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Abstract
While humans easily recognize relations be-
tween data from different domains without any
supervision, learning to automatically discover
them is in general very challenging and needs
many ground-truth pairs that illustrate the rela-
tions. To avoid costly pairing, we address the
task of discovering cross-domain relations when
given unpaired data. We propose a method based
on generative adversarial networks that learns
to discover relations between different domains
(DiscoGAN). Using the discovered relations, our
proposed network successfully transfers style
from one domain to another while preserving key
attributes such as orientation and face identity.

1. Introduction
Relations between two different domains, the way in which
concepts, objects, or people are connected, arise ubiqui-
tously. Cross-domain relations are often natural to humans.
For example, we recognize the relationship between an En-
glish sentence and its translated sentence in French. We
also choose a suit jacket with pants or shoes in the same
style to wear.

Can machines also achieve a similar ability to relate two
different image domains? This question can be reformu-
lated as a conditional image generation problem. In other
words, finding a mapping function from one domain to the
other can be thought as generating an image in one do-
main given another image in the other domain. While this
problem tackled by generative adversarial networks (GAN)
(Isola et al., 2016) has gained a huge attention recently,
most of today’s training approaches use explicitly paired
data, provided by human or another algorithm.

This problem also brings an interesting challenge from a
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(c) Shoe images (input) & Generated handbag images (output)

Figure 1. Our GAN-based model trains with two independently
collected sets of images and learns how to map two domains with-
out any extra label. In this paper, we reduce this problem into gen-
erating a new image of one domain given an image from the other
domain. (a) shows a high-level overview of the training procedure
of our model with two independent sets (e.g. handbag images and
shoe images). (b) and (c) show results of our method. Our method
takes a handbag (or shoe) image as an input, and generates its
corresponding shoe (or handbag) image. Again, it is worth noting
that our method does not take any extra annotated supervision and
can self-discover relations between domains.

learning point of view. Explicitly supervised data is sel-
dom available and labeling can be labor intensive. More-
over, pairing images can become tricky if corresponding
images are missing in one domain or there are multiple best
candidates. Hence, we push one step further by discovering
relations between two visual domains without any explic-
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Figure 2. Three investigated models. (a) standard GAN (Goodfellow et al., 2014), (b) GAN with a reconstruction loss, (c) our proposed
model (DiscoGAN) designed to discover relations between two unpaired, unlabeled datasets. Details are described in Section 3.

itly paired data.

In order to tackle this challenge, we introduce a model that
discovers cross-domain relations with GANs (DiscoGAN).
Unlike previous methods, our model can be trained with
two sets of images without any explicit pair labels (Figure
1a) and does not require any pre-training. Our proposed
model can then take an image in one domain and gener-
ate its corresponding image in another domain (see Fig-
ure 1b). The core of our model is based on two different
GANs coupled together – each of them ensures our gen-
erative functions can map each domain to its counterpart
domain. A key intuition we rely on is to constrain all im-
ages in one domain to be representable by images in the
other domain. For example, when learning to generate shoe
image from handbag image, we force this generated image
to be an image-based representation of the handbag image
(and hence reconstruct the handbag image) through a re-
construction loss, and to be as close to images in the shoe
domain as possible through a GAN loss. We use these two
properties to encourage the mapping between two domains
to be well covered on both directions (i.e. encouraging one-
to-one rather than many-to-one or one-to-many). In the ex-
periments section, we show that this simple intuition dis-
covers common properties and styles of two domains very
well.

Both experiments on toy domain and real world image
datasets support the claim that our proposed model is well-
suited for discovering cross-domain relations. When trans-
lating data points between simple 2-dimensional domains
and between face image domains, our DiscoGAN model
was more robust to the mode collapse problem compared

to two other baseline models of Figures 2a and 2b. It also
learns the bidirectional mapping between two image do-
mains, such as faces, cars, chairs, edges and photos, and
successfully apply the mapping in image translation. Trans-
lated images consistently change specific attributes such
as hair color, gender and orientation while maintaining all
other components.

