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Omitted Proofs
Proof of Theorem 1. By Asn. 1, we have
EY|X=zT=t|=E[Y(T)| X =z,T =1 (definition of Y = Y (T"))
=EY@®)| X =2,T =t (conditioned on T' = ¢)
=E[Y()| X =] (Asn. 1).

Consider a realization of the data and X = = where convergence occurs for all ¢ € [m]. Let
e(z)=if{¢:se[m], (= (E]Y | X =2,T =s] —mingep E[Y | X =2,T =1]) > 0},

where inf(&) = oco. By assumption of convergence at this realization of the data and X = x, we have that even-
tually for all ¢t € [m], |, (z) —E[Y | X =2,T =t]| < e(x)/2, at which point we must necessarily also have
Tn(z) € argmingg E[Y | X = 2,T = t] = argmin;e[n,) E[Y (¢) | X = z]. By assumption of pointwise consistency
and because the intersection of finitely many a.s. events is a.s., the set of such realization of the data and X = z have
probability 1. O

Proof of Theorem 2. First note that, given any z with P (T'=1¢ | X = z) > 0, we have

EYI[T=t]| X=x YI[T=t] YI[T=t YI[T=t
BV | X == = S5 =u [GF5 | X =o] =B [{5 | X =a] =B["G [ x =2

Therefore, since P (T =t | X) > 0 almost surely,

R(r)=E[Y(r(X))] =EE[Y(r(X)) | X]] (iterated expectations)
=EEY(F(X)) | X, T=71(X)]] (Asn. 1)
=EEY | X, T =7(X)]] (definition of )
=E[E[YI[T =7(X)]/Q | X]] (above observation)
=E[YIT =7(X)]/Q] (iterated expectations) . O

Proof of Theorem 4. We start with 1vA. Restrict to  such that ¢(s,z) > 0 Vs (almost everywhere). Let u(t,z) =
E[Y(t) | X = z]. Under Asn. 1,

S =E[Y | X =2, T =t] —E[Y | X =2, T # 1]
=EY [ X=2T=1t-3 LEY|X=2T=s|PT=s|X=2T#1)
= M(t7x) - Zs7ét (ZS(S,Q?),U(S,JJ)/Z‘”& QZS(S,.Z‘).
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Since ¢(s,x) > 0, it’s clear that §*¥A(z) < §5¥A(z) Vs if and only if uu(¢,z) < p(s,z) Vs. The rest of the proof for 1vA
follows the same way as Thm. 1, showing that, under the assumption of pointwise consistent estimation, the estimation

2ap SUP;e () ‘SZVA(x) - 6”A(x)‘ is eventually smaller than half the decision gap, €!"A(z) = inf{¢ : s € [m], ( =
(65A(x) — minge[m) 6"™4(x)) > 0}, a.s. and for almost everywhere z.
Next, we deal with 1v1-A. Fix z. Fix any t,, € arg max,e) pu(t, ). Let 6"™(z) = ming 6"%(x). If t, 5 # ty,, then

SN () — §SVIN (1) = p(t, 2) — (s, ). On the other hand, for any ¢ € [m], we always have both (¢, ) — p(tm, ) <0
and §1Vmin () — §tmvmin(p) < . Therefore, we have

t € argmingepm) pu(t,z) <= pu(t,x) — p(s,v) <0Vs #t <= p(t,z) — p(s,z) <0Vs #t,ty,
— 6tvmin(x) 5svmin( ) <0Vs 74 tty, <= 5tvmin($) _ 5svmin($) <0Vs ?é t
< t € argmingepy, 0™ (2).

Let  4fvmin(y) = ming 6%, (x) and  note that SUDte ()] Stvmin () _ gtvmin () <

ni+ng =
SUD4 ¢ [m],s€[m] ’cgflvfin (x) — (5”5(:10)‘, which converges to zero under pointwise consistency. The rest of the proof
for 1vl-A follows as above, showing that this estimation gap is eventually smaller than half the decision gap,
" A(z) = inf{C : s € [m], ¢ = (0™ (z) — mingepy 6¥™"(z)) > 0}, a.s. and for almost everywhere .
Next, we deal with 1v1-B. Fix x and a realization of the data where convergence holds for all £ # s. Then, eventually
otvs, - (x) — (5tvs(x)‘ < [6%%(z)| /2 for all t # s such that §"*(x) # 0. That is, eventually I [5“’5 (z) < 0} =

nt+ns nt+n

[[6™*(x) < 0] for all t # s such that 6*'*(x) # 0. Restrict to such large enough n. Let k(z) = >, I[6"*(x) < 0],
ky(z) = Dot [52"f+n( ) < 0}, and kmin(2) = |arg minge(n,) p(t, z)|. Then, t € arg minge(y,) u(t, z) < ki(z) =

M — kmin(2) <= k(2) > m — kmin(z) <=t € arg MAXte ] D gpr | [&xﬁn (x) < 0}.

Proof of Theorem 5. By random sampling, (X, le , Y, (1),...,Y;,(m)) are distributed iid as (X, T,Y(1),...,Y(m))

J
is in population. For j € [Neest], let ijt be i;’s match for treatment ¢, or 4; if 7;;, = t. Under exact matching,
Yi, (1),...,Y;,,(m) | X, is distributed the same as Y;,(1),...,Y;,(m) | X;,,T;, = t. By writing Yijt =Y, =
Yo Lt =Y, (s), We see that

E[YA;JT(Xij)} =E[E[XCL I][s=7(X;,)] Vi, (s) | Xi,]] (iterated expectation)
=Y E[I[s =7(Xi)| E[Yi,,(s) | Xj,]] (linearity)
=S E[I[s = (X)) E [V, (s) | X, Ti = 5] (exact matching)
=2, E [ [s = 7(Xi)]E [YzJ(S) ‘ Xz]] (Asn. 1)
=E [E [Z:; [[s =7(X;)] Yi, (s) | Xz]] (linearity)

=E Y, (7(X;,)) (iterated expectation) [



