Grammar Variational Autoencoder

Appendix

A. Grammars for equations and SMILES

The grammar for the single-variable equations includes 3 binary operators, 2 unary operators, 3 constants, and grouping
symbols; the start symbol is S. Training data for the VAE came by generating 100,000 different equations with parse tree
depth less than 7, corresponding to equations which can be produced using up to 15 production rule applications.

S—=S’'+ TIS’«x>T1I1S /) TIT
T— >CS )’ | ’sin(” S )" | ’exp(” S )’ | ’x> | ’1” | 27 | 3

The grammar for SMILES is based on the official OPENSMILES specification (Weininger, 1988), and starts with smiles.

smiles — chain

atom — bracket_atom | aliphatic_organic | aromatic_organic

aliphatic_organic — ’B> | 'C’ | 'N> | 'O | °S” | 'P* | "F* | ’I” | ’Cl” | ’Br’
aromatic_organic — ’c¢’ | ’n” | ’o’ | ’s’

bracket_atom — [’ BAI ']’

BAI — isotope symbol BAC | symbol BAC | isotope symbol | symbol
BAC — chiral BAH | BAH | chiral

BAH — hcount BACH | BACH | hcount

BACH — charge class | charge | class

symbol — aliphatic_organic | aromatic_organic

isotope — DIGIT | DIGIT DIGIT | DIGIT DIGIT DIGIT

DIGIT — 1> | 2> | ’3> | 4> 1’51 6 1’7" | 8

chiral —» '@ | @@

hcount — 'H’ | 'H’ DIGIT

charge — =’ | =’ DIGIT | ’—’ DIGIT DIGIT | ’+’ | '+’ DIGIT | ’+° DIGIT DIGIT
bond — =" | =" *# | /7 | ’\’

ringbond — DIGIT | bond DIGIT

branched_atom — atom | atom RB | atom BB | atom RB BB

RB — RB ringbond | ringbond

BB — BB branch | branch

branch — ’(° chain ’)” | ’(’ bond chain )’

chain — branched_atom | chain branched_atom | chain bond branched_atom

B. Network structure

We briefly overview recent sequence modeling advances which inform our encoder and decoder models. An encoder
¢4(z|X) takes a sequence of T" timesteps X = [x1,...,xy] as input and returns a distribution over real-valued vectors z,
whereas the decoder py(x|z) takes a real-valued vector z as input and generates a distribution over sequences themselves
X. We use the same encoder and decoder as Gémez-Bombarelli et al. (2016b), inspired by Bowman et al. (2016), with
a few modifications to incorporate a grammar as described in Section 3. We begin by encoding the data as sequences of
one-hot vectors. We then pass these vectors through our encoder network which consists of 3 layers of one-dimensional
convolutions (Kalchbrenner et al., 2014). We then flatten the resulting sequence into a vector and pass it through a fully
connected layer. We then pass the resulting vector through two separate fully connected layers to produce the mean and
variance of the latent distribution ¢,4(z|X) over z. To decode, we sample a z from this distribution and pass it through a
fully connected layer. We then repeat the output of this layer 7},,, times, producing a matrix of dimension H X T}, 4,
where H is the dimensionality of z. This can be thought of as a sequence over T,,,,, timesteps. We then pass this matrix
through 3 layers of GRU recurrent units (Cho et al., 2014), and finally through a fully connected layer, whose weights are
repeated at each timestep. The result are the logit vectors F.

C. Implementation details

We make two implementation changes to the standard VAE. We begin by reconsidering the ELBO as the sum of a recon-
struction loss term and a negative KL-divergence term (Kingma & Welling, 2014),

L(9,0;X) = By, (zx) [log po(X|2)] — K L(g4(z|X)||p(2)).

The first term ensures that the latent representation z serves as an accurate ‘encoding’ or ‘compression’ of the original data
X. The second term serves to regularize the latent representation so that the latent space is not too complex. Combined
together, these terms are aimed at producing a latent space which is the most efficient encoding of the data X. However,
when optimizing this ELBO in the usual way, we noticed that the VAE had the tendency to ignore the first term and simply



Grammar Variational Autoencoder

4.0

character VAE i ioh grammar VAE

0.4

0.0 0.0

Figure 6. The logP values of a 2-dimensional character and grammar VAE. The grammar VAE leads to a low-dimensional latent space
which is visually smother with respect to the property of interest.

try to optimize the second term by trying to have the encoder ¢,;(z|X) match the prior distribution p(z). Thus, the learned
latent representation z contains essentially no information about X. We believe this happened because our decoder is
such a powerful recurrent neural network, that it easily produces decodings that ‘appear’ similar enough to the data X.
We note that this behavior has been observed in other recent work (Zhao et al., 2017). To fix this we made two small
modifications, inspired by the character VAE on which our code is based*. First, we scale the standard deviation of the
encoding distribution g4 (z|X) by 0.01. We found that this helped the VAE produce more consistent encodings z for data
X, thus making the latent-space better resemble the data. Second, we divide the KL-divergence term by the number of
latent dimensions H. This effectively downweights the importance of the KL term so the VAE focusses more of an effort
at improving reconstruction.

Table 6. Reconstruction accuracy and sample validity results.
Method % Reconstruct % Prior Valid
GVAE 53.7 25.9
CVAE 44.6 0.001

D. Additional experiments

Molecule reconstruction & validity. We characterize how well the VAE models over molecules are able to reconstruct
input sequences from their corresponding latent representations and to also decode valid sequences when sampling from
the prior in latent space. Comparisons of full reconstruction accuracy for both the character and grammar VAEs are shown
in Table 6. To compute reconstruction error we start with 5000 true molecules from a hold-out set. For each molecule
we encode it 10 times, and we decode each encoding 100 times (as encoding and decoding are stochastic). This results in
1000 decoded molecules for each of the 5000 input molecules. We compute the average of these 1000 decodings that are
identical to the input molecule. We then average these averages across all 5000 inputs to get the percentage of molecules
that reconstruct out of the 5,000,000 attempts. To compute the percentage prior validity we sample 1000 latent points
from the prior distribution p(z) = A(0,I). We decode each of these points 500 times and test which of the decoded
SMILES strings correspond to valid molecules. We average across all 1000 points and 500 trials to yield the percentages in
Table 6. These results clearly indicate that the proposed GVAE has higher reconstruction accuracy, and produces a higher
proportion of valid sequences when sampling from the prior.

*https://github.com/maxhodak/keras-molecules



Grammar Variational Autoencoder

LogP Visualization. To visualize the latent space of the VAEs on molecules we train a CVAE and GVAE on the ZINC
dataset (Gémez-Bombarelli et al., 2016b) with a 2-dimensional latent space. We plot the training set colored by the
logP values of the molecules in Figure 6. We note that the CVAE seems to disperse molecules with higher logP values
(corresponding to molecules with better drug properties) throughout a large region in the lower half of the latent space. The
GVAE on the other hand concentrates molecules with high logP in a small region of latent space. We suspect this makes
Bayesian optimization for molecules with high logP much easier in the GVAE.



