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A. Experimental Details
A.1. Finding Cost Ranges with Online Approximation

Consider the maximum and minimum costs for a fixed label y at round i, both of which may be suppressed. First, define
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bR(g) given in Algorithm 1. Owing to the monotonicity property of

ˆR(g, w, c; y) (Lemma 1), an alternative to MINCOST and MAXCOST is to find
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and return g
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(x) and g
w

(x) as the minimum and maximum costs. We use two steps of approximation here. Using the
definition of g
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we have:
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We use this upper bound in place of bR(g
w

) � bR(g
i,y

) in Eqs. (9) and (10). Second, we replace g
i,y

, g
w

, and g
w

with
approximations obtained by online updates. More specifically, we replace g

i,y

with go
i,y

, the current regressor produced by
all online updates so far, and approximate the others by
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where s(x, y, go
i,y

) � 0 is a sensitivity value that approximates the change in prediction on x resulting from an online
update to go

i,y

with features x and label y. The computation of this sensitivity value is governed by the actual online update
where we compute the derivative of the change in the prediction as a function of the importance weight w for a hypothetical
example with cost 0 or cost 1 and the same features. This is possible for essentially all online update rules on importance
weighted examples and it corresponds to taking the limit as w ! 0 of the change in prediction due to an update divided
by w. By inspection this requires only O(d) time per example, where d is the average number of non-zero features. With
these two steps, we obtain approximate minimum and maximum costs using
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The online update guarantees that go
i,y

(x) 2 [0, 1]. Since the minimum cost is lower bounded by 0, we have wo 2
⇣

0,
g
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. Finally, because the objective w(go
i,y

(x))2 � w(go
i,y

(x) � w · s(x, 0, go
i,y

))

2 is increasing in w within this
range (which can be seen by inspecting the derivative), we can find wo with binary search. Using the same techniques, we
also obtain an approximate maximum cost.

It is worth noting that the approximate cost ranges (without the sensitivity trick) are contained in the exact cost ranges
because we approximate the difference in squared error by an upper bound. Hence, the query rule in this online algorithm
should be more aggressive than the query rule in Algorithm 1.
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Table 2. Best learning rates
ImageNet 20 ImageNet 40 RCV1-v2 POS NER NER-wiki

passive 1 1 0.5 1.0 0.5 0.5
active (10�1) 0.05 0.1 0.5 1.0 0.1 0.5
active (10�2) 0.05 0.5 0.5 1.0 0.5 0.5
active (10�3) 1 10 0.5 10 0.5 0.5

Figure 3. Additional figures for simulated active learning experiments. The plots show the test cost as a function of the number of
examples where even a single query was issued.
A.2. Choosing the Learning Rate

For all experiments, we show the results obtained by the best learning rate for each mellowness on each dataset. We choose
the best learning rate as follows. For each dataset let perf(m, l, q, t) denote the test performance of the algorithm using
mellowness m and learning rate l on the tth permutation of the training data under a query budget of 2(q�1) · 10 ·K, q � 1.
Let query(m, l, q, t) denote the number of queries actually made. Note that query(m, l, q, t) < 2

(q�1) · 10 · K if the
algorithm runs out of the training data before reaching the qth query budget8. To evaluate the trade-off between test
performance and number of queries, we define the following performance measure:

AUC(m, l, t) =
1

2

q

max

X

q=1

⇣

perf(m, l, q + 1, t) + perf(m, l, q, t)
⌘

·
✓

log
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query(m, l, q + 1, t)

query(m, l, q, t)

◆

, (11)

where q
max

is the minimum q such that 2(q�1) · 10 is larger than the size of the training data. This performance measure
is the area under the curve of test performance against numbers of queries in log

2

scale. A large value means the test
performance quickly improves with the number of queries. The best learning rate for mellowness m is then chosen as

l?(m) , argmax

l

median

1t100

AUC(m, l, t).

The best learning rates for different datasets and mellowness settings are in Table 2.

A.3. Additional Figures for Simulated Active Learning

In Figure 3, we plot the test error as a function of the number of examples for which at least one query was requested, for
each dataset and mellowness parameter. This experimentally corresponds to the L

1

term in our label complexity analysis.

In comparison with Figure 2 involving the total number of queries, the improvements offered by active learning are slightly
less dramatic here. This suggests that our algorithm queries just a few labels for each example, but does end up issuing
at least one query on most of the examples. Nevertheless, one can still achieve test cost competitive with passive learning
using a factor of 2-16 less labeling effort, as measured by L

1

.

In Figure 4, we compare COAL with the two active learning baselines, ALLORNONE and NODOM described in Section 6,
along with passive learning, on the RCV1-v2 dataset. As in the ImageNet 40 results, here COAL substantially outper-
forms both baselines and passive learning. However, here ALLORNONE offers marginal improvement over passive, while

8In fact, we check the test performance only in between examples, so query(m, l, q, t) may be larger than 2(q�1) · 10 · K by an
additive factor of K, which is negligibly small.
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Figure 4. Test cost versus number of queries for COAL, in comparison with active and passive baselines on the RCV1-v2 dataset.
Passive learning and NODOM are nearly identical.
NODOM improves over passive on ImageNet 40. Thus, depending on the task, the baselines can improve performance, but
COAL is reliably better.

