
Long Version of Proof of Theorem 3

Supplement to ICML submission “Learning in POMDPs with Monte Carlo Tree Search”

While RS-BA-POMCP is potentially more efficient, it is not directly whether it still converges to an ε-optimal
value function. Here we show the main steps in proving that it is sound. These main steps are similar to the proof
in POMCP. We point out however, that the technicalities of proving the components are far more involved.

Notation
We will use the following notation.

Action-observation histories.
• hd is an action-observation history at depth d of a simulation,
• hd = (a0, z1, . . . , ad−1, zd).

‘Full’ histories. In addition to actions and observations, full histories also include the states.
• H0 the (unknown) full history (of real experience) at the root of the simulation: i.e., if there have been k

steps of ‘real’ experience H0 = (s−k, a−k, s−k+1, z−k−1, . . . , a−1, s0, z0)
• Hd is a full history (of simulated experience) at depth d in the lookahead tree: Hd = (H0, a0, s1, z1, a1, s2, z2, . . . , ad−1, sd, zd) =

(Hd−1, ad−1, sd, zd) = 〈s0:d, hd〉.
• H(i)

d the full history at depth d corresponding to simulation i.
• In our proof, we will also need to indicate if a particular full history Hd is consistent with a full history at the

root of simulation:

Cons(H0, Hd) =

{
1 if Hd is consistent with the full history at the root H0 ,
0 otherwise.

Dynamics Function. We fold transition and observations function into one:
• D denotes the dynamics model
• Dstzt

st−1at−1
= Ds′z

sa = Dst−1,at−1
(st, zt) = D(st, zt|st−1, at−1) = Pr(st, zt|st−1, at−1)

• Dsa denotes the vector:
〈
Ds1z1

sa , . . . , Ds|S|z|Z|

sa

〉
Counts
• χs′zsa denotes how often 〈s′, z〉 occurred after 〈s, a〉
• χsa is the vector of counts for 〈s, a〉.
• χ =

〈
χs1a1 , . . . , χs|S|a|A|

〉
is the total collection of all such count vectors.

• χ(Hd) denotes the vector of counts at simulated full history Hd.
• If χ0 is the count vector at the root of simulation, we have that χ(Hd) = χ0 + ∆(Hd), with ∆(Hd) the vector

of counts of all (s, a, s′, z) quadruples occurring in Hd.

Dirichlet distributions
• let x = 〈x1 . . . xK〉 ∈ ∆K and α = 〈α1 . . . αK〉 be a count vector
• Dir(x|α) = Pr(x;α) = B(α)

∏K
i=1 x

αi−1
i

• with B(α) =
Γ(

∑
i αi)∏

i Γ(αi)
the Dirichlet normalization constant, with Γ the gamma function.

• So, in translated in terms of dynamics function and counts, we have:

– for a particular s, a: Dir(Dsa|χsa) = Pr(Dsa;χsa) = B(χsa)
∏
〈s′,z〉∈S×Z

(
Ds′z
sa

)χs′zsa
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– we will also abuse notation and write Dir(D|χ) =
∏
〈s,a〉Dir(Dsa|χsa).

Var.
• ẋ denotes a root sampled quantity x.
• I{condition} is the indicator function which is 1 iff condition is true and 0 otherwise.

Definitions
Definition 1. The expected full-history expected transition BA-POMDP rollout distribution is the distribution
over full histories of a BA-POMDP, when performing Monte-Carlo simulations according to a policy π. It is given
by

Pπ(Hd+1) = Dχ(Hd)(sd+1, zd+1|as, sd)π(ad|hd)Pπ(Hd) (1)

with Pπ(H0) = b0(〈s0, χ0〉) the belief ‘now’ (at the root of the online planning).

Definition 2. The full-history root-sampling (RS) BA-POMDP rollout distribution is the distribution over full
histories of a BA-POMDP, when performing Monte-Carlo simulations according to a policy π in combination
with root sampling of the dynamics model D. This distribution, for a particular stage d, is given by

P̃πK(Hd) ,
1

Kd

Kd∑
i=1

I{
Hd=H

(i)
d

},
where

• K is the number of simulations that comprise the empirical distribution,
• Kd is the number of simulations that reach depth d (not all simulations might be equally long),
• H(i)

d is the history specified by the i-th particle at stage d.