2. Model
We now formally define cross-domain relations and present
the problem of learning to discover such relations in two
different domains. Standard GAN model and a similar vari-
ant model with additional components are investigated for
their applicability for this task. Limitations of these mod-
els are then explained, and we propose a new architecture
based on GANs that can be used to discover cross-domain
relations.

2.1. Formulation

Relation is mathematically defined as a function GAB that
maps elements from domain A to elements in its codomain
B and vice versa for GBA. In fully unsupervised setting,
GAB and GBA can be arbitrarily defined. To find a mean-
ingful relation, we need to impose a condition on the rela-
tion of interest. Here, we constrain relation to be a one-to-
one correspondence (bijective mapping). That means GAB

is the inverse mapping of GBA.

The range of function GAB – the complete set of all pos-
sible resulting values GAB(xA) for all xA’s in domain
A – should be contained in domain B and similarly for
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Figure 3. Illustration of our models on simplified one dimensional domains. (a) ideal mapping from domain A to domain B in which the
two domain A modes map to two different domain B modes, (b) GAN model failure case, (c) GAN with reconstruction model failure
case.

GBA(xB).

We now relate these constraints to objective functions. Ide-
ally, the equality GBA ◦ GAB(xA) = xA should be sat-
isfied, but this hard constraint is difficult to optimize and
a relaxed soft constraint is more desirable. For this rea-
son, we minimize the distance d(GBA ◦ GAB(xA), xA),
where any form of metric function such as L1, L2 or Hu-
ber loss can be used. Similarly, we also need to minimize
d(GAB ◦GBA(xB), xB).

Guaranteeing that GAB maps to domain B is also very
difficult to optimize. We relax this constraint as fol-
lows: we instead minimize generative adversarial loss
−Ex

A
∼P

A
[logDB(GAB(xA))]. Similarly, we minimize

−Ex
B
∼P

B
[logDA(GBA(xB ))].

Now, we explore several GAN architectures to learn with
these loss functions.

2.2. Notation and Architecture

We use the following notations in sections below. A gen-
erator network is denoted as GAB : Rh×w×c

A → Rh×w×c
B ,

subscripts denote the input and output domains, and super-
scripts denote the input and output image size. The discrim-
inator network is denoted as DB : Rh×w×c

B → [0, 1], and
the subscript B denotes that it discriminates images in do-
main B. Notations GBA and DA are used similarly.

Each generator takes an image of size h×w×c and feeds it
through an encoder-decoder pair. The encoder part of each
generator is composed of convolution layers, each followed
by leaky ReLU (Maas et al., 2013; Xu et al., 2015). The
decoder part is composed of deconvolution layers, followed
by a ReLU, and outputs a target domain image of size h×
w×c. The number of convolution and deconvolution layers
ranges from four to five depending on the domain.

The discriminator is similar to the encoder part of the gen-
erator. In addition to the convolution layers and leaky Re-

LUs, the discriminator has an additional convolution layer,
and a final sigmoid to output a scalar output between [0, 1].

2.3. GAN with a Reconstruction Loss

We first consider a standard GAN model (Goodfellow
et al., 2014) for the relation discovery task (see Figure 2a).
Originally, a standard GAN takes random Gaussian noise z,
encodes it into hidden features h and generates images in
domains such as MNIST. We make a slight modification to
this model to fit our task: the model we use takes in image
as input instead of noise.

In addition, since this architecture only learns one mapping
from domain A to domain B, we add a second generator
that maps domain B back into domain A (see Figure 2b).
We also add a reconstruction loss term that compares the
input image with the reconstructed image. With these addi-
tional changes, each generator in the model can learn map-
ping from its input domain to output domain and discover
relations between them.