B. Running time analysis
Throughout this section, fix an x, y pair, an iteration i, as well a radius � and an accuracy ✏. We focus on approximating
c
+

(x,G(�; y)) (See Eqs. (2) and (7)), approximating the minimum cost is very similar. To simplify notation, we drop
dependence on x and y. We recall our earlier notation bR

i

(g; y) (Eq. (5)), except we drop the dependence on both y and i
which are fixed in this section. We also recall some other important notation which is accordingly simplified for brevity:

bR(g) = ˆE[(g(x)� c(y))21 (y queried on x)], eR(g, w, c) = bR(g) + w(g(x)� c)2

g
min

= argmin

g2G
bR(g), G(�) = {g 2 G :

bR(g)�min

g

bR(g)  �}

c
+

(↵�) = max

g2G(↵�)

g(x), c
?

= c
+

(�).

bR(g) is the empirical square loss used to define the set of good regressors G(�) in the algorithm. The precise form of bR(g)

does not matter in this section. eR(g, w, c) is the empirical square loss with one additional example, with features x, target
c, and weight w. g

min

is the empirical square loss minimizer, which is the center of the ball G(�). This functional is used
to define new square loss problems in our algorithm. Our goal is to find a number ĉ such that,

c
?

 ĉ  c
+

(4�) +

p
3✏.

Finally, let g
?

be any function such that g
?

(x) = c
?

and bR(g
?

) � bR(g
min

)  �. In other words g
?

realizes the maximum
cost on example x. Note that g

?

is not the same regressor that satisfies the realizability condition.

We start the running time analysis with several lemmas characterizing the behavior of various components of the algorithm.

An important structure to the square loss problem is a monotonicity property of both the risk functional and the predictions.
Lemma 1. For any c and for w0 � w � 0, let g = argmin

g

eR(g, w, c) and g0 = argmin

g

eR(g, w0, c). Then

bR(g0) � bR(g) and (g0(x)� c)2  (g(x)� c)2.

Proof. By the definitions,

bR(g0) + w0
(g0(x)� c)2 =

eR(g0, w0, c)  bR(g) + w0
(g(x)� c)2

=

bR(g) + w(g(x)� c)2 + (w0 � w)(g(x)� c)2

 bR(g0) + w(g0(x)� c)2 + (w0 � w)(g(x)� c)2.

Rearranging shows that

(w0 � w)(g0(x)� c)2  (w0 � w)(g(x)� c)2.
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Since w0 � w, we have (g0(x)� c)2  (g(x)� c)2, which is the second claim. For the first claim, the definition of g gives

bR(g) + w(g(x)� c)2  bR(g0) + w(g0(x)� c)2

Rearranging this inequality gives,
bR(g0)� bR(g) � w((g(x)� c)2 � (g0(x)� c)2) � 0.

The next critical lemma shows that the termination condition in Line 6 of MAXCOST meets the accuracy guarantee.
Lemma 2. If c � c

?

, w � �/✏2 and g = argmin

g

eR(g, w, c) then g(x) � c
?

� ✏. Further, if g 2 G(�), then g(x)  c
?

.

Proof. The second claim is straightforward by the definition of c
?

.

For the first claim, we work to establish a contradiction. Suppose that g(x) < c
?

� ✏. By the facts that g is the minimizer
of eR(g, w, c), g

min

is the minimizer of bR(g), and c � c
?

, we have
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min

)  eR(g
?

, w, c)� bR(g
min

)  �+ w(c� c
?

)

2.
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?
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)

2
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Rearranging proves that w < �/✏2. The contrapositive is that if w � �/✏2, then we must have g(x) � c
?

� ✏, which is
the desired claim.

The next lemma is the main result for the BINARYSEARCH subroutine.
Lemma 3. Suppose we invoke the subroutine BINARYSEARCH with parameters ✏ and �. Then it terminates in polynomial
time with O(log

2

(1/(✏2))) oracle calls. The algorithm outputs two regressors (g
`

, g
h

) and if c � c
?

is passed as input then
c
?

2 [g
`

(x), g
h

(x)]. If additionally, g
h

/2 G(4�) then c
?

 (g
`
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h

(x))/2.

Proof. The logarithmic running time is fairly straightforward since in each iteration the algorithm halves the interval, has
initial interval of size �/✏2 and terminates when the interval is smaller than 2�. Thus for T � log

2

(1/(2✏2)) the interval
has size at most

2

�T
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2
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For the first termination claim, the invariant that we maintain is that for all t � 1, g
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= argmin

g
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(x) � c
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(x)  c
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, we first establish the base case. Observe that g
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c

(computed in MAXCOST just before the invocation of
BINARYSEARCH) and bR(g

c

) � bR(g
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) + � by the termination check in Line 6. By construction, in this iteration and
in all others, we have that g
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/2 G(�), since this is the requirement for updating w
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minimizes the risk
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(x) � c
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The proof for g
t,`

is simpler, since we only shrink the interval up if we find something in G(�). By definition of c
?
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check guarantees that g

`

(x)  c
?

