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Abstract

We propose a novel deep neural network that
is both lightweight and effectively structured for
model parallelization. Our network, which we
name as SplitNet, automatically learns to split
the network weights into either a set or a hier-
archy of multiple groups that use disjoint sets
of features, by learning both the class-to-group
and feature-to-group assignment matrices along
with the network weights. This produces a tree-
structured network that involves no connection
between branched subtrees of semantically dis-
parate class groups. SplitNet thus greatly re-
duces the number of parameters and required
computations, and is also embarrassingly model-
parallelizable at test time, since the evaluation
for each subnetwork is completely independent
except for the shared lower layer weights that
can be duplicated over multiple processors, or
assigned to a separate processor. We validate
our method with two different deep network
models (ResNet and AlexNet) on two datasets
(CIFAR-100 and ILSVRC 2012) for image clas-
sification, on which our method obtains networks
with significantly reduced number of parameters
while achieving comparable or superior accura-
cies over original full deep networks, and accel-
erated test speed with multiple GPUs.

1. Introduction

Recently, deep neural networks have shown impressive per-
formances on a multitude of tasks, including visual recog-
nition (Krizhevsky et al., 2012; Szegedy et al., 2015; He
et al., 2016), speech recognition (Hinton et al., 2012), and
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natural language processing (Bengio et al., 2003; Sutskever
et al., 2014). However, such remarkable performances are
achieved at the cost of increased computational complexity
at both training and test time compared to traditional ma-
chine learning models including shallow neural networks.
This increased complexity of deep networks can be prob-
lematic if the model and the task size becomes very large
(e.g. classifying tens of thousands of object classes), or the
application is time-critical (e.g. real-time object detection).

There exist various solutions to tackle this complexity is-
sue. One way is to reduce the number of model parame-
ters; this could be achieved either by training a new smaller
network while maintaining similar behavior as the origi-
nal network (Ba & Caruana, 2014; Hinton et al., 2014),
or by disconnecting unnecessary weights through pruning
or sparsity regularization (Reed, 1993; Han et al., 2015;
Collins & Kohli, 2014; Wen et al., 2016; Alvarez & Salz-
mann, 2016). Another approach to speed up deep networks
is distributed machine learning (Dean et al., 2012; Chilimbi
et al., 2014; Zhang et al., 2015); however most research ef-
fort has been made on the systems and optimization sides,
without consideration of the ways to obtain network struc-
ture that is intrinsically scalable.

In this work, we aim to learn a deep neural network that
not only reduces the number of model parameters, but also
is effectively structured for model parallelization. How can
we then achieve these seemingly disjoint goals in a single,
unified learning framework? We focus on the observation
that as the number of classes increases, semantically dis-
parate classes (or tasks) can be represented by largely dis-
joint sets of features. For example, features describing ani-
mals may be quite different from those describing vehicles,
whereas low-level features such as stripes, dots, and colors
are likely be shared across all classes. It implicates that we
can cluster classes into mutually exclusive groups based on
the features they use. Such grouping of concepts based on
semantic proximity also agrees with the way that our brain
stores semantic concepts, where semantically related con-
cepts activate similar part of the brain (Huth et al., 2012),
in a highly localized manner.

Based on this intuition, we propose a novel deep network
architecture named SplitNet that automatically performs
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Figure 1. Concept. Our network automatically learns to split the
classes and associated features into multiple groups at multiple
network layers, obtaining a tree-structured network. Given a base
network in (a), (b) our algorithm optimizes network weights as
well as class-to-group and feature-to-group assignments. Colors
indicate the group assignments of classes and features. (c) Af-
ter learning to split the network, the model can be distributed to
multiple GPUs to accelerate training and inference.

deep splitting of the network into a set of subnetworks or
a hierarchy of subnetworks sharing common lower layers,
such that classes in each group share a common subset of
features, that is completely disjoint from the features for
other class groups. We train such a network by addition-
ally learning classes-to-group assignments and feature-to-
group assignments along with the network weights, while
regularizing them to be disjoint across groups. Figure 1
illustrates the key idea of our proposed approach.

