
Differentially Private Chi-squared Test by Unit Circle Mechanism

A. Support Vector Technique
We describe Algorithm 2 in detail. Algorithm 2 takes as input the sample set S, the query sequence F , the sensitivity of
query ∆, the threshold τ , and the stop parameter s. Algorithm 2 outputs the result of each comparison with the threshold.
In Algorithm 2, each noisy query output is compred with a noisy threshold at line 4 and outputs the result of comparison.
Let ⊤ mean that fk(S) > τ . Algorithm 2 is terminated if outputs ⊤ s times.

Algorithm 2 Sparse Vector Technique (Dwork & Roth, 2014).
Require: Sample set S, query sequence F , sensitivity of query ∆, threshold τ , stop parameter s

1: ρ = Lap(2∆s/ϵ)
2: count = 0
3: for each fi ∈ F do
4: if fi(S) + Lap(4∆s/ϵ) ≥ τ + ρ then
5: Output ⊤
6: ρ = Lap(2∆s/ϵ1)
7: count = count +1
8: if count ≥ s then
9: Abort

10: end if
11: else
12: Output ⊥
13: end if
14: end for

B. The proof of Theorem 2
Proof. By definition, we have

Pr[M(S, τ̂α) = acc|H1 is true]
= sup

P∈P
Pr
S∼P

[M(S, τ̂α) = acc]

= sup
P∈P

{
Pr
S∼P

[M(S, τ̂α) = acc|χ2(S) > τ̂α + γ] Pr
S∼P

[χ2(S) > τ̂α + γ]

+ Pr
S∼P

[M(S, τ̂α) = acc|χ2(S) ≤ τ̂α + γ] Pr
S∼P

[χ2(S) ≤ τ̂α + γ]

}

≤ sup
P∈P

{
Pr
S∼P

[M(S, τ̂α) = acc|χ2(S) > τ̂α + γ] + Pr
S∼P

[χ2(S) ≤ τ̂α + γ]

}
.

For any P ∈ P , PrS∼P [χ2(S) ≤ τ̂α + γ] ≤ βτ̂α+γ by definition. Thus, we have

Pr[M(S, τ̂α) = acc|H1 is true] ≤ sup
P∈P

{
Pr

S∼P
[M(S, τ̂α) = acc|χ2(S) > τ̂α + γ] + βτ̂α+γ

}
,
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C. The proof of Theorem 3
Proof. Fix the sample S. Then, the conditional distribution Pr[M∆(S, τ̂α) = acc|S] is obtained as

Pr[M∆(S, τ̂α) = acc|S] = Pr

[
χ2(S) + Lap

(
∆

ϵ

)
≤ τ̂α

]

= Pr

[
Lap

(
∆

ϵ

)
≤ τ̂α − χ2(S)

]

=
ϵ

2∆

∫ τ̂α−χ2(S)

−∞
exp

(
xϵ

∆

)
dx

=
1

2
exp

(
(τ̂α − χ2(S))ϵ

∆

)
.

Under the condition χ2(S) > τ̂α + γ, we have

Pr[M∆(S, τ̂α) = acc|S] =Pr

[
χ2(S) + Lap

(
∆

ϵ

)
≤ τ̂α

]

≤1

2
exp

(
−γϵ
∆

)
. (8)

The gamma error is rearranged as

E(τ̂α, γ,M∆) = sup
P∈P

E
S∼P

[Pr[M∆(S, τ̂α) = acc|S]|χ2(S) > τ̂α + γ]. (9)

Substituting Eq. 8 into Eq. 9 gives the claim.

D. The proof of Lemma 1
Proof. Let χ2(c11, c10) = τα. Eq. 4 is rearranged as

Ac211 +Bc210 + 2Cc11c10 +D(c11 + c10) = 0, (10)

where A = (N2
0N + ταN1N0), B = (N2

1N + ταN1N0), C = N1N0(τα − N), and D = −ταN1N0N . Eq. 10 is a
quadratic form, and it is an ellipse if and only if AB − C2 > 0. For any N1 > 0, N0 > 0, N > 0, and τα > 0, we have

AB − C2 = (N2
0N + ταN1N0)(N

2
1N + ταN1N0)− {N1N0(τα −N)}2

= ταNN1N0(N1 +N0)
2 > 0.

Thus, we get the claim.

E. The affine transformation V

The affine transformation V that transforms the ellipse derived in Eq. 10 to the unit circle is defined as follows:

V ((c11, c10)
t) =

⎛

⎝

√
λ1
R 0

0
√

λ2
R

⎞

⎠
(⎛

⎝
C√

C2+(λ1−A)2
(λ1−A)√

C2+(λ1−A)2

−(λ1−A)√
C2+(λ1−A)2

C√
C2+(λ1−A)2

⎞

⎠
(

c11
c10

)
+

D

2
√

C2 + (λ1 −A)2

(
C+λ1−A

λ1
C+λ2−B

λ2

))
.

where λ1 and λ2 are the eigenvalues of matrix
(
A C
C B

)
and

R =

D2

(
λ2(C + λ1 −A)2 + λ1(C + λ2 −B)2

)