.

For the second termination claim we must use the fact that |w
t,h

� w
t,`

|  2� by the termination condition and g
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.
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Similarly we have

bR(g
min

) + w
t,`

(g
`

(x)� c)2  eR(g
`
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, c)  bR(g
min

) +�+ w
t,`

✓

c� g
h

(x) + g
`

(x)

2

◆

2

.

Adding the two equations gives
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⇥
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⇤
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⇥
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⇤
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(x) + g
`

(x)

2

◆

2

+ 2� since c, g
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✓
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The last line is a contradiction since E[f(Z)] � f(E[Z]) for convex f , which can be applied by taking Z =

Unif({g
`

(x), g
h

(x)}) and f(y) = (c� y)2.

The last lemma ensures sufficient progress in the case when g
h

/2 G(4�), which is crucial for the oracle complexity bound.

Lemma 4. Suppose c � c
?

and that there exists g 2 G(�) such that c � g(x) = � with � 2 [

p
3✏, 1]. Then if the output

(g
`

, g
h

) of BINARYSEARCH satisfies g
h

/2 G(4�), then g
h

(x)  c+ � � ✏2.

Proof. We never use a weight larger than �/✏2 by the initialization of w
1,`

, w
1,h

. Now suppose that we output g
h

such
that bR(g

h

)� bR(g
min

) > 4�, which by construction is the minimizer of eR(·, w, c) for some w  �/✏2. Then

bR(g
min

) + 4�+ w(g
h

(x)� c)2  eR(g
h

, w, c)  eR(g, w, c)  bR(g
min

) +�+ w(g(x)� c)2 =

bR(g
min

) +�+ w�2.

Rearranging, using the fact that � � w✏2, and dividing through by w > 0 gives

(g
h

(x)� c)2  �2 � 3✏2.

The condition on � ensures that the right hand side is non-negative. It is easy to see that �2 � 3✏2  (�� ✏2/�)2 simply by
expanding the square. Hence we get that

|g
h

(x)� c|  |� � ✏2/�|  � � ✏2.

We can safely remove the absolute value on the right hand side since we have the condition that � �
p
3✏, which ensures

that � � ✏2/� is non-negative. The absolute value on the left hand side can also be removed, since if g
h

(x)  c we have
already proved what is required. Specifically, since we must have ✏ 2 (0, 1) for the preconditions of the lemma to be
satisfied and � �

p
3✏, it follows that c  c+ � � ✏2. Since g

h

is the result of an oracle call with weight w  �/✏2, either
it has bR(g

h

)� bR(g
min

)  4�, or it must have g
h

(x)  c+ � � ✏2.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The first step of the proof is to inductively verify that c � c
?

, h � c
?

, `  c
?

at all steps in the algo-
rithm execution. These invariants are clearly maintained at the onset of the algorithm. Now suppose they are maintained at
the onset of some iteration. If g

c

satisfies bR(g
c

)  bR(g
min

)+�, then by Lemma 2 we are done. Otherwise, we obtain two
regressors (g

`

, g
h

) from BINARYSEARCH. For the lower bound, we always have g
`

(x)  c
?

by Lemma 3, which verifies
the inductive step for `. For the upper bound to c

?

, if bR(g
h

)� bR(g
min

)  4� then by Lemma 3, we know that c
?

 g
h

(x),
but we also know that g

h

(x)  c
+

(4�) by the definition, so we are done. The last case is when bR(g
h

) > 4�, but here we
may apply the second statement of Lemma 3, which asserts that c

?

 (g
h

(x)+ g
l

(x))/2. The settings of `, h, c now verify
the inductive claim, since ` � g

l

implies that (h+ l)/2 � (g
h

(x) + g
l

(x))/2 � c
?

.
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This immediately proves the correctness of the algorithm, since the loop stopping condition, along with the invariant,
guarantees that c � c

?

� ` which means that

ĉ� c
?

 ĉ� ` =
h� `

2


p
3✏.

For the iteration complexity, we must apply Lemma 4. In particular, we use the width of the interval [`, h] which contains
c
?

as a potential function and show that it decreases with every step. Let �
t

denote h� `, which is the width of the interval
before the tth iteration (so �

1

= 1). Every non-terminal iteration satisfies c � c
?