Remark: throughout this proof we assume that there is only 1 initial count vector at the root. Or put better:
we assume that there is one unique H0 at which all simulations start. However, for ‘real’ steps t > 0 we could be
in different Hreal

t all corresponding to the same observed real history hrealt . In this case, root sampling from the
belief can be thought of root sampling the initial full history H0 ∼ b(Hreal

t ). As such, our proof shows convergence
in probability of

∀H0
∀Hd P̃πKd(Hd|H0)

p→ Pπ(Hd|H0).

for each such sampled H0. It is clear that that directly implies that

∀Hd P̃πKd(Hd) = EH0

[
P̃πKd(Hd|H0)

]
p→ EH0 [Pπ(Hd|H0)] = Pπ(Hd).

In the below, we omit the explicit conditioning on H0.

Proof of Main Theorem
The proof depends on a lemma that follows below.

Theorem 3. The full-history RS-BA-POMDP rollout distribution (Def. 2) converges in probability to full-history
BA-POMDP rollout distribution (Def. 1):

∀Hd P̃πKd(Hd)
p→ Pπ(Hd). (2)

Proof. For ease of notation we prove this for stage d + 1. Note that a history Hd+1 = (Hd, ad, sd+1, zd+1), only
differs from Hd in that it has one extra transition for the (sd, ad, sd+1, zd+1) quadruple, implying that χ(Hd+1) only
differs from χ(Hd) in the counts χsdad for sdad. Therefore, the expression for P̃πKd(Hd) derived in Lemma 4 below
(cf. equation (20)) can be written in recursive form as
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P̃π(Hd+1) = Cons(H0, Hd)

d∏
t=0

π(at|ht)
∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd+1))

= Cons(H0, Hd)

d−1∏
t=0

π(at|ht)π(ad|hd)
∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd))

B(χsa(Hd))

B(χsa(Hd+1))

= Cons(H0, Hd)

d−1∏
t=0

π(at|ht)π(ad|hd)

∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd))

∏
〈s,a〉

B(χsa(Hd))

B(χsa(Hd+1))


=

Cons(H0, Hd)

d−1∏
t=0

π(at|ht)
∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd))

π(ad|hd)
B(χsdad(Hd))

B(χsdad(Hd+1))

= P̃π(Hd)π(ad|hd)
B(χsdad(Hd))

B(χsdad(Hd+1))

with base case P̃π(H0) = 1, and

B(χsdad(Hd))

B(χsdad(Hd+1))
=

B(χsdad(H0))

B(χsdad(Hd+1))
· B(χsdad(Hd))

B(χsdad(H0))
=
B(χsdad(H0))/B(χsdad(Hd+1))

B(χsdad(H0))/B(χsdad(Hd))
(3)

the result of dividing out the contribution of the old counts for sdad and multiplying in the new contribution, and
similar for the observations probabilities. Now, we investigate these terms more closely.

Again remember that the sole difference between Hd+1 = (Hd, ad, sd+1, zd+1) andHd is that it has one extra
transition for the (sd, ad, sd+1, zd+1) quadruple. Let us write T =

∑
(s′,z) χ

s′z
sdad

(Hd) for the total of the counts for
sd, ad and N = χ

sd+1zd+1
sdad (Hd) for the number of counts for that such a transition was to (sd+1zd+1). Because Hd+1

only has 1 extra transition, we also know that for this history, the total counts is one higher:
∑

(s′,z) χ
s′z
sdad

(Hd+1) =

T + 1 and since that transition was to (sd+1zd+1) the counts χsd+1zd+1
sdad (Hd+1) = N + 1. Now let us expand the term

from (3):

B(χsdad(Hd))

B(χsdad(Hd+1))
=

Γ(T )/
∏
s′z Γ(χs

′z
sdad

(Hd))

Γ(T + 1)/
∏
s′z Γ(χs′zsdad(Hd+1))

=
Γ(T )

Γ(T + 1)

∏
s′z Γ(χs

′z
sdad

(Hd+1))∏
s′z Γ(χs′sdad(Hd))

