Consistent k-Clustering

Silvio Lattanzi !

Abstract

The study of online algorithms and competitive
analysis provides a solid foundation for studying
the quality of irrevocable decision making when
the data arrives in an online manner. While in
some scenarios the decisions are indeed irrevo-
cable, there are many practical situations when
changing a previous decision is not impossible,
but simply expensive. In this work we for-
malize this notion and introduce the consistent
k-clustering problem. With points arriving on-
line, the goal is to maintain a constant approx-
imate solution, while minimizing the number of
reclusterings necessary. We prove a lower bound,
showing that (k log n) changes are necessary in
the worst case for a wide range of objective func-
tions. On the positive side, we give an algorithm
that needs only O(k? log* n) changes to maintain
a constant competitive solution, an exponential
improvement on the naive solution of recluster-
ing at every time step. Finally, we show experi-
mentally that our approach performs much better
than the theoretical bound, with the number of
changes growing approximately as O(logn).

1. Introduction

Competitive analysis of online algorithms has been an area
of spirited research with beautiful results over the past two
decades. At its heart, this area is about decision making
under uncertainty about the future—the input is revealed in
an online manner, and at every point in time the algorithm
must make an irrevocable choice. A standard example is
that of caching algorithms—at every time step the algo-
rithm must make a choice about which elements to keep in
the cache, and which elements to evict (Fiat et al., 1991).
The generalization of caching to metric spaces is encapsu-

“Equal contribution 'Google, Zurich, Switzerland *Google,
New York, New York, USA. Correspondence to: Sil-
vio Lattanzi <silviol@google.com>, Sergei Vassilvitskii
<sergeiv@google.com>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Sergei Vassilvitskii 2

lated in the k-server problem, which has been the subject
of intense study (Bansal et al., 2015; Manasse et al., 1990).

The key metric in online algorithms is the competitive ra-
tio. It measures the quality of the solution obtained by an
online algorithm versus an offline optimum, which has the
luxury of seeing the whole input before making any de-
cisions. In situations where the competitive ratio is rela-
tively small, for example, the list update problem (Sleator
& Tarjan, 1985), this is a great measure by which we can
compare different algorithms. However, in some scenarios
strong lower bounds on the competitive ratio imply that any
algorithm that makes irrevocable choices will necessarily
perform poorly when compared to an offline optimum.

Online clustering is one such example. In this setting points
T1,Z2,. .. arrive one at a time, and must be instantly given
one of k cluster labels. As is typical, the goal is to have the
highest quality clustering (under some pre-specified objec-
tive function, like k-CENTER or k-MEDIAN) at every point
in time. As Liberty et al. (2016) showed, not only do on-
line clustering algorithms have an unbounded competitive
ratio, but one must use bi-criteria approximations to have
any hope of a constant approximate solution.

Another approach to evade strong lower bounds is to make
additional assumptions about the input to the problem. For
example, one may assume that the input comes in a ran-
dom (or partially random) order. This assumption has been
a fruitful avenue when studying online problems in differ-
ent contexts, as the classic secretary problem (Ferguson,
1989; Kesselheim et al., 2015; Kleinberg, 2005) or match-
ing (Karp et al., 1990; Mahdian & Yan, 2011). Another
alternative is to assume some additional structure on the
distribution that points are coming from (Feldman et al.,
2009). A big downside of both of these assumptions is that
they are hard to test and validate in practice, which is why
we take a different approach in this work.

1.1. Consistency

While the irrevocability of past choices makes sense from
a theoretical standpoint, for some practical problems this
requirement is unrealistically draconian. For example, con-
sider a load balancer, which, when faced with requests ar-
riving online, assigns them to different machines. Better
cache performance dictates that similar requests should be

Consistent & clustering

assigned to the same machine, thus the load balancer is
essentially performing online clustering. However, funda-
mentally, nothing is preventing the load balancer from reas-
signing some of the past jobs to other machines. In this sit-
uation, a re-clustering—a reassignment of jobs to machines
to increase performance—is not an impossible operation.

Another common example of a costly, but not prohibitive
recomputation comes from standard applications of unsu-
pervised clustering: feature engineering for large scale ma-
chine learned systems. In this setting a feature vector z, is
augmented with the id of a cluster it falls in, x’, and the
full vector (x,2’) is given as input to the learner. This is
mainly done to introduce expressiveness and non-linearity
to simple systems. In this situation, changing the cluster-
ing would entail changing the set of features passed to the
learner, and retraining the whole system; thus one certainly
does not want to do it at every time step, but it can be done
if the gains are worthwhile.