. Moreover, for any t > 1, we use as the
regressor g, the one that achieved the value ` used to define c. This ensures that g(x) = `. Furthermore, in application of
Lemma 4, we set � , c� g(x) = c� `, which conveniently gives 2� = �

t

= h� `. Recall that we entered the loop at tth

iteration, meaning that �
t

� 2

p
3✏ and hence � 2 [

p
3✏, 1]. Lemma 4 states that either we terminate successfully, or we are

guaranteed that g
h

(x)  c+ � � ✏2. This means that

�
t+1

= g
h

(x)�max{`, g
`

(x)}  c+ � � ✏2 � ` = � + � � ✏2 = �
t

� ✏2,

where the first equality used c� ` = � which is true by definition. Since we terminate at the first T such that �
T

 2

p
3✏,

we require at most O(1/✏2) iterations. By Lemma 3, each iteration takes O(log(1/✏)) oracle calls.

C. Generalization analysis
To bound the generalization error of Algorithm 1, we start by defining the central random variable in the analysis. At round
i, recall our notation Q

i

(y) = 1 (query y on example x
i

) which indicates the query rule. The central random variable is,

M
i

(g; y) ,
�

(g(x
i

)� c
i

(y))2 � (f?

(x
i

; y)� c
i

(y))2
�

Q
i

(y). (12)

Here (x
i

, c
i

) is the ith example and cost presented to the algorithm. For simplicity, we write M
i

when the dependence on
g and y is clear from context. For a vector regressor f , we write

M
i

(f ; y) , M
i

(f(·; y); y).

We also recall some of the constants and notation defined in Algorithm 1 which are heavily used throughout this appendix.

�

i

=

✏
i�1

i� 1

, ✏
i

=

⇣n

i

⌘

�

log

✓

2n2|G|K
�

◆

,  = 80.

bR
i

(g; y) =
1

i� 1

i�1

X

j=1

⇥

(g(x
j

)� c
j

(y))2Q
j

(y)
⇤

.

g
i,y

= argmin

g2G
bR
i

(g; y), and f
i

= {g
i,y

}K
y=1

.

G
i

(y) = {g 2 G | 8y, bR
i

(g; y)  bR
i

(g
i,y

; y) +�

i

},
F

i

= {f 2 GK | 8y, bR
i

(f(·; y); y)  bR
i

(g
i,y

; y) +�

i

}.

For �
1

we use the convention that 1/0 = 1 so the initial radius is infinite. Let E
i

[·] and Var

i

[·] denote the expectation
and variance conditioned on all randomness up to and including round i � 1. With these definitions, we turn to several
supporting claims.

C.1. Supporting Lemmata

Theorem 7 (Freedman-type inequality (Beygelzimer et al., 2011; Agarwal et al., 2014)). Let X
1

, . . . , X
T

be a sequence
of real-valued random variables. Assume for all t 2 {1, . . . , T} that |X

t

|  R and E[X
t

|X
1

, . . . , X
t�1

] = 0. Define
S =
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]. For any � 2 (0, 1) and � 2 [0, 1/R], with probability at least 1� �,

S  (e� 2)�V +

ln(1/�)

�
.
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Lemma 5 (Concentration of squared loss). For any � 2 (0, 1), with probability at least 1 � �, the following holds for all
g 2 G, y 2 Y, i 2 [n], t 2 [n]:
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Note that ✏
i

=
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�⌫
n

, is a scaled version of the confidence bound here, where the scaling shrinks polynomially with i.

Proof. First observe that by the rescaling of the failure parameter, we can apply Freedman’s inequality for each i, t, y, g
and for each tail and a union bound proves the result.

We now apply the Freedman-type inequality in Theorem 7. For a fixed g 2 G, y 2 Y , the random variable M
i

is measurable
with respect to the �-field �({(x
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), so M
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] forms a martingale difference sequence
adapted to this filtration. Moreover M
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are both conditionally centered and clearly at most 2.
Thus Freedman’s inequality gives,
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except with probability �

2n

2|G|K . This follows by observing that (e � 2)  1 and setting � =

p

⌫
n

/V , provided it meets
the constraint �  1/R. Otherwise we set � = 1/R and use the fact that 1/R 

p

⌫
n

/V .

The bound on the right hand side also holds for the lower tail, again except with same probability. Thus a union bound
over both tails, all g 2 G, y 2 Y and pairs i, t gives the result.

Lemma 6 (Bounding variance of regression regret). We have for all (g, y) 2 G ⇥ Y ,
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Proof. We take expectation of M
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Lemma 7 (Sharp cost-sensitive bound). For all i > 0, if f? 2 F
i

, then for all f 2 F
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The first term here is exactly the ⇣P
⇣

term in the bound. We now focus on the second term, which depends on our query
rule. For this we must consider three cases.

Case 1. If both y(x) and y?(x) are not queried, then it must be the case that both have small cost ranges. This follows since
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Case 2. If both y(x) and y?(x) are queried, we can easily relate the second term to the square loss,
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Passing from the second to third line here is justified by the fact that f?

(x, y(x)) � f?