Our splitting algorithm is fairly generic, and is applica-
ble to any general deep neural networks including feed-
forward and convolutional networks. We test our method
with ResNet (He et al., 2016; Zagoruyko & Komodakis,
2016) and AlexNet (Krizhevsky et al., 2012) on CIFAR-
100 and ILSVRC 2012 datasets, on which our networks
respectively achieve 32% and 56% parameter reduction,
while obtaining comparable or even superior performance
to the full base network. We further perform test-time par-
allelization of our network with multiple GPUs, where it
achieved 1.73x speedup to naive parallelization method
with 2 GPUs. Our contributions in this work are threefold.

e We propose a novel deep neural network named Spliz-
Net, which is organized as a tree of disjoint subnet-
works with greatly reduced the number of parame-
ters and computations in terms of FLOPs, that obtains
comparable accuracies to fully-connected networks.

e We propose an efficient algorithm for automati-
cally training such a tree-structured network, which
learns class-to-group and feature-to-group assign-
ments along with the network weights.

e The networks trained by our approach are embarrass-
ingly model-parallelizable; in distributed learning set-
ting, we show that our networks scale well to an in-
creased number of processors.

2. Related Work

Parameter reduction for deep neural networks. Achiev-
ing test-time efficiency is an active research topic in deep
learning. One straightforward approach is to remove weak
connections during the training, usually implemented us-
ing the ¢1-norm (Collins & Kohli, 2014). However, the ¢; -
norm often results in a model that trades-off the accuracy
with the efficiency. Han et al. (2015) presented an iterative
weight pruning technique that repeatedly retrains the net-
work while removing of weak connections, which achieves
a superior performance over ¢;-regularization. Recently,
the group sparsity using f5 ;-norm has been explored for
learning a compact model. Alvarez & Salzmann (2016)
applied (2,1)-norm regularization at each layer to eliminate
the hidden units that are not shared across upper-level units,
thus automatically deciding how many neurons to use at
each layer. Wen et al. (2016) used the same group spar-
sity to select unimportant channels and spatial features in
a CNN, and let the network to automatically decide how
many layers to use. However, they assume that all classes
share the same set of features, which is restrictive when the
number of classes is very large. On the contrary, our pro-
posed SplitNet enforces feature sharing only within a group
of related classes, and thus semantically reduce the num-
ber of parameters and computations for large-scale prob-
lems. Recently, Shankar et al. (2016) also addressed the
use of symmetrical split at mid-level convolutional layers
in CNNss for architecture refinement. However, they did not
learn the splits but predefine them, as opposed to SplitNet
which learns semantic splits along with network weights.

Parallel and distributed deep learning. As deep net-
works and training data become increasingly larger, re-
searchers are exploring parallelization and distribution
techniques to speed up the training process. Most par-
allelization techniques exploit either 1) data parallelism,
where the training data is distributed across multiple com-
putational nodes, or 2) model parallelism, where the model
parameters are distributed. Dean et al. (2012) used both
data and model parallelism to train a large-scale deep neu-
ral network on a computing cluster with thousands of ma-
chines. For CNNs, Krizhevsky et al. (2012) used both data
and model parallelism to train separate convolutional fil-
ters from disjoint datasets. Krizhevsky (2014) later pro-
posed to vertically split the network, exploiting the differ-
ent time/memory characteristics of the convolutional and
fully connected layers. Chilimbi et al. (2014) proposed a
server-client architecture where each client computes par-
tial gradients of parameters, that are stored and communi-
cated from the global model parameter server. Zhang et al.
(2015) proposed a GPU-based distributed deep learning,
with greatly reduced the communication overheads. How-
ever, all these are systems-based approaches that work un-
der the assumption that the model structure is given and
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fixed. Our approach, on the other hand, leverages semantic
knowledge of class relatedness to learn a network structure
that is well-fitted to a distributed machine learning setting.

Tree-structured deep networks. There have been some
efforts to exploit hierarchical class structures for improv-
ing the performance of deep networks. To list a few recent
work, Warde-Farley et al. (2014) proposed to group classes
based on their weight similarity, and augmented the orig-
inal deep network with the softmax loss for fine-grained
classification for classifying classes within each group. Yan
et al. (2015) proposed a convolutional network that com-
bines predictions from separate sub-networks for coarse-
and fine-grained category predictions, which share com-
mon lower-layers. Goo et al. (2016) exploited the hierar-
chical structure among the classes to learn common and
discriminative features across classes, by adding in simple
feature pooling layers. Murdock et al. (2016) generalized
dropout to stochastically assign nodes to clusters which re-
sults in obtaining a hierarchical structure. However, all of
these methods focus on improving the model accuracy, at
the expense of increased computational complexity. On the
contrary, SplitNet is focused on improving memory/time
efficiency and parallelization performance of the model.