A generator GAB translates input image x
A

from domain A
into x

AB
in domain B. The generated image is then trans-

lated into a domain A image x
ABA

to match the original in-
put image (Equation 1, 2). Various forms of distance func-
tions, such as MSE, cosine distance, and hinge-loss, can be
used as the reconstruction loss d (Equation 3). The trans-
lated output x

AB
is then scored by the discriminator which

compares it to a real domain B sample x
B

.

x
AB

= GAB(xA) (1)
x
ABA

= GBA(xAB
) = GBA ◦GAB(xA) (2)

L
CONSTA

= d(GBA ◦GAB(xA), xA) (3)

L
GANB

= −Ex
A
∼P

A
[logDB(GAB(xA))] (4)

The generator GAB receives two types of losses – a re-
construction loss L

CONSTA
(Equation 3) that measures how

well the original input is reconstructed after a sequence of
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two generations, and a standard GAN generator lossL
GANB

(Equation 4) that measures how realistic the generated im-
age is in domain B. The discriminator receives the standard
GAN discriminator loss of Equation 6.

L
GAB

= L
GANB

+ L
CONSTA

(5)

L
DB

= − Ex
B
∼P

B
[logDB(xB )]

− Ex
A
∼P

A
[log(1− DB(GAB(xA)))] (6)

During training, the generator GAB learns the mapping
from domain A to domain B under two relaxed constraints:
that domain A maps to domain B, and that the mapping
on domain B is reconstructed to domain A. However, this
model lacks a constraint on mapping from B to A, and these
two conditions alone does not guarantee a cross-domain re-
lation (as defined in section 2.1) because the mapping sat-
isfying these constraints is one-directional. In other words,
the mapping is an injection, not bijection, and one-to-one
correspondence is not guaranteed.

Consider two possibly multi-modal image domains A and
B. Figure 3 illustrates the two multi-modal data domains
on a simplified one-dimensional representation. Figure 3a
shows the ideal mapping from input domain A to domain
B, where each mode of data is mapped to a separate mode
in the target domain. Figure 3b, in contrast, shows the
mode collapse problem, a prevalent phenomenon in GANs,
where data from multiple modes of a domain map to a sin-
gle mode of a different domain. For instance, this case is
where the mapping GAB maps images of cars in two dif-
ferent orientations into the same mode of face images.

In some sense, the addition of a reconstruction loss to a
standard GAN is an attempt to remedy the mode collapse
problem. In Figure 3c, two domain A modes are matched
with the same domain B mode, but the domain B mode can
only direct to one of the two domain A modes. Although
the additional reconstruction loss L

CONSTA
forces the re-

constructed sample to match the original (Figure 3c), this
change only leads to a similar symmetric problem. The re-
construction loss leads to an oscillation between the two
states and does not resolve mode-collapsing.

2.4. Our Proposed Model: Discovery GAN

Our proposed GAN model for relation discovery – Disco-
GAN – couples the previously proposed model (Figure 2c).
Each of the two coupled models learns the mapping from
one domain to another, and also the reverse mapping for
reconstruction. The two models are trained together simul-
taneously. The two generators GAB’s and the two gener-
ators GBA’s share parameters, and the generated images
x
BA

and x
AB

are each fed into separate discriminators LDA

and LDB
, respectively.

One key difference from the previous model is that input
images from both domains are reconstructed and that there
are two reconstruction losses: LCONSTA

and LCONSTB
.

L
G
= L

GAB
+ L

GBA
(7)

= L
GANB

+ L
CONSTA

+ L
GANA

+ L
CONSTB

L
D
= L

DA
+ L

DB
(8)

As a result of coupling two models, the total generator loss
is the sum of GAN loss and reconstruction loss for each
partial model (Equation 7). Similarly, the total discrimina-
tor loss LD is a sum of discriminator loss for the two dis-
criminators DA and DB , which discriminate real and fake
images of domain A and domain B (Equation 8).

Now, this model is constrained by two LGAN losses and
two LCONST losses. Therefore a bijective mapping is
achieved, and a one-to-one correspondence, which we de-
fined as cross-domain relation, can be discovered.

3. Experiments
3.1. Toy Experiment

To empirically demonstrate our explanations on the differ-
ences between a standard GAN, a GAN with reconstruc-
tion loss and our proposed model (DiscoGAN), we de-
signed an illustrative experiment based on synthetic data in
2-dimensional domains A and B. Both source (domain A)
and target (domain B) data samples are drawn from Gaus-
sian mixture models.