=
Γ(T )

Γ(T + 1)

Γ(χ
sd+1zd+1
sdad (Hd+1))

∏
s′z 6=(sd+1zd+1) Γ(χs

′z
sdad

(Hd+1))

Γ(χ
sd+1zd+1
sdad (Hd))

∏
s′z 6=(sd+1zd+1) Γ(χs′zsdad(Hd))

=
Γ(T )

Γ(T + 1)

Γ(χ
sd+1zd+1
sdad (Hd+1))

Γ(χ
sd+1zd+1
sdad (Hd))

=
Γ(T )

Γ(T + 1)

Γ(N + 1)

Γ(N)

Now, the gamma function has the property that Γ(x+ 1) = xΓ(x) [DeGroot, 2004], which means that we get

=
Γ(T )

TΓ(T )

NΓ(N)

Γ(N)
=
N

T
.

Therefore we get
B(χsdad(Hd))

B(χsdad(Hd+1))
=

χ
sd+1zd+1
sdad (Hd)∑

(s′,z) χ
s′z
sdad

(Hd)

and thus

P̃π(Hd+1) = P̃π(Hd)π(ad|hd)
χ
sd+1zd+1
sdad (Hd)∑

(s′,z) χ
s′z
sdad

(Hd)
. (4)

the r.h.s. of this equation is identical to (1) except for the difference in between P̃π(Hd) and Pπ(Hd). This can be
resolved by forward induction with base step: P̃π(H0) = b0(〈s0, χ0, ψ0〉) = Pπ(H0), and the induction step (show
P̃π(Hd+1) = Pπ(Hd+1) given P̃π(Hd) = Pπ(Hd)) directly following from (1) and (4). Therefore we can conclude
that ∀d P̃π(Hd) = Pπ(Hd).
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Since Lemma 4 already established that ∀Hd P̃πKd(Hd)
p→ P̃π(Hd), we directly have

∀Hd P̃πKd(Hd)
p→ Pπ(Hd),

thus proving the result.

The proof depends on the following lemma:

Lemma 4. The full-history RS-BA-POMDP rollout distribution converges in probability to the following quantity:

∀Hd P̃πKd(Hd)
p→ b0(s0)

[
d∏
t=1

π(at−1|ht−0)

]∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd)

 (5)

with B(α) = Γ(α1+...·+αk)
Γ(α1)·...·Γ(αk) the normalization term of a Dirichlet distribution with parametric vector α.

Proof. Via the weak law of large numbers, we have that the empirical mean of a random variable converges in
probability to its expectation.

∀Hd
1

Kd

Kd∑
i=1

I{
Hd=H

(i)
d

} p→ E

[
I{
Hd=H

(i)
d

}]
This expectation can be rewritten as follows

E

[
I{
Hd=H

(i)
d

}] =
∑
H

(i)
d

P̃π
(
H

(i)
d

)
I{
Hd=H

(i)
d

} = P̃π (Hd) (6)

where P̃π(Hd) denotes the (true, non-empirical) probability that the RS-BA-POMDP rollout generates full history
Hd. This is an expectation over the root sampled model Ḋ:

P̃π(Hd) =

ˆ
P̃π
(
Hd|Ḋ

)
Dir(Ḋ|χ̇)dḊ (7)

=

ˆ [
Cons(H0, Hd)

d∏
t=1

Ḋ(stzt|st−1, at−1)π(at−1|ht−1)

]
Dir(Ḋ|χ̇)dḊ (8)

= Cons(H0, Hd)

[
d∏
t=1

π(at−1|ht−1)

](ˆ [ d∏
t=1

Ḋ(stzt|st−1, at−1)

]
Dir(Ḋ|χ̇)dḊ

)
(9)

Where Cons(H0, Hd) is a term that indicates whether (takes value 1 if) Hd is consistent with the full history at the
root H0.1

1An earlier version of this proof [anonymous] contained a term b0(s0) instead of Cons(H0, Hd). This was incorrect since it failed to
recognize that this proof assumes H0 to be fixed. See also the remark on page 2.

4



Now we can exploit the fact that only the Dirichlet for the transitions specified by Hd matter.