3. Approach

Given a base network, our goal is to obtain a tree-structured
network that contains either a set or a hierarchy of sub-
networks, where the leaf-level subnetworks are associated
with a specific group of classes, as in Figure 1. Then what
is the optimal way to split the classes? A key insight to
our approach is that classes within each group should share
features as much as possible, since grouping of disparate
classes may result in learning redundant features over mul-
tiple groups, and may waste network capacity as a result.
Thus, to maximize the utility of this splitting process, we
need to cluster classes together into groups so that each
group uses a subset of features that are completely disjoint
from the ones used by other groups. One straightforward
way to obtain such mutually exclusive groupings of classes
is to leverage a semantic taxonomy, since semantically sim-
ilar classes are likely to share features, whereas dissimilar
classes are unlikely to do so. However, in practice, such
semantic taxonomy may not be available, or may not agree
with actual hierarchical grouping based on what features
each class uses. Another simple approach is to perform (hi-
erarchical) clustering on the weights learned in the original
network, which is also based on actual feature uses. Yet,
this grouping may be still suboptimal since the groups are
highly likely to overlap, and is inefficient since it requires
training the network twice.

In the following sections, we will describe how to learn
such groups with disjoint set of classes and features, along

with the network weights in a deep learning framework.

3.1. Problem Statement

Given a dataset D = {z;,y;}Y,, where ; € R? is an
input data instance and y; € {1,..., K} is a class label for
K classes, our goal is to learn a network whose weight at
each layer [, w® s a block-diagonal matrix, where each
block Wg(l) is associated with a class group g € G, where
G is the set of all groups. Such a block-diagonal W) en-
sures that each disjoint group of classes has exclusive fea-
tures associated with it, such that no other groups use those
features; this allows the network to be split across multiple
class groups, for faster computation and parallelization.

In order to obtain such a block diagonal weight matrix
WO, we propose a novel splitting algorithm that learns
a feature-group and class-group assignment along with the
network weights. We first illustrate our splitting method on
the parameters for the softmax classifier in Section 3.2, and
then describe how to extend this to other layers of DNNs in
Section 3.3.

We assume that the number of groups G, is given. Let py;
be a binary variable indicating whether feature ¢ is assigned
to group ¢ (1 < g < G), and ¢ ; be a binary variable in-
dicating whether class j is assigned to group g. We define
Py € 7P as a feature group assignment vector for group
g, where Zy = {0,1} and D is the dimension of features.
Similarly, g, € Z denotes a class group assignment vec-
tor for group g. Thatis, p, and g, define a group g together,
where p, represents features associated with the group and
q, indicates a set of classes assigned to the group.

We assume that there is no overlap between groups, either
in features or classes, ie. >  py = Ip and 3 q, =
1g, where 1p and 1 are the vectors with all-one el-
ements. While this assumption imposes hard regulariza-
tions on group assignments, it enables the weight matrix
W e RP*K o be sorted into a block-diagonal matrix,
since each class is assigned to a group and each group de-
pends on a disjoint subset of features. This greatly reduces
the number of parameters, and at the same time, the multi-
plication W Tx can be decomposed into smaller and faster
block matrix multiplications.

The objective for training our SplitNet is then defined as:

L L
min £(w, X y)+ > AW+ ow®, PY,.Q"),
o =1 =5
1

where L(W, X, y) is the cross entropy loss on the training
data,w = {W® . W)} s the set of network weights
at all layers, ||[W||3 is the weight decay regularizer with
a hyperparameter A, S is the layer where splitting starts,
Q(W, P,Q) is the regularizer for splitting the network,
and P®) and Q) are the set of feature-to-group and class-
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Figure 2. Group Assignment and Group Weight Regulariza-
tion. (Left) An example of group assignment with G = 3. Col-
ors indicate groups. Each row of matrix P, Q is group assign-
ment vectors for group g: pgy, q4. (Right) Visualization of matrix
(I — P,)WQ,. The group assignment vectors work as soft in-
dicators for inter-group connections. As the groupings converge,
{2 1-norm is concentrated on inter-group connections.

to-group assignment vectors respectively, for each layer [.