In Figure 4, the left-most figure shows the initial state of
the toy experiment where all the domain A modes map to
almost a single point because of initialization of the gen-
erator. For all plots the target domain 2D plane is shown
with target domain modes marked with black x’s. Colored
points represent samples from domain A that are mapped
to domain B, and each color denotes samples from each
domain A mode. In this case, the task is to discover cross-
domain relations between domains A and B, and translate
samples from five domain A modes into domain B, which
has ten modes spread around the arc of a circle.

We use a neural network with three linear layers each fol-
lowed by a ReLU nonlinearity as the generator. For the
discriminator we use five linear layers each followed by a
ReLU, except for the last layer which is switched out with
a sigmoid that outputs a scalar ∈ [0, 1]. The colored back-
ground shows the output value of the discriminator DB ,
which discriminates real target domain samples from syn-
thetic translated samples from domain A. The contour lines
show regions of same discriminator value.

50,000 iterations of training were performed, and due to the
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Figure 4. Toy domain experiment results. The colored background shows the output value of the discriminator. ‘x’ marks denote different
modes in domain B, and colored circles indicate samples of domain A mapped to domain B, where each color corresponds to a different
mode in domain A. (a) ten target (domain B) modes and initial translations, (b) results from standard GAN model, (c) GAN with
reconstruction loss, (d) our proposed DiscoGAN model.

domain simplicity our model often converged much earlier.
Illustrations of translated samples in Figure 4 show very
different behavior depending on the model used.

In the baseline (standard GAN) case, many translated
points of different colors are located around the same do-
main B mode. For example, navy and light-blue colored
points are located together, as well as green and orange col-
ored points. This result illustrates the mode-collapse prob-
lem of GANs since points of multiple colors (multiple A
domain modes) are mapped to the same domain B mode.
The baseline model still oscillate around domain B modes
throughout the iterations.

In the case of GAN with a reconstruction loss, the collaps-
ing problem is less prevalent, but navy, green and light-blue
points still overlap at a few modes. The contour plot also
demonstrates the difference from baseline: regions around
all domain B modes are leveled in a green colored plateau
in the baseline, allowing translated samples to freely move
between modes, whereas in the case with reconstruction
loss the regions between domain B modes are clearly sepa-
rated.

In addition, both this model and the standard GAN model
fail to cover all modes in domain B since the mapping from
domain A to domain B is injective. Our proposed Disco-
GAN model, on the other hand, is able to not only prevent
mode-collapse by translating into distinct well-bounded re-
gions that do not overlap, but also generate domain B sam-
ples in all ten modes as the mappings in our model is bi-
jective. It is noticeable that the discriminator for domain B
is perfectly fooled by translated samples from domain A
(white regions near B domain modes).

Although this experiment is limited due to its simplicity,
the results clearly support the superiority of our proposed
model over other variants of GANs.

3.2. Real Domain Experiment

To evaluate whether our DiscoGAN successfully learns un-
derlying relationships between domains, we trained and
tested our model using several image-to-image translation
tasks that require the use of discovered cross-domain rela-
tions between source and target domains.

In each real domain experiment, all input images and trans-
lated images were size of 64 × 64 × 3. For training, we
employed learning rate of 0.0002 and used the Adam op-
timizer (Kingma & Ba, 2015) with β1 = 0.5 and β2 =
0.999. We applied Batch Normalization (Ioffe & Szegedy,
2015) to all convolution and deconvolution layers except
the first and the last layers, and applied weight decay reg-
ularization coefficient of 10−4 and minibatch of size 200.
All computations were conducted on a single machine with
an Nvidia Titan X Pascal GPU and an Intel(R) Xeon(R)
E5-1620 CPU.