ˆ [ d∏
t=1

Ḋ(stzt|st−1, at−1)

]
Dir(Ḋ|χ0)dḊ (10)

={split up the integral over one big vector into integrals over smaller vectors}
ˆ
. . .

ˆ [ d∏
t=1

Ḋst,zt
st−1,at−1

]∏
〈s,a〉

Dir(Ḋsa|χsa(H0))

 dḊs1a1 . . . dḊs|S|a|A| (11)

={reorder the transition probabilities: ∆sas′z
χ (Hd)is the number of occurences of (s, a, s′, z)in Hd}

ˆ
. . .

ˆ ∏
〈s,a〉

∏
〈s′,z〉

(
Ḋs′z
sa

)∆sas′z
χ (Hd)

∏
〈s,a〉

Dir(Ḋsa|χsa(H0))

 dḊs1a1 . . . dḊs|S|a|A| (12)

=

ˆ
. . .

ˆ ∏
〈s,a〉

∏
〈s′,z〉

(
Ḋs′z
sa

)∆sas′z
χ (Hd)

∏
〈s,a〉

B(χ̇sa)
∏
〈s′,z〉

(
Ḋs′z
sa

)χsas′z0 −1

 dḊs1a1 . . . dḊs|S|a|A| (13)

=

ˆ
. . .

ˆ ∏
〈s,a〉

 ∏
〈s′,z〉

(
Ḋs′z
sa

)∆sas′z
χ (Hd)

B(χ̇sa)
∏
〈s′,z〉

(
Ḋs′z
sa

)χsas′z0 −1

 dḊs1a1 . . . dḊs|S|a|A| (14)

=

ˆ
. . .

ˆ ∏
〈s,a〉

B(χ̇sa)

 ∏
〈s′,z〉

(
Ḋs′z
sa

)∆sas′z
χ (Hd)

 ∏
〈s′,z〉

(
Ḋs′z
sa

)χsas′z0 −1

 dḊs1a1 . . . dḊs|S|a|A| (15)

=

ˆ
. . .

ˆ ∏
〈s,a〉

B(χ̇sa)
∏
〈s′,z〉

(
Ḋs′z
sa

)χsas′z0 −1+∆sas′z
χ (Hd)

 dḊs1a1 . . . dḊs|S|a|A| (16)

Now we reverse the order of integration and multiplication, which is possible since the different s, a pairs over which
we integrate are disjoint.2 We obtain:

=
∏
〈s,a〉

B(χsa(H0))

ˆ ∏
〈s′,z〉

(
Ḋsa(s′, z)

)χsas′z0 +∆sas′z
χ (Hd)−1

dḊsa (17)

={since we integrate over the entire vector Ḋsa, the integral equals 1/B(χsa(H0) + ∆sa
χ (Hd))}∏

〈s,a〉

B(χsa(H0))
1

B(χsa(H0) + ∆sa
χ (Hd))

(18)

=
∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd))
(19)

Therefore

P̃π(Hd) = Cons(H0, Hd)

[
d−1∏
t=0

π(at|ht)

]∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd))

 , (20)

proving (5).

2E.g, consider two sets A1 =
{
a
(1)
1 , a

(2)
1

}
and A2 =

{
a
(1)
2 , a

(2)
2 , a

(3)
2

}
. Equation (16) is of the same form as

∑
a1∈A1

∑
a2∈A2

2∏
i=1

ai =
∑

a1∈A1

∑
a2∈A2

a1a2 = a
(1)
1 a

(1)
2 + a

(1)
1 a

(2)
2 + a

(1)
1 a

(3)
2 + a

(2)
1 a

(1)
2 + a

(2)
1 a

(2)
2 + a

(2)
1 a

(3)
2

= a
(1)
1

(
a
(1)
2 + a

(2)
2 + a

(3)
2

)
+ a

(2)
1

(
a
(1)
2 + a

(2)
2 + a

(3)
2

)
=
(
a
(1)
1 + a

(2)
1

)(
a
(1)
2 + a

(2)
2 + a

(3)
2

)
=

 ∑
a1∈A1

a1

 ∑
a2∈A2

a2

 =

2∏
i=1

∑
ai∈Ai

ai
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