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Omitted Proofs
Proof of Theorem 1. By Asn. 1, we have

E [Y | X = x, T = t] = E [Y (T ) | X = x, T = t] (definition of Y = Y (T ))
= E [Y (t) | X = x, T = t] (conditioned on T = t)
= E [Y (t) | X = x] (Asn. 1).

Consider a realization of the data and X = x where convergence occurs for all t ∈ [m]. Let

ε(x) = inf{ζ : s ∈ [m], ζ =
(
E [Y | X = x, T = s]−mint∈[m] E [Y | X = x, T = t]

)
> 0},

where inf(∅) = ∞. By assumption of convergence at this realization of the data and X = x, we have that even-
tually for all t ∈ [m], |µ̂t,nt

(x)− E [Y | X = x, T = t]| < ε(x)/2, at which point we must necessarily also have
τ̂n(x) ∈ argmint∈[m] E [Y | X = x, T = t] = argmint∈[m] E [Y (t) | X = x]. By assumption of pointwise consistency
and because the intersection of finitely many a.s. events is a.s., the set of such realization of the data and X = x have
probability 1.

Proof of Theorem 2. First note that, given any x with P (T = t | X = x) > 0, we have

E [Y | X = x, T = t] = E[Y I[T=t]|X=x]
P(T=t|X=x) = E

[
Y I[T=t]
φ(t,x) | X = x

]
= E

[
Y I[T=t]
φ(T,X) | X = x

]
= E

[
Y I[T=t]

Q | X = x
]
.

Therefore, since P (T = t | X) > 0 almost surely,

R(τ) = E [Y (τ(X))] = E [E [Y (τ(X)) | X]] (iterated expectations)
= E [E [Y (τ(X)) | X,T = τ(X)]] (Asn. 1)
= E [E [Y | X,T = τ(X)]] (definition of Y )

= E [E [Y I [T = τ(X)]/Q | X]] (above observation)
= E [Y I [T = τ(X)]/Q] (iterated expectations) .

Proof of Theorem 4. We start with 1vA. Restrict to x such that φ(s, x) > 0 ∀s (almost everywhere). Let µ(t, x) =
E [Y (t) | X = x]. Under Asn. 1,

δtvA(x) = E [Y | X = x, T = t]− E [Y | X = x, T 6= t]

= E [Y | X = x, T = t]−
∑
s6=t E [Y | X = x, T = s]P (T = s | X = x, T 6= t)

= µ(t, x)−
∑
s6=t φ(s, x)µ(s, x)/

∑
s6=t φ(s, x).
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Since φ(s, x) > 0, it’s clear that δtvA(x) ≤ δsvA(x) ∀s if and only if µ(t, x) ≤ µ(s, x) ∀s. The rest of the proof for 1vA
follows the same way as Thm. 1, showing that, under the assumption of pointwise consistent estimation, the estimation
gap supt∈[m]

∣∣∣δ̂tvA
n (x)− δtvA(x)

∣∣∣ is eventually smaller than half the decision gap, ε1vA(x) = inf{ζ : s ∈ [m], ζ =(
δsvA(x)−mint∈[m] δ

tvA(x)
)
> 0}, a.s. and for almost everywhere x.

Next, we deal with 1v1-A. Fix x. Fix any tm ∈ argmaxt∈[m] µ(t, x). Let δtvmin(x) = mins6=t δ
tvs(x). If t, s 6= tm, then

δtvmin(x)−δsvmin(x) = µ(t, x)−µ(s, x). On the other hand, for any t ∈ [m], we always have both µ(t, x)−µ(tm, x) ≤ 0
and δtvmin(x)− δtmvmin(x) ≤ 0. Therefore, we have

t ∈ argmint∈[m] µ(t, x) ⇐⇒ µ(t, x)− µ(s, x) ≤ 0 ∀s 6= t ⇐⇒ µ(t, x)− µ(s, x) ≤ 0 ∀s 6= t, tm
⇐⇒ δtvmin(x)− δsvmin(x) ≤ 0 ∀s 6= t, tm ⇐⇒ δtvmin(x)− δsvmin(x) ≤ 0 ∀s 6= t

⇐⇒ t ∈ argmint∈[m] δ
tvmin(x).

Let δ̂tvmin
n (x) = mins 6=t δ̂

tvs
nt+ns

(x) and note that supt∈[m]

∣∣∣δ̂tvmin
n (x)− δtvmin(x)

∣∣∣ ≤

supt∈[m],s∈[m]

∣∣∣δ̂tvsnt+ns
(x)− δtvs(x)

∣∣∣, which converges to zero under pointwise consistency. The rest of the proof
for 1v1-A follows as above, showing that this estimation gap is eventually smaller than half the decision gap,
ε1v1-A(x) = inf{ζ : s ∈ [m], ζ =

(
δsvmin(x)−mint∈[m] δ

tvmin(x)
)
> 0}, a.s. and for almost everywhere x.

Next, we deal with 1v1-B. Fix x and a realization of the data where convergence holds for all t 6= s. Then, eventually∣∣∣δ̂tvsnt+ns
(x)− δtvs(x)

∣∣∣ ≤ |δtvs(x)| /2 for all t 6= s such that δtvs(x) 6= 0. That is, eventually I
[
δ̂tvsnt+ns

(x) < 0
]
=

I [δtvs(x) < 0] for all t 6= s such that δtvs(x) 6= 0. Restrict to such large enough n. Let kt(x) =
∑
t6=s I [δtvs(x) < 0],

k̂t(x) =
∑
t 6=s I

[
δ̂tvsnt+ns

(x) < 0
]
, and kmin(x) =

∣∣argmint∈[m] µ(t, x)
∣∣. Then, t ∈ argmint∈[m] µ(t, x) ⇐⇒ kt(x) =

m− kmin(x) ⇐⇒ k̂t(x) ≥ m− kmin(x)⇐= t ∈ argmaxt∈[m]

∑
s6=t I

[
δ̂tvsnt+ns

(x) < 0
]
.

Proof of Theorem 5. By random sampling, (Xij , Tij , Yij (1), . . . , Yij (m)) are distributed iid as (X,T, Y (1), . . . , Y (m))
is in population. For j ∈ [ntest], let ijt be ij’s match for treatment t, or ij if Tij = t. Under exact matching,
Yijt(1), . . . , Yijt(m) | Xji is distributed the same as Yij (1), . . . , Yij (m) | Xji , Tji = t. By writing Ŷijt = Yijt =∑m
s=1 I [t = s]Yijs(s), we see that

E[Ŷijτ(Xij
)] = E

[
E
[∑m

s=1 I
[
s = τ(Xij )

]
Yijs(s) | Xij

]]
(iterated expectation)

=
∑m
s=1 E

[
I
[
s = τ(Xij )

]
E
[
Yijs(s) | Xji

]]
(linearity)

=
∑m
s=1 E

[
I [s = τ(Xi)]E

[
Yij (s) | Xi, Ti = s

]]
(exact matching)

=
∑m
s=1 E

[
I [s = τ(Xi)]E

[
Yij (s) | Xi

]]
(Asn. 1)

= E
[
E
[∑m

s=1 I [s = τ(Xi)]Yij (s) | Xi

]]
(linearity)

= E
[
Yij (τ(Xij ))

]
(iterated expectation)