(x, y?(x)) and f(x, y(x)) 
f(x, y?(x)) so we added two non-negative quantities together. The last step uses Lemma 6. While not written, we also use
the event 1 (y(x) 6= y?(x)) to avoid losing a factor of 2.
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Case 3. The last case is if one label is queried and the other is not. Both cases here are analogous, so we do the derivation
for when y(x) is queried but y?(x) is not. Since in this case, y?(x) is not dominated (h
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(x) is never dominated provided
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), we know that the cost range for y?(x) must be small. Using this fact, and essentially the same argument as in
case 2, we get
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We also obtain this term for the other case where y?(x) is queried by y(x) is not.

To summarize, adding up the contributions from these cases (which is an over-estimate since at most one case can occur
and all are non-negative), we get
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This bound holds for any ⇣, so it holds for the minimum.

C.2. Proof of Theorem 3

Conditioning on the high-probability event in Lemma 5, we prove the theorem by induction. Define
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.

We will make use of the following simple fact, which applies since i  n, so the premultiplier on ✏
i

is at least 1.

Fact 1. For all i 2 [n], we have ⌫
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.

Concretely we consider the inductive hypothesis:
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where c
0

= 10. The first claim in particular implies that f?

(·; y) 2 F
i

since we chose �

i+1

= ✏
i

/i and using Fact 1. For
the base case i = 1, observe that the right hand side of the first inequality is infinity but the empirical squared loss is 0 for
all regressors. Hence the first claim is trivially satisfied. Moreover, because the excess cost-sensitive classification risk is
always upper-bounded by 1, it is trivially bounded by 2K�

0
1

⇣

for any ⇣ 2 [0, 1]. For ⇣ > 1, we have ⇣P
⇣

= ⇣ so again the
bound is trivial.

Now assume the inductive hypothesis holds for the first i rounds, i � 1. We want to analyze the set F
i+1

, which is
computed at the end of the ith iteration of Algorithm 1 based on i examples (technically the beginning of the (i + 1)

st
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iteration). Invoking Lemma 5, with parameters 1 and i, and Lemma 6, we have for all (g, y) 2 G ⇥ Y ,
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This bound implies that
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Since this bound applies for all g 2 G, it proves the first part of the inductive claim.

Next we prove that the empirical squared loss minimizer f
i+1

after iteration i has small excess risk. Fix some label y. To
simplify notation, we drop the dependence on y and define for any j:
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Let M
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and y according to Eq. (12). We first prove that since g
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is the empirical loss minimizer at
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The last inequality here follows since g
i+1

/2 G
t+1

so it must have bR
t+1

(g
i+1

) � bR
t+1

(g
t+1

) � ✏
t

/t by the elimination
rule. Simultaneously, we use Eq. (14) which lower bounds the second term. Combining this inequality with the fact that
P

i

j=1

M
j

 0 gives
i

X

j=t+1

M
j

 c
0

⌫
n

� ✏
t

. (16)

Applying Lemmas 5 and 6 along with the inequality
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Combining the last inequality and Eq. (16), we get
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The strict inequality here is based on Fact 1 and the parameter setting  = 80. This is a contradiction since E
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] is a
quadratic form and hence non-negative by Lemma 6. The same analysis applies to every y. Therefore, we know that the
empirical square loss vector regressor f
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is in F
j

for all j 2 {1, . . . , i+ 1}, and hence we can apply Lemma 7 for all of
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We study the four terms separately. The first one is straightforward and contributes ⇣P
⇣

to the instantaneous cost sensitive
regret. Using our definition of ⌘
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Finally, the fourth term can be bounded using Lemma 5 (Eq. (17) with t = 0), which reveals
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To obtain this last bound, we observe that 1  log(i)  ⌫
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under our assumption that � < 1/e so the coefficient in the
numerator is at most 140. The inductive claim follows by the definition of �0

i+1

. Or more precisely, if �0
i+1

= 1 then the
inductive claim is trivial and otherwise we have proved what is required.
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D. Label complexity analysis
D.1. Supporting Lemmata

Our label complexity analysis builds on the following lemma, which uses the sets G?
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These are the constants defined in Algorithm 1 with some additional numerical constants that we use in the analysis. We
also require a new definition:
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�

, 2(c
1

/c
2

)

1/�

+ 1. Then for i � i
�

, we have

I
�

(i)� 1 � max{(c
2

/c
1

)

1/�

(i� 1)/2, 2}.

Proof. The proof is by direct calculation.

I
�

(i)� 1 = b(c
2

/c
1

)
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/c
1

)
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I
�

(i)� 1 � (c
2

/c
1

)
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(i� 1)� 1 = (c
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)
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� (c
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/c
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2

.

We now turn to the more intricate lemmas.
Lemma 8. For any � 2 (0, 1), with probability at least 1� �, for all i � 1 and all y,

G?

i

(c
2

�

i

; y) ⇢ G
i

(�

i

; y) ⇢ G
i

(4�

i

; y) ⇢ G?

i

(c
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�

i

; y) ⇢ G?

I
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(i)

(c
2

�

I

�

(i)

; y),

where I
�

(i) is in Eq. (20).

Proof. The second containment is trivial.