In the next section, we propose a novel regularization {2
that automatically finds appropriate disjoint group assign-
ments with no external semantic information. The objec-
tive of Eq.(1) are jointly optimized using (stochastic) gra-
dient descent, starting with a full weight matrix, and an
unknown group assignment. As we jointly optimize the
cross entropy loss and the group regularization, our method
automatically obtains appropriate grouping and prune out
inter-group connections. Once the grouping is learned, the
weight matrix can be explicitly split into block diagonal
matrices to reduce number of parameters, which in turn al-
lows for much faster inference at test time.

3.2. Learning to Split Network Weights into Disjoint
Groups

Our regularization assigns features and classes into disjoint
groups; it consists of three objectives as follows:

QW,P,Q) =7nRw(W,P,Q)

2
+7Rp(P,Q) +3Rp(P,Q) @

where 71,72, vs controls the strength of each regulariza-
tion, which will be discussed in following subsections.

3.2.1. GROUP WEIGHT REGULARIZATION

To make the numerical optimization tractable, we first re-
lax the binary variables pgy; and gg4; to have real values in
the interval of [0, 1] with the constraints 5 p; = 1p and
> 449 = lk. These sum-to-one constraints can be di-
rectly optimized using reduced gradient algorithm (Rako-
tomamonyjy et al., 2008), which yields sparse solutions. Or,
we can perform soft assignments, by reparamterizing pg;
and g,; with unconstrained variables o and (4; in the
softmax form:

pgi = €“9/ Z et qg = el Z ePai. (3)
g g

We empirically observe that the softmax form results in
more semantically meaningful grouping. However, the di-
rect optimization of sum-to-one constraint often leads to
faster convergence than the softmax formulation.

Let P, = diag(py) and Q, = diag(q,) be the feature
and class group assignment matrix for group g respectively.
Then P, W Q, represents the weight parameters associated
with group g, i.e. intra-group connections between features
and classes. Since our goal is to prune out inter-group con-
nections to obtain block-diagonal weight matrices, we min-
imize off block-diagonal entries as follows:

Rw(W.P,Q) =3 > (I = P)W Q)i

'l )
+ 20 2B W (T = Qq))eslls

where (M );, and (M), denote i-th row and j-th column
of M. Eq.(4) imposes row/column-wise ¢ ;-norm on the
inter-group connections. Figure 2 illustrates this regular-
ization, where the portions of the weights to which the reg-
ularization is applied are colored differently. !

We observe that this regularization yields groups that are
fairly similar to semantic groups. One caution is to avoid
uniform initialization on group assignments, i.e. p; =
1/G, in which case the objective reduces to row/column-
wise £3 1-norm and some row/column weight vectors may
die out before appropriate group assignments are obtained.

3.2.2. DISJOINT GROUP ASSIGNMENT

For the group assignment vectors to be completely mutu-
ally exclusive, they should be orthogonal; i.e. they should
satisfy the condition p; - p; = 0 and g; - ¢; = 0,V i # j.
We introduce an additional orthogonal regularization term:

Rp(P,Q)=> pi-pj+ Y ai-q; &)
i<j (3]
where the inequalities avoid the duplicative dot products.

3.2.3. BALANCED GROUP ASSIGNMENT

The disjoint group assignment objective in Eq.(5) alone
may drive one group to dominate over all other groups; that
is, one group includes all features and classes, while other
groups do not. Therefore, we also constrain the group as-
signments to be balanced, by regularizing the squared sum
of elements in each group assignment vector.

Rg(P,Q) = Z ((Zpgi)2 + (Z qgj)2)~ (6)

"When using group weight regularization followed by batch
normalization, the weights tend to decrease their magnitudes
while the scale parameters of BN layers increase. To prevent this
effect, we use £2-normalized weights W /||W ||, instead of W
in Rw, or simply deactivate the scale parameters of BN layers.
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Algorithm 1 Splitting Deep Neural Networks

Input: Number of groups G, layers to split S < L and hyper-
paramaters y1, Y2, 3
Initialize weights and group assignments
while groupings have not converged do
Optimize the objective using SGD with a learning rate n

L L
Lw, X, Y)+ AL [[WOF+7 Y Rw(W®O, PO,.Q")
=1 =S

L L
+72 > Ro(PY, Q") + 43 3 Re(P", QW)
1=5 =5
end while
Split the network using the obtained group assignments and
weight matrices
while validation accuracy improves do

Optimize £(w, X,Y) + A3~ [|[W®||3 using SGD
end while

Due to the constraints > py = 1P and > 0q9 = 1%, the
objective of Eq.(6) is minimized when sums of elements
in each group assignment vector are even; i.e. each group
has identical number of elements. Since the dimensions of
feature and class group assignment vectors may differ, we
scale the two terms with appropriate weights. See Figure 4
to see the effect of balanced group regularization.

