x(1)

j }n1
j=1 = · · · = {x(E)

j }nE
j=1. Assume that |fi(x)| ≤ B < ∞ for all x ∈ Xi and i = 1, . . . , E. Write P̂i to denote an

empirical distribution based on the sample {x(i)
j }ni

j=1. Then,

P

(∣∣∣∣∣
[
E∏
i=1

Ex(i)∼P̂i
fi(x

(i))

]
−
[
E∏
i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ T
)
≥ 1− 2

E∑
i=1

exp

(
− niT

2

2E2B2E

)
.

Proof. By Lemma 8, we have∣∣∣∣∣
[
E∏
i=1

Ex(i)∼P̂i
fi(x

(i))

]
−
[
E∏
i=1

Ex(i)∼Pi
fi(x

(i))

]∣∣∣∣∣ ≤ BE−1
E∑
i=1

∣∣∣Ex(i)∼P̂i
fi(x

(i))− Ex(i)∼Pi
fi(x

(i))
∣∣∣ .

By applying the Hoeffding’s inequality to each term in the sum, we have P
(∣∣∣Ex(i)∼P̂i

fi(x
(i))− Ex(i)∼Pi

fi(x
(i))
∣∣∣ ≤ t) ≥

1− 2 exp
(
− 2nit

2

4B2

)
. The result is obtained with a union bound.

H. External Lemmas
In this section, we provide known results referred to in this work.
Lemma 10 (Chwialkowski et al. (2015, Lemma 1)). If k is a bounded, analytic kernel (in the sense given in Definition 1) on
Rd × Rd, then all functions in the RKHS defined by k are analytic.

Lemma 11 (Chwialkowski et al. (2015, Lemma 3)). Let Λ be an injective mapping from the space of probability measures
into a space of analytic functions on Rd. Define

d2VJ
(P,Q) =

J∑
j=1

|[ΛP ](vj)− [ΛQ](vj)|2 ,

where VJ = {vi}Ji=1 are vector-valued i.i.d. random variables from a distribution which is absolutely continuous with
respect to the Lebesgue measure. Then, dVJ

(P,Q) is almost surely (w.r.t. VJ ) a metric.

Lemma 12 (Bochner’s theorem (Rudin, 2011)). A continuous function Ψ : Rd → R is positive definite if and only if it is
the Fourier transform of a finite nonnegative Borel measure ζ on Rd, that is, Ψ(x) =

∫
Rd e

−ix>ω dζ(ω), x ∈ Rd.
Lemma 13 (A bound for U-statistics (Serfling, 2009, Theorem A, p. 201)). Let h(x1, . . . ,xm) be a U-statistic kernel for
an m-order U-statistic such that h(x1, . . . ,xm) ∈ [a, b] where a ≤ b <∞. Let Un =

(
n
m

)−1∑
i1<···<im h(xi1 , . . . ,xim)

be a U-statistic computed with a sample of size n, where the summation is over the
(
n
m

)
combinations of m distinct elements

{i1, . . . , im} from {1, . . . , n}. Then, for t > 0 and n ≥ m,

P(Un − Eh(x1, . . . ,xm) ≥ t) ≤ exp
(
−2bn/mct2/(b− a)2

)
,



An Adaptive Test of Independence with Analytic Kernel Embeddings

P(|Un − Eh(x1, . . . ,xm)| ≥ t) ≤ 2 exp
(
−2bn/mct2/(b− a)2

)
,

where bxc denotes the greatest integer which is smaller than or equal to x. Hoeffind’s inequality is a special case when
m = 1.

Lemma 14 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables such that a ≤ Xi ≤ b almost surely.
Define X := 1

n

∑n
i=1Xi. Then,

P
(∣∣X − E[X]

∣∣ ≤ α) ≥ 1− 2 exp

(
− 2nα2

(b− a)2

)
.
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