3.2.1. CAR TO CAR, FACE TO FACE

We used a Car dataset (Fidler et al., 2012) which consists
of rendered images of 3D car models with varying azimuth
angles at 15◦ intervals. We split the dataset into train set
and test set, and again split the train set into two groups,
each of which is used as A domain and B domain sam-
ples. In addition to training a standard GAN model, a GAN
with a reconstruction model and a proposed DiscoGAN
model, we also trained a regressor that predicts the azimuth
angle of a car image using the train set. To evaluate, we
translated images in the test set using each of the three
trained models, and azimuth angles were predicted using
the regressor for both input and translated images. Figure
5 shows the predicted azimuth angles of input and trans-
lated images for each model. In standard GAN and GAN
with reconstruction (5a and 5b), most of the red dots are
grouped in a few clusters, indicating that most of the in-
put images are translated into images with same azimuth
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(a) (b) (c)

Figure 5. Car to Car translation experiment. Horizontal and vertical axes in the plots indicate predicted azimuth angles of input and
translated images, where the angle of input image ranges from -75◦ to 75◦. RMSE with respect to ground truth (blue lines) are shown
in each plot. Images in the second row are examples of input car images ranging from -75◦ to 75◦ at 15◦ intervals. Images in the third
row are corresponding translated images. (a) plot of standard GAN (b) GAN with reconstruction (c) DiscoGAN. The angles of input and
output images are highly correlated when our proposed DiscoGAN model is used. Note the angles of input and translated car images are
reversed with respect to 0◦ (i.e. mirror images) for (a) and (c).

angles, and that these models suffer from mode collapsing
problem. Our proposed DiscoGAN (5c), on the other hand,
shows strong correlation between predicted angles of input
and translated images, indicating that our model success-
fully discovers azimuth relation between the two domains.
In this experiment, the input and translated images either
have positive correlation where they have the same range
of azimuth angles (5b), or negative correlation where they
have opposite range of angles (5a and 5c).

Next, we use a Face dataset (Paysan et al., 2009) shown in
Figure 6a, in which the face images vary in azimuth rota-
tion from -90◦ to +90◦. Similar to previous Car to Car ex-
periment, input images in the -90◦ to +90◦ rotation range
generated output images either in the same range, from -
90◦ to +90◦, or the opposite range, from +90◦ to -90◦ when
our proposed model was used (6d). We also trained a stan-
dard GAN and a GAN with reconstruction loss for compar-
ison. When a standard GAN and GAN with reconstruction
loss were used, the generated images do not vary as much
as the input images in terms of rotation. In this sense, sim-
ilar to what has been shown in previous Car to Car experi-
ment, the two models suffered from mode collapse.

3.2.2. FACE CONVERSION

We also applied the face attribute conversion task on
CelebA and Facescrub dataset (Liu et al., 2015; Ng & Win-
kler, 2014), where a specific feature, such as gender or hair
color, varies between two domains and other facial features
are preserved. The results are listed in Figure 7.

In Figure 7a, we can see that various facial features are

well-preserved while a single desired attribute (gender) is
changed. Similarly, in Figures 7b and 7c hair color conver-
sion and conversion between with and without eyeglasses
are successfully performed.

(b)

(c)

(d)

(a)

Figure 6. Face to Face translation experiment. (a) input face im-
ages from -90◦ to +90◦ (b) results from a standard GAN (c) results
from GAN with a reconstruction loss (d) results from our Disco-
GAN. Here our model generated images in the opposite range,
from +90◦ to -90◦.

3.2.3. CHAIR TO CAR, CAR TO FACE

We also investigated the case where the discrepancy be-
tween two domains is large, and there is a single shared
feature between two domains. 3D rendered images of chair
(Aubry et al., 2014) and the previously used car and face
datasets (Fidler et al., 2012; Paysan et al., 2009) were used



Learning to Discover Cross-Domain Relations with Generative Adversarial Networks

Figure 7. (a) Translation of gender in Facescrub dataset. (b) Blond to black and black to blond hair color conversion in CelebA dataset.
(c) Eyeglasses to no eyeglasses, no eyeglasses to eyeglasses conversion in CelebA dataset.