3.3. Splitting Deep Neural Networks

Our weight-splitting method in section 3.2 can be applied
to deep neural networks (DNN), which has two types of
layers: 1) the input and hidden layers that produce a feature
vector for a given input, and 2) the output fully-connected
(FC) layer on which the softmax classifier produces class
probabilities. The output FC layer can be split by directly
applying our method in section 3.2 on the output FC weight
matrix W), Our splitting framework can be further ex-
tended into deep splits, involving either multiple consecu-
tive layers or recursive hierarchical group assignments. Al-
gorithm 1 describes the deep splitting process.

3.3.1. DEEP SPLIT

The lower layers of a DNN learn low-level, generic repre-
sentations, which are likely to be shared across all classes.
The higher level representations, on the contrary, are more
likely to be specific to the classes in a particular group.
Therefore we do not split all layers but split layers down to
S-th layer (S < L), while maintaining lower layers (I < S)
to be shared across class groups.

Each layer consists of input and output nodes with the
weights W) that connects between them, and Pg(l), E,l)
for input-to-group and output-to-group assignments. Since
the output nodes of each layer correspond to the input
nodes of the next layer, the grouping assignment are shared
as qf]l) = p_,(,lH). This enforces that no signal is passed
across different groups of layers, so that forward and back-

ward propagation in each group is independent from the
processes in other groups. This allows the computations for
each group to be parallelized, except for the softmax layer.
The softmax layer includes a normalizing operation over
all classes which requires aggregating logits over groups;
however, during inference it suffices to identify the class
with the maximum logit, which can be simply obtained
by first identifying the class with maximum logit in each
group, and then selecting the class with maximum logit
among the identified group-specific maximums. This re-
quires minimal communication overhead.

The objective function for deep split is the same with the
weight-splitting method in section 3.2 (i.e. Eq.(1)-(2)), ex-
cept for the previously explained alignment constraints.

When applied to CNNs, the proposed group splitting pro-
cess can be performed in the same manner on the con-
volutional filters. Suppose that a weight of a convolu-
tional layer is a 4-D tensor W, € RMXNXDXK " \here
M, N denote height and width of receptive fields and D, K
denote the number of input and output convolutional fil-
ters. We reduce the 4-D weight tensor W, into a 2-D
matrix W! € RP>K by taking the root sum squared of
elements over height and width dimensions of W, i.e.

W, = {wy} = {{/>X. Whpnart- Then the weight
regularization objective for the convolutional weight is ob-
tained by Eq.(4), using W/ instead.

3.3.2. HIERARCHICAL GROUPING

There often exist natural semantic hierarchies of classes:
for example, The group dog and the group cat are sub-
groups of mammal. We can easily extend our deep split
method to obtain multi-level hierarchies of categories. Fig-
ure 1 shows an example of such a hierachical split.

Assume that the grouping branches at the [-th layer and the
output nodes of the {-th layer are grouped by G supergroup
assignment vectors qél) with > 9 qy) = 1p. Suppose
that in the next layer, for each supergroup g € {1,...,G}
there are corresponding S subgroup assignment vectors
pglj Y with dsg pglj Y = 1p. As aforementioned, the
input nodes to the [+1-th layer corresponds to the output
nodes of /-th layer. By defining pé“'l) =>. pélj 1), we
can map subgroup assignments into corresponding super-
group assignments. This allows us to impose the constraint

q,(]l) = pg(,H_l) as in Deep Split.

3.4. Parallelization of SplitNet

Our learning algorithm produces a tree-structured network
whose subnetworks have no inter-group connections. This
results in an embarrassingly model-parallel network where
we can simply assign the obtained subnetworks to each
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Table 1. Comparison of Test Errors According to Depths of Splitting (row) and Splitting Methods (column) on CIFAR-100.
Postfix S, C and R denote SplitNet variants — Semantic, Clustering and Random, respectively.

WRN-16-8 (BASELINE) 24.28
WRN-16-8 (DROPOUT) 24.52
METHOD SPLIT DEPTH G SPLITNET-S  SPLITNET-C  SPLITNET-R  SPLITNET
FC SpLIT 1 4 23.80 23.72 24.30 24.26
SHALLOW SPLIT 6 2 24.46 24.54 25.46 23.96
DEEP SPLIT (DROPOUT) 11 2 25.04 26.04 27.12 24.62
HIER. SPLIT (DROPOUT) 11 2-4 24.92 25.98 26.78 24.80

Table 2. Comparison of Parameter/Computation Reduction and Test Errors on CIFAR-100.