4λ1λ2

(
C2 + (λ1 −A)2

) . (11)
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F. The proof of Theorem 5
Proof. We can rewrite Eq. 10 as

(c11, c10)

(
A C
C B

)(
c11
c10

)
+D (1, 1)

(
c11
c10

)
= 0, (12)

where A,B,C and D are defined in Appendix D. By eigendecomposition of the matrix
(
A C
C B

)
, we obtain as

(
A C
C B

)
= PTdiag

(
λ1 0
0 λ2

)
P,

where λ1,λ2 =
(A+B)±

√
(A+B)2−4AB+4C2

2 and

P =

⎛

⎝
C√

C2+(λ1−A)2
−(λ1−A)√
C2+(λ1−A)2

λ1−A√
C2+(λ1−A)2

C√
C2+(λ2−A)2

⎞

⎠ .

Let
(

ĉ11
ĉ10

)
= PT

(
c11
c10

)
. Then, we can rewrite Eq. 12 as

λ1

(
ĉ11 +

D

2λ1

√
C2 + (λ1 −A)2

(C + λ1 −A)

)2

+ λ2

(
ĉ10 +

D

2λ2

√
C2 + (λ1 −A)2

(C + λ2 −B)

)2

=

D2

(
λ2(C + λ1 −A)2 + λ1(C + λ2 −B)2

)

4λ1λ2

(
C2 + (λ1 −A)2

) . (13)

The right hand side is equivalent to R. Since A > 0 and B > 0, we have λ1 ≥ 0 and λ2 ≥ 0. Thus, by definition R ≥ 0.
Dividing the right hand side and left hand side of Eq. 13 by R gives ċ211 + ċ210 = 1 where

ċ11 =

√
λ1

R

(
c̃11 +

D

2λ1

√
C2 + (λ1 −A)2

(C + λ1 −A)

)
,

ċ10 =

√
λ2

R

(
ĉ10 +

D

2λ2

√
c2 + (λ1 −A)2

(C + λ2 −B)

)
.

Consequently, χ2(c11, c10) = τα if and only if the vector (ċ11, ċ10) is on the boundary of the unit circle.

The relationship between (c11, c10) and (ċ11, ċ10) is obtained as

(
ċ11
ċ10

)
=

⎛

⎝

√
λ1
R 0

0
√

λ2
R

⎞

⎠
(⎛

⎝
C√

C2+(λ1−A)2
(λ1−A)√

C2+(λ1−A)2

−(λ1−A)√
C2+(λ1−A)2

C√
C2+(λ1−A)2

⎞

⎠
(

c11
c10

)
+

D

2
√

C2 + (λ1 −A)2

(
C+λ1−A

λ1
C+λ2−B

λ2

))
.

Thus, by the definition of V , we have (ċ11, ċ10)t = V ((c11, c10)t). Since R ≥ 0, χ2(c11, c10) > τα if and only if
1 < ∥(ċ11, ċ10)∥2 = ∥V ((c11, c10)t)∥2.

G. The proof of Lemma 2
Proof. Let S and S′ be databases such that d(S, S′) = 1. Let c = (c11, c10)t and c′ = (c′11, c

′
10)

t be the elements of the
contingency table derived from S and S′, respectively. Then, we have

|∥V (c)∥2 − ∥V (c′)∥2| =
√
∥V (c)∥22 + ∥V (c′)∥22 − 2∥V (c)∥2∥V (c′)∥2

=
√
∥V (c)− V (c′)∥22 + 2(V (c))tV (c′)− 2∥V (c)∥2∥V (c′)∥2.
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From CauchySchwarz inequality, we have

|∥V (c)∥2 − ∥V (c′)∥2| ≤∥V (c)− V (c′)∥2.

From the definition of V , we have

V (c)− V (c′) =

⎛

⎝

√
λ1
R 0

0
√

λ2
R

⎞

⎠

⎛

⎝
C√

C2+(λ1−A)2
(λ1−A)√

C2+(λ1−A)2

−(λ1−A)√
C2+(λ1−A)2

C√
C2+(λ1−A)2

⎞

⎠ (c− c′).

Since d(S, S′) = 1, an element of c− c′ is either of 1 or −1 and the other is 0. Consequently, we have

∥V (c)− V (c′)∥2 =

√√√√ 1

C2 + (λ1 −A)2

((
C

√
λ1

R

)2

+

(
−(λ1 −A)

√
λ2

R

)2
)

≤

√(√
λ1

R

)2

+

(√
λ2

R

)2

=

√
λ1 + λ2

R
.

Hence,

∆ = max
S,S′:d(S,S′)=1

|∥V (c)∥2 − ∥V (c′)∥2| ≤
√

λ1 + λ2

R
.

By using Eq. 11, we get

∆ =

√
λ1 + λ2

R

= 2

√
(N2

0 +N2
1 )N + 2ταN0N1

ταN0N1N2
.