(a) Chair to Car (b) Car to Face

Input

Output

Input

Output

Figure 8. Discovering relations of images from visually very different object classes. (a) chair to car translation. DiscoGAN is trained
on chair and car images (b) car to face translation. DiscoGAN is trained on car and face images. Our model successfully pairs images
with similar orientation.

in this task. All three datasets vary along the azimuth ro-
tation. Figure 8 shows the results of image-to-image trans-
lation from chair to car and from car to face datasets. The
translated images clearly match the rotation features of the
input images while preserving visual features of car and
face domain respectively.

3.2.4. EDGES TO PHOTOS

Edges-to-photos is an interesting task as it is a 1-to-N prob-
lem, where a single edge image of items such as shoes
and handbags can generate multiple colored images of such
items. In fact, an edge image can be colored in infinitely
many ways. We validated that our DiscoGAN performs
very well on this type of image-to-image translation task
and generate realistic photos of handbags (Zhu et al., 2016)
and shoes (Yu & Grauman, 2014). The generated images
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Figure 9. Edges to photos experiment. Our model is trained on a
set of object sketches and colored images and learns to generate
corresponding photos or sketches. (a) colored handbag images are
generated from handbag sketches, (b) colored shoe images are
generated from shoe sketches, (c) handbag sketches are generated
from colored handbag images.

are presented in Figure 9.

3.2.5. HANDBAG TO SHOES, SHOES TO HANDBAG

Finally, we investigated the case with two domains that are
visually very different, where shared features are not ex-
plicit even to humans. We trained a DiscoGAN using pre-
viously used handbags and shoes datasets, not assuming
any specific relation between those two. In the translation
results shown in Figure 1, our proposed model discovers
fashion style as a related feature between the two domains.
Note that translated results not only have similar colors and
patterns, but also have similar level of fashion formality as
the input fashion item.

4. Related Work
Recently, a novel method to train generative models named
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) has been developed. A GAN is composed of
two modules – a generator G and a discriminator D. The
generator’s objective is to generate (synthesize) data sam-
ples whose distribution closely matches that of real data
samples while the discriminator’s objective is to distin-
guish between real and generated samples. The two models
G and D, formulated as a two-player minimax game, are
trained simultaneously.

Researchers have studied GANs vigorously in the past few

years: network models such as LAPGAN (Denton et al.,
2015) and DCGAN (Radford et al., 2016) and improved
training techniques (Salimans et al., 2016; Arjovsky et al.,
2017) has been explored. More recent GAN works are de-
scribed in (Goodfellow, 2017).

Several methods were developed to generate images
based on GANs. Conditional Generative Adversarial Nets
(cGANs) (Mirza & Osindero, 2014) used MNIST digit
class label as an additional information to both genera-
tor and discriminator and can generate digit images of the
specified class. Similarly, Dosovitskiy et al. (2015) showed
that GAN can generate images of objects based on speci-
fied characteristic codes such as color and viewpoint. Other
approaches instead used conditional features from a com-
pletely different domain for image generation. For exam-
ple, Reed et al. (2016) used encoded text description of im-
ages as the conditional information to generating images
that match the description.

In addition to using conditional information such as class
labels and text encodings, several works in the field of
image-to-image translation used images of one domain to
generate images in another domain. (Isola et al., 2016)
translated black-and-white images to colored images by
training on paired black-and-white and colored image data.
Similarly, Taigman et al. (2016) translated face images to
emojis by providing image features from pre-trained face
recognition module as conditional input to a GAN.

Several recent papers (Tong et al., 2017; Chen et al., 2016;
Makhzani, 2015) used similar architectures which recon-
struct the original input by successively applying a map-
ping and its inverse mapping, and encourage the recon-
struction to match the original input.

The most similar work to ours (Mathieu et al., 2016) pro-
posed an architecture that combined variational autoen-
coder (Kingma et al., 2014) with generative adversarial net-
work for factor decomposition and domain transfer.

5. Conclusion
This paper presents a learning method to discover cross-
domain relations with a generative adversarial network
called DiscoGAN. Our approach works without any ex-
plicit pair labels and learns the relations between datasets
from very different domains. One possible future directions
is to extend DiscoGAN to handle mixed modalities such as
text and image.
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