NETWORK PARAMS(10°) % REDUCED | FLOPS(10°) % REDUCED | TEST ERROR(%)
WRN-16-8 (BASELINE) 11.0 0.0 3.10 0.0 24.28
FC SpLIT 11.0 0.35 3.10 0.0 24.26
SHALLOW SPLIT 7.42 32.54 2.64 14.63 23.96
DEEP SPLIT (DROPOUT) 5.90 46.39 2.11 31.97 24.66
HIER. SPLIT (DROPOUT) 4.12 62.58 1.88 39.29 24.80

processor, or a machine. In our implementation, we con-
sider two approaches for model parallelization: 1) Assign-
ing both the lower-layers and group-specific upper lay-
ers to each node. At the test time the lower layers are
not changed; thus this approach is acceptable, although it
causes unnecessary redundant computations across the pro-
cessors. 2) Assigning the lower layer to a separate proces-
sor. This eliminates redundancies in the lower layer but in-
curs communication overhead between the lower layer and
the upper layers.

Training-time parallelization is currently done only at the
finetuning step, after group assignments have been decided.
We leave the parallelization from the initial network train-
ing stage as future work.

4. Experiments

Datasets. We validate our method for image classification
tasks on two benchmark datasets.

1) CIFAR-100. The CIFAR-100 dataset contains 32 x 32
pixel images from 100 generic object classes. For each
class, there are 500 images for training and 100 images for
test. We set aside 50 images for each class from the train-
ing dataset as a validation set for cross-validation. Note that
the test errors are not directly comparable to (Zagoruyko &
Komodakis, 2016), as we use only 45,000 training images.

2) ImageNet-1K. The ImageNet 1K dataset (Deng et al.,
2009) that consists of 1.2 million images from 1,000
generic object classes. For each class, there are 1K —1.3K
images for training and 50 images for validation, which we
use for test, following the standard procedure.

Baselines. To compare different ways to obtain grouping,
we test multiple variants of our SplitNet and baselines.

1) Base Network. Base networks with full network
weights. For experiments on the CIFAR-100, we use Wide
Residual Network (WRN) (Zagoruyko & Komodakis,

2016), which is one of the state-of-the-art networks of the
dataset. We use AlexNet (Krizhevsky et al., 2012) and
ResNet-18 (He et al., 2016) variants as the base network
for the ILSVRC2012.

2) SplitNet-Semantic. A variant of our SplitNet that ob-
tains class grouping from a provided semantic taxonomy.
Before training, we split the networks according to the tax-
onomy, evenly splitting layers and assigning subnetworks
to each group, and train it from scratch. We use the same
approach for SplitNet-Clustering and SplitNet-Random.

3) SplitNet-Clustering. A variant of our SplitNet, where
classes are split (hierarchical) performing spectral cluster-
ing of the pre-trained base network weights.

4) SplitNet-Random. SplitNet using random class splits.

5) SplitNet. Our proposed SplitNet, that is trained using
the proposed automatic splitting of weight matrices.

All SplitNet variants and other baselines are implemented
using TensorFlow (Abadi et al., 2016).

4.1. Parameter Reduction and Accuracies

Experimental results below validate the two key benefits of
our SplitNet: 1) Reducing the number of parameters with-
out losing the prediction accuracy, and 2) obtaining a better
structure for model-parallelization.

CIFAR-100. Table 1 summarizes split structures and test
errors of different SplitNet variants and baselines. See the
supplementary material for more details of used models.
SplitNet variants using semantic taxonomy provided by the
dataset (—S) and spectral clustering (—C) are better than ran-
dom grouping (—R), showing that the appropriate grouping
is critical for splitting DNNs. The SplitNet with learned
splits outperforms all other variants, although it does not
require any additional semantic information or pretrained
network weights as with semantic or clustering split.
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Table 3. Comparison of Parameter/Computation Reduction and Test Errors of AlexNet variants on ILSVRC2012. The number
of splits indicates the split in fc6, fc7 and fc8 layer, respectively. In 2 x5 split, we split from conv4 to fc8 with G = 2.