Recall our earlier definition that for a fixed g 2 G and y 2 Y ,

M
j

,
�

(g(x
j

)� c
j

(y))2 � (f?

(x
j

; y)� c
j

(y))2
�

Q
j

(y).

Let E
c

[M
j

] and Var

c

[M
j

] denote the expectation and variance taken with respect to the cost c at round j, conditioned on
all randomness up to round j � 1 and on x

j

. Following the same proof for Lemma 6, we have that

E
c

[M
j

] = Q
j

(y)(g(x
j

)� f?

(x
j

; y))2, and Var

c

[M
j

]  4E
c
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j

(g; y)].

It is also easy to prove a concentration result similar to Lemma 5 where E
j

[M
j

] and Var

j

[M
j

] are replaced by E
c

[M
j

]

and Var

c

[M
j

], respectively. Thus we have for any � 2 (0, 1), with probability at least 1 � �, the following holds for all
(g, y) 2 G ⇥ Y and all i, t 2 [n]:
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E
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, (21)
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where ⌫
n

= log

⇣

2n

2|G|K
�

⌘

as in Lemma 5. This bound, via the inequality
p
4ab  ↵a+ b/↵ implies

i+t�1

X

j=i

E
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M
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2
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E
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[M
j
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n

(23)

We start with proving the first containment. Fix some round i, some label y, and some g 2 G?

i

(c
2

�

i

; y). Conditioning on
the above high-probability event and starting with Eq. (23), we have
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M
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2

c
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+ c
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✏
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.

Above, the second inequality is by
i�1

X
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E
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j

] =
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Q
j

(y)(g(x
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2

�
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since g 2 G?

i

(c
2

�
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; y), and the final inequality uses ⌫
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 ✏
i�1

(Fact 1) and our choices of , c
0

and c
2

. Using the above
bound and with g

i

= argmin

g2G
bR
i

(g; y), we have
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⌫
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,

where the first inequality is by the above upper bound on
P

i�1

j=1

M
j

and Eq. (14), which upper bounds the excess empirical
square loss of f?. Thus, g 2 G

i

(�

i

; y) ⇢ G
i

(4�

i

; y).

To prove the third containment, we fix some i, y, and g 2 G
i

(4�

i

; y). Starting from (22) we have
i�1
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E
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i�1

,

where the second inequality is by the fact that g
i

is the square loss minimizer at round i for label y, the third inequality is
by g 2 G

i

(4�

i

; y), and the last inequality is by ⌫
n

 ✏
i�1

(Fact 1) and our choices of c
1

and . Thus, g 2 G?

i
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1

�
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; y).

For the final containment, observe that
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Using the definition of I
�

(i) in Eq. (20), we get that (i � 1)c
1

�

i

 (I
�

(i) � 1)c
2

�

I
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. Of course we always have
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 c
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. Hence,
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.
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Thus we get that G?

i

(c
1

�

i

) ⇢ G?

I

�

(i)

(c
2

�

I

�

(i)

).

Before bounding the label complexity, we first prove the following regret bound:

Lemma 9. For any �  1/e, with probability at least 1 � �, for all i � 1 and for all vector regressors f 2 F?

i

(c
2

�

i

) ,
Q

y
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i
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�
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; y),

E
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f
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.

Note that this cost-sensitive regret bound is polynomially worse than the one in Theorem 3 that we prove just for the
empirical risk minimizer f

i

. This is because we set the confidence radius �
i

using a polynomial function of n/i, which
will be important for our label complexity analysis.

Proof. The proof follows a similar argument to that of Lemma 7 in that we must argue that each g 2 G?

i

(c
2

�

i

; y) is
involved in driving the query rule for a large fraction of the rounds. First observe that f? 2 F?

i

(c
2

�

i

) for i � 1 by the
definition of F?

i

.

Next, fix a label y and a function g 2 G?
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(c
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�
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; y) for i � 0. We prove that g 2 G
t+1
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t

) for all t 2 {0, . . . , i}. In
search of a contradiction, suppose that g /2 G

t+1

(�
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) for some t 2 {0, . . . , i}. First, since g 2 G?

i+1

(c
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�
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; y), using
the Freedman-style deviation bound in Eq. (23), we have
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Here we also use the definition of �
i+1

= ✏
i

/i, c
0

= 10, and Fact 1.

At the same time, since g /2 G
t+1
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; y), we know that
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The last inequality uses Eq. (14). Together with the above, this implies that
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Now, since i � t and � 2 (0, 1), we get that ✏
i

< ✏
t

. Using Eq. (22) as before, we get
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The last non-strict inequality follows from the fact that ✏
t

� ✏
i

� ⌫
n

since i � t, and then the strict inequality is by our
choices for the constants. This is a contradiction since the left hand side is a quadratic form and so, g 2 G
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(�

t+1

) for
all t 2 {0, . . . , i}.

This argument applies for all y, and hence, we may apply Lemma 7, so that for all regressors f 2 F?

i

(c
2

�

i+1

),

i · (E
x,c

[c(x, h
f

(x))� c(x;h
f

?