H. The proof of Theorem 7
Proof. As the same manner of the proof of Theorem 3, we have

Pr[M∆V (S, τ̂α) = acc|S] =
1

2
exp

(
(1− ||V ((c11, c10)t)||2)ϵ

∆V

)

Define g(c11, c10) = N1N0(c211 + c210)−N1N0N(c11 + c10) + 2N1N0c11c10. Under the condition χ2(S) > τ̂α + γ, we
have

∥V ((c11, c10)
t)∥22 +

γg(c11, c10)

R
≥ 1.

Hence,

∥V ((c11, c10)
t)∥2 ≥

√
1− γg(c11, c10)

R
.

By the definition of R and g, γg(c11,c10)
R = −4γN1N0

τ̂αN2 . Hence,

Pr[M∆V (S, τ̂α) = acc|S] ≤ 1

2
exp

(
ϵN

2

(
1−

√
1 +

4γM1M0

τ̂αN2

)√
τ̂αN1N0

(N2
1 +N2

0 )N + 2τ̂αN1N0

)
.

Thus, we get the claim by Eq. 9.
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I. Algorithm of Unit Circle Mechanism + SVT
We describe Algorithm 3 in detail. Algorithm 3 takes as input sample sets S1, · · · , SK，the significance level α, the
privacy budget ϵ, and two stop parameters s1 ≤ s2. Algorithm 3 is terminated if (1) it rejects at most s1 null hypothesis, or
(2) it outputs s2 test results. In Algorithm 3, the outer for-loop (line 3 - 26) is the main loop of SVT. The test statistic for Sk

is evaluated at line 5 and is compared with a noisy threshold at line 12. To keep the type-I error as, at most, α per test, we
want that d̂k < 1+ ρ holds with the probability of at least 1−α, where ρ is the noise that SVT requires to add a threshold.
To attain this, Algorithm 3 generates a sample distribution of the randomized test statistics by Monte Carlo sampling at the
inner for-loop (line 6 - 10). What differs from the normal SVT framework are s2 and Monte Carlo sampling to find a new
threshold to control FWER. For Algorithm 3, if marginals Nk

0 , N
k
1 ,M

k
0 ,M

k
1 are public, then the computation of threshold

τk does not consume an additional privacy budget Therefore, Algorithm 3 requires the same privacy budget as SVT does.

Algorithm 3 Unit Circle Mechanism + SVT
Require: Sample set S1, · · · , SK，significance level α, privacy budget ϵ, stop parameters s1 ≤ s2,

1: count1 = 0，count2 = 0

2: ρ = Lap(
2s1∆V, α

s2
(N0,N1)

ϵ )
3: for each sample set Sk do
4: Evaluate contingency table from Sk

5: d̂k(Sk) = ||V ((ck11, c
k
10)

t)||2 + Lap(
4s1∆V, α

s2
(N0,N1)

ϵ )
6: for j = 1 to m do
7: Sk,j ∼ mult(N1M

k
1

N2 , N0M
k
1

N2 , N1M
k
0

N2 , N0M
k
0

N2 )
8: Evaluate contingency table from Sk,j

9: d̂k,j(Sk,j) = ||V ((ck,j11 , c
k,j
10 )

t)||2 + Lap(
4s1∆V, α

s2
(Nkj

0 ,Nkj
1 )

ϵ )− ρ
10: end for
11: Let τ̂k be the ⌈(m+ 1)(1− α)⌉th largest value in {d̂k,j}j=1,··· ,m
12: if d̂k(Sk) > τ̂k + ρ then
13: Return rej

14: ρ = Lap(
2s1∆V, α

s2
(N0,N1)

ϵ )
15: count1 = count1 + 1
16: if count1 ≥ s1 then
17: Abort
18: end if
19: else
20: Output acc
21: end if
22: count2 = count2 + 1
23: if count2 ≥ s2 then
24: Abort
25: end if
26: end for
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J. Algorithm of Unit Circle Mechanism + EM
We describe Algorithm 4 in detail. Algorithm 4 takes the sample sets S1, · · · , SK，the significance level α, the privacy
budget ϵ, the stop parameter s1. Algorithm 4 outputs s1 test results. Let Eϵ

q be the exponential mechanism with privacy bud-
get ϵ and score function q. Algorithm 4 first calculates the score function defined by Jhonson et al. (Johnson & Shmatikov,
2013) (line 1) and chooses the sample sets associated with the top s1 significant random variable pairs by the exponential
mechanism (line 5). Then, the mechanism gets the results of the test by using the unit circle mechanism (line 9). In Al-
gorithm 4, we spend privacy budget ϵ

2s1
for the exponential mechanism and ϵ

2s1
for the unit circle mechanism s1 times,

respectively.

Algorithm 4 Unit Circle Mechanism + EM
Require: Sample sets S1, · · · , SK，significance level α, privacy budget ϵ, stop parameter s1,

1: Calculate score function q(Sk) for each sample set Sk

2: I = ∅
3: for j = 1 to s1 do
4: repeat
5: Ŝ ← E

ϵ
2s1
q

6:
7: until Ŝ /∈ I
8: I ← I ∪ {Ŝ}
9: Run Algorithm 1 with Sample set Ŝ and significance Level α

K and privacy budget ϵ
2s1

10: end for