NETWORK SPLITS | PARAMS(10%°) % REDUCED | FLOPS(10°) % REDUCED | TEST ERROR(%)
ALEXNET(BASELINE) | 0 62.37 0 2278 0 172
13 50.64 133 3273 021 17.07
SpLITNET 1-2-5 50.69 18.72 2.256 1.00 4221
2.4-8 2734 56.17 2.209 3.05 43.02
2%5 31.96 48.76 1.847 18.95 44.60
13 59.64 133 7273 0.21 42.20
1-2-5 50.70 18.70 2256 0.99 4320
SPLITNET-R 2-4-8 27.34 56.17 2.209 3.05 43.35
2x5 31.94 48.79 1.846 18.93 44.99

Table 4. Comparison of Parameter/Computation Reduction and Test Errors of ResNet-18 variants(ResNet-18x2) on

ILSVRC2012. The number of splits indicates the split in conv4-1&2, conv5-1&2 and the last fc layer, respectively.

NETWORK SPLITS SPLIT DEPTH | PARAMS(10°) % REDUCED | FLOPS(10°) % REDUCED | TEST ERROR(%)
RESNET-18x2 0 0 45.67 0 14.04 0 25.58
1-1-3 1 44.99 1.49 14.04 0.01 24.90
SPLITNET 1-2-2 6 28.39 37.84 12.39 11.72 25.48
2-2-2 11 24.21 47.00 10.75 23.42 26.45
1-1-3 1 44.99 1.49 14.03 0.01 25.86
SPLITNET-R 1-2-2 6 28.38 37.86 12.39 11.72 26.41
2-2-2 11 24.14 47.14 10.75 23.46 28.61

Table 2 compares test errors, parameter reduction, and
computation (FLOPs) reduction of SplitNets against the
base network WRN-16-8: a 16 layer residual network with
widening factor £ = 8. Most of parameters in WRNs exist
in convolutional layers, especially in higher layers due to
the large number of filters. Thus, FC Split yields minimal
parameter reduction. On the other hand, Shallow Split of
the last 5 convolutional layers significantly reduces the net-
work parameters by 32.44% while even slightly improving
the accuracy. Deep and Hierarchical Split further reduce
parameters and FLOPs at the cost of minor accuracy drop.

Shallow Split shows even better performance than the base-
line with significantly fewer parameters. We attribute it to
the fact that SplitNet starts from a full network and learns
and cuts unnecessary connections between different groups
for inner layers, imposing regularization effect on the lay-
ers. In addition, splitting layers can be regarded as a form
of variable selection: each group in the layer parsimo-
niously selects only a needed group of input nodes.

ImageNet-1K. Table 3 and 4 summarize the results of Im-
ageNet experiments with two base networks: AlexNet and
ResNet-18x2, a variant of ResNet-18 where the numbers
of filters are doubled, respectively. Refer to supplementary
materials for model description. Using AlexNet as a base
model, SplitNet greatly reduces the number of parameters
concentrated in fc layers. However, most of the FLOPs
come from lower conv layers, yielding only minor FLOPs
reduction. We observe that SplitNet on AlexNet shows mi-
nor test accuracy drop with significant parameter reduction.

SplitNet based on ResNet-18x2 shows similar results as

Table 5. Model Parallelization Benchmark of SplitNet on Mul-
tiple GPUs. We measure evaluation time performance of our
SplitNet over 50,000 CIFAR-100 images with batch size 100 on
TITAN X Pascal. Baseline implements layer-wise parallelization
where sequential blocks of layers are distributed on GPUs.

NETWORK GPUs TIME(S) | SPEEDUP(X)
BASELINE 1124.27+0.35 1.00
BASELINE-HORZ. 2 146.70 £0.48 0.52
BASELINE-VERT. 2 120.15 £0.67 1.20
BASELINE-VERT. 312245+0.77 1.08
SHALLOW SPLIT 21 17.78 £0.23 1.37
DEEP SPLIT 2| 14.03+0.13 1.73
HIER. SPLIT 21 14.22 £0.05 1.71
DEEP SPLIT 3-WAY 3110.92+£0.44 2.22

WRN-16-8 on CIFAR-100. With all split schemes, Split-
Net outperforms SplitNet-Random. Further, with 1-2-2
split that splits the last FC layer and two residual blocks, the
network parameters are significantly reduced by 37.86%
while the test error is improved.