(x))])  min

⇣>0

8

<

:

i⇣P
⇣

+

i

X

j=1

 

1 (⇣  2⌘
j

) 2⌘
j

+

4⌘2
j

⇣
+

6

⇣

X

y

E
j

[M
j

(f ; y)]

!

9

=

;

 min

⇣>0

8

<

:

i⇣P
⇣

+

16 + 4 log(i)

⇣
+

6

⇣

X

y

i

X

j=1

E
j

[M
j

(f ; y)]

9

=

;

.

The last inequality here uses identical bounds as the proof of Theorem 3.
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In a similar way to (17), we use Lemma 5 to obtain
i
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E
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The last bound uses the definition of �
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and Fact 1, along with the fact that G?
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; y) ⇢ G
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; y) so we
know the empirical risk to f
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is controlled. Finally, we collect the latter three terms and the constant 6(2 + 20) + 20

(which requires � < 1/e). This gives,
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This proves the statement since we are considering f 2 F?
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(c
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�
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) and ✏
i

/i = �
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.

For the rest of the analysis, it will be convenient to introduce the shorthand b�(x
i

, y) = bc
+

(x
i

, y) � bc�(xi

, y), where
bc
+

(x
i

, y) and bc�(xi

, y) are the approximate maximum and minimum costs computed in Algorithm 1 at round i. Moreover,
let Y

i

be the set of non-dominated labels at round i of the algorithm, which in the pseudocode we call Y 0. Formally,
Y
i

= {y | bc�(xi

, y)  min

y

0
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+

(x
i

, y0)}.
Lemma 10 (Cost Range Translation). Fix i and suppose that the conclusions of Lemmas 8 and 9 hold. Then for any x, y
pair, we have
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and I
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(i) is in Eq. (20).

Proof. We have
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i

=

argmin

y

cc
+

(x
i

,G
i

(y)), ỹ
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i

)� f?

(x
i

; y?
i

)� ⌘
i

2

 (�(x
i

, ỹ
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In both bounds, all the cost ranges are computed using Fcsr(r
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).
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For y?
i

we need to consider two cases. First assume y?
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i

. Then
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This is true since if |Y
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| > 1 then it must be the case that ỹ
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is confused, since it has the minimal lower cost estimate. On
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The second step here is because the search for ỹ
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includes ȳ
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, since the latter is not y?
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. Thus we obtain
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(ỹ
i

))  cc
+

(x
i

,G
i

(y?
i

))

) f?

(x
i

; ỹ
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as desired.

D.2. Low Noise (Massart) Case (Theorem 6)

Fix some round i. Let F
i

be the set of vector regressors used at round i of COAL and let G
i

(y) be the corresponding
regressors for label y. Let ȳ
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Assume Lemmas 8 and 9 hold. The label complexity L
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We need to do two things with Q
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(y), so we have duplicated it here. First, observe that y 2 Y
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a vector regressor f 2 F
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). Since we are using a factored representation, we can take f to
use g on the yth coordinate and use the maximizers for all the other coordinates. Moreover, |Y
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| > 1 implies there exists a
regressor that does not predict y. Of course, through Lemmas 8 and 9, we know that F
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For y 6= y?
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, we take f 0 to be f? which is always in the cost-sensitive regret ball. For y?
i

, we take f 0 to be any regressor such
that h
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0
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Secondly, we apply Lemma 11 along with the Massart noise assumption. For y 6= y?
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Recall that we use the convention that all quantities without an explicit regressor ball use Fcsr(r
I

�

(i)

). For y?
i

we obtain the
same inequality but using ỹ

i

via Lemma 11. Together this gives the bound:
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))⇥Q
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i
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Let us focus on just one of these terms (say where y 6= y?
i

) and consider any round i where ⌧ � 2⌘
i

.
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))Q
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, y))Q
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(y) + 1 (⌧/4  �(x
i

, y?
i

))Q
i

(y).
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Using the upper bound on Q
i

(y), the first term here is clearly bounded by

1 (⌧/4  �(x
i

, y))1
�

9f, f 0 2 Fcsr(r
I

�

(i)

) | h
f

(x
i

) = y ^ h
f

0
(x

i

) 6= y
�

, D
i

(y).

Fortunately, the second term is bounded in the same way, since we know that h
f

? 2 Fcsr(r
I

�

(i)

), the fact that some f with
h
f

(x
i

) = y 6= y?
i

exists implies that the second term is at most D
i

(y?
i

).

The last term, which involves Q
i

(y?
i

) is bounded in essentially the same way, since we know that when |Y
i

| > 1 (which is
all we are considering), there exists two functions f, f 0 2 F

i

such that h
f

(x
i

) = ỹ
i

and h
f

0
(x

i

) = y?
i

. Thus we can bound
the label complexity at round i by

D
i

(ỹ
i

) +D
i

(y?
i

) +

X

y 6=y
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i

(D
i

(y) +D
i

(y?
i

))  KD
i

(y?
i

) + 2

X

y

D
i

(y).

For the rounds i where ⌧ < 2⌘
i

we simply upper bound the label complexity by K.

The last step in the proof is to apply Freedman’s inequality to the sequence of indicators. The conditional mean of each
term is at most (for rounds i where ⌧ > 2⌘

i

),

E
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"

KD
i

(y?
i

) + 2

X

y

D
i

(y)

#


4r

I

�

(i)

⌧
[K✓

1

+ 2✓
2

] .

The part involving ✓
2

is straightforward and the premultiplier follows since we are measuring the probability of querying
with a cost range parameter of ⌧/4 and over a cost-sensitive regret ball of radius r

I

�

(i)

in D
i

(y). To obtain ✓
1

we use the
fact that if D

i

(y?
i

) = 1, then certainly there exists some confused label, namely y?
i

, and hence the indicator in ✓
1

is also 1.

The range is 3K since D
i

(y) 2 {0, 1} and since the terms are non-negative, the variance is at most the range times the
mean. In such cases, Freedman’s inequality gives

X  EX + 2

p

REX log(1/�) + 2R log(1/�)  2EX + 3R log(1/�),

with probability at least 1 � � where X is the non-negative random variable with range R and expectation EX . The last
step is by the fact that 2

p
ab  a+ b.

In our case, we get that with probability at least 1� �,

n
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] + 9K log(1/�).

Here we only consider rounds i � i? where i? is the smallest index such that ⌧ < 2⌘
i

? and i? � i
�

(Recall Fact 2). For the
first i? rounds, we will upper bound the per-round label complexity by K, so that the overall label complexity is at most
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n
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Using our choice of ⌘
i

= 1/
p
i, the first term is at most Kd4/⌧2e. The second term is bounded by Fact 2. The last step is

to use the definition of r
I

�

(i)

to simplify the sum. Since we are in the Massart noise case, we will set ⇣ = ⌧ in the definition
of r

i

in Lemma 10. Since P
⌧

= 0 by the definition of the noise condition, this yields r
i

= 14K�

i

/⌧ . Substituting this
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choice, along with our definition of �
i

yields
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Including the extra O(K) term, the overall bound is
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where a
0

is a universal constant.

For L
1

we can use a very similar argument. First,

L
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This inequality is an application of Lemma 10. Now as above, we know that,
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), h
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(x
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) = y ^ h
f

0
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) 6= y,

since if y 2 Y
i

then some classifier must select it, and since |Y
i

| > 1, something else must also be selected. We also know
that we can always take f 0 to be f? when y 6= y?

i

. For y?
i

we can always take the classifier to be the one that predicts ỹ
i

.

Moreover we also have that when ⌧ � 2⌘
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Thus, putting things together, and considering only rounds where ⌧ � 2⌘
i

we get
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Here we dropped the �(x; y?
i

) � ⌧/4 term from consideration since the term gets included in the existential quantifier
when the chosen label y = y?

i

. Now we may apply Freedman’s inequality to upper bound L
1

by
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where a
0

is a universal constant.
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D.3. High noise case (Theorem 5)

Fix some round i. Let F
i

be the set of vector regressors used at round i of COAL and let G
i

(y) be the corresponding
regressors for label y. Let ȳ
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y
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Assume Lemmas 8 and 9 hold. The label complexity L
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First we apply Lemma 10 on the latter indicator to get
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For the former indicator, observe that y 2 Y
i

implies that there exists a vector regressor f 2 F
i

such that h
f

(x
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) = y. This
follows since the domination condition means that there exists g 2 G
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(y) such that g(x
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0
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0
)
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Since we are using a factored representation, we can take f to use g on the yth coordinate and use the maximizers for all
the other coordinates.

Since y 2 Y
i

implies there exists f 2 F
i

such that h
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) = y, and by Lemmas 8 and 9, we get that f 2 Fcsr(r
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Similarly there exists f 0 2 F
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) 6= y. Thus we can bound the the label complexity for round i as,
X

y

1
�

9f, f 0 2 Fcsr(r
I

�

(i)

) | h
f

(x
i

) = y 6= h
f

0
(x

i

)

�

1
�

�(x
i

, y,Fcsr(r
I

�

(i)

)) � ⌘
i

/2
�

=

X

y

1
�

x 2 DIS(r
I

�

(i)

, y) ^ �(x
i

, y,Fcsr(r
I

�

(i)

)) � ⌘
i

/2
�

.

Now we can apply Freedman’s inequality on the sequence here to find that with probability at least 1� �,
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The first line follows by the definition of ⌘
i

and by optimizing the bound in Lemma 9 using the definition of �
i

. The
second line uses Fact 2. The remaining steps are simple calculations using � 2 (0, 1) and an integral bound.

Thus in total we get a label complexity of
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Similarly for L
1

we can derive the bound
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and then apply Freedman’s inequality to this sequence to obtain that with probability at least 1� �
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