4.2. Test-time Model Parallelization

As illustrated in Figure 1, splitting DNNs yields speedup
not only by reducing parameters, but also by utilizing the
split structure for model parallelization. Thus we further
validate parallelization performance of SplitNet at evalu-
ation time, with multiple GPUs. Table 5 summarizes the
run-time performance of SplitNet with model paralleliza-
tion. We test two approaches: 1) Redundant assignment of
lower layers (Deep and Hier. Split), and 2) assignment of
lower layers to a separate GPU (Deep Split 3-way). With
redundant assignment, the speedup becomes larger with
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Figure 3. Learned Groups and Block-diagonal Weight Matri-
ces. Visualization of the weight matrices along with correspond-
ing group assignments learned in in AlexNet 2-4-8 split. Obtained
block-diagonal weights are split for faster multiplication. Note the
hierarchical grouping structure.
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Figure 4. Effect of Balanced Group Regularization Rg (P, Q).
The above figures show group-to-class assignment matrix Q c8)
for different values of 3 on ImageNet-1K with G = 3

deeper splits, up to 1.73x. Assigning lower layers to a
third GPU eliminates redundant computation and achieves
2.22x speedup. We compare against model-parallel ap-
proaches with both horizontal split (Baseline-Horz.) that
splits the network horizontally as our split method but with-
out pruning connections between two subnetworks, and
vertical split (Baseline-Vert.) that splits the network into
blocks of sequential layers. With vertical split, computa-
tions on GPUs are done asynchronously using queues to
maintain intermediate activations. Horizontal split obtains
much worse performance to original network due to exces-
sive communication overhead. Vertical splitting scheme
makes more sense with full networks, but the communi-
cation overhead is still large and it yields only 1.20x and
1.08x speedup with two and three GPUs respectively.

4.3. Qualitative Analysis

Figure 3 visualizes the weight matrices and correspond-
ing group assignments obtained in AlexNet 2-4-8 split on
ImageNet-1K. Both group assignments of classes and fea-
tures, P and @, are sparse, and the weight matrices W of
all layers are block diagonal. It indicates that grouping has
converged with inter-group connections zeroed out.

Figure 4 shows the effect of balanced group regularization
on the group size. With large regularization, groups be-
comes almost uniform in size, which is desirable for param-
eter reduction and model parallelization. Relaxing this reg-
ularization grants some flexibility on the individual group
sizes. Setting 3 to be too small causes all classes and
features to collapse into a single group, which may more

Groupl

Group2:

Group3

a
3
2
Groupd: N

Figure 5. Learned Groups. Visualization of grouping learned in
FC SplitNet on CIFAR-100. Rows denote learned groups, while
columns denote semantic groups provided by CIFAR-100 dataset,
each of which includes 5 classes. The brightness of a cell shows
the agreement between learned groups and semantic groups.

closely resemble semantic taxonomies. In experiments, we
enforced the models to be balanced, as our focus is more
on efficiency and load balancing.

Figure 5 compares the learned group assignments in FC
SplitNet (G = 4) with supercategories provided by the
CIFAR-100. Each supercategory (column) includes five
classes. For example, supercategory people includes baby,
boy, girl, man and woman, which are grouped together by
our algorithm into Group 2. Note that we have at least three
classes from the same supercategory in each group. This
shows that groupings learned by our method bear some re-
semblance to semantic categories even when no external
semantic information is given.

The supplementary file presents the experimental results
with varying GG, the number of groups. Interestingly, with
Shallow SplitNet on CIFAR-100, a higher G=4 achieves a
better test accuracy with a parameter reduction of 48.66%.

5. Conclusion

We proposed a novel solution to split deep network into
a tree of subnetworks, to not only reduce the number of
parameters and computations, but to also enable straight-
forward model-parallelization. Specifically, we proposed
an algorithm to cluster the classes into groups that fit to
exclusive sets of features, which results in obtaining block-
diagonal weight matrices. Our splitting algorithm is seam-
lessly integrated into the network training procedure as a
regularization term, and thus allows the network weights
and splitting to be trained at the same time. We validated
our method on two classification tasks with two different
CNN architectures, on which it greatly reduced the num-
ber of parameters over the base networks, while obtain-
ing superior performance over networks with semantic or
clustering-based groups. Moreover, our network obtained
superior parallelization performance against the base net-
works at test time. As future work, we plan to explore
ways to efficiently train SplitNet on multi-GPU or multi-
processor environments from the initial training stage.
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