From a theoretical perspective, the ability to correct for past
mistakes offers the ability for much better solutions. In par-
ticular for clustering problems, it avoids the lower bounds
introduced by Liberty et al. (2016). As we will show,
the option to recluster dramatically improves the quality of
the solution, even if it is taken rarely. More formally, we
will introduce a parameter /3 which controls the number of
times the solution changes. Setting 5 = 0 is equivalent to
online algorithms, whereas a large value of (3 is equivalent
to recomputing the answer from scratch at every time step.

1.2. Our Contributions

In this paper we focus on exploring the trade-off between
the approximation ratio of clustering algorithms, and the
number of times we must recompute the results.

We begin by formally defining the notion of («,f)-
consistent clustering in Section 3. Then we prove a lower
bound, showing that any constant competitive algorithm
must change its cluster centers at least Q(klogn) times
(Section 3.1). Then we show that a known algorithm
by Charikar et al. (2004) achieves this bound for the k-
CENTER problem, and we develop a new algorithm for
other clustering objectives, and show that it requires at
most O(k? log® n) reclusterings, an exponential improve-
ment over the naive solution (Section 5). Finally, we show
that the proposed algorithms perform well on real world
datasets (Section 7).

1.3. Related Work

There are two avenues for related work that we build on
in this paper. The first is clustering algorithms, particu-
larly the online clustering variants. In their seminal work
Charikar et al. (2004) gave algorithms for the k-CENTER

problem. The case of k-MEDIAN and k-MEANS proved
more complex. For the former, Meyerson (2001) gave an
O(log n) competitive ration for closely related online facil-
ity location problem. This result was further improved by
Fotakis (2008) and Anagnostopoulos et al. (2004). The lat-
ter was recently studied by Liberty et al. (2016) who gave
bicriteria approximations and showed that these are neces-
sary in an online setting. For the soft partition version of
the k-clustering problem, an Expectation Maximization al-
gorithm was suggested by Liang & Klein (2009).

The second, closely related area, is that of streaming al-
gorithms. The literature of clustering in the streaming
model is very rich, we highlight the most relevant results.
The first paper to study clustering problem is by Charikar
et al. (2004) studying the k-CENTER problem. Guha et al.
(2000) give the first single pass constant approximation al-
gorithm to the k-MEDIAN variant. Subsequently their result
has been is improved by Charikar et al. (2003). Finally, the
best algorithm for the closely related variant of facility lo-
cation is due to Czumaj et al. (2013), who gave a (1 + €)-
approximation for the problem.

2. Preliminaries

Let X be a set of n points, and d : X x X — R a dis-
tance function. We assume that d is symmetric and that
(X,d) form a metric space, that is d(z,x) = 0 for any
x € X; d(z,y) = d(y,xz) > 0 for any x,y € X; and,
for any z,y,2z € X, d(x,y) < d(x, z) + d(z, z). Finally,
by scaling d, let min, , d(z,y) = 1 and denote by A the
maximum pairwise distance, max, , d(x,y). We will as-
sume that A is bounded by a polynomial in n, therefore
log A = O(logn).

Consider a set of k points ¢ = {cy,ca,...,cx} C X, which
we will refer to as centers. For each c;, let C; C X be the
set of points in X closer to c; than to any other center c €
C. ! Formally, C; = {z € X | d(x,¢;) < mince. d(z,c)}.

Given a p > 0, in the rest of the paper we refer to the
cost of a point x with to respect to a set of centers as:
costy,(x, ¢) = ming, d(z, c;)?. And cost of a cluster C; as:
cost, (X, Ci) = 3 e, d(,¢)P.

Now we are ready to define our problem. For any p > 0 we
can define the cost of clustering of points X with respect to
the centers ¢ C X as: cost, (X, ¢) = >y cost,(r,¢) =

Z;C:l erci d(z,c;)P.

The k-clustering family of problems asks to find the set
of centers c¢ that minimize cost, for a specific p. When
p = 1, costy(X, ¢) is precisely the k-MEDIAN clustering

! For clarity of the exposition we will assume that all of the
pairwise distances are unique. The results still hold when ties are
broken lexicographically.

Consistent & clustering

objective. Setting p = 2 is equivalent to the k-MEDOIDS
problemz. Finally, with p = co, we recover the k-CENTER
problem, which asks to minimize the maximum distance of
any point to its nearest cluster center.

Observe that although d(-, -) satisfies the triangle inequal-
ity, when raised to p-th power we need to relax the con-
dition. In particular we have that for any z,y,z € X:
d(z,y)? < 227 Hd(z, 2)P + d(z,y)").

When p is clear from the context, we will refer to
cost, (X, ¢) as the cost of the clustering and denote it
cost(X,c). We will us opt,(X) to denote the optimum
cost for the metric space (X,d). We will use ¢* =
{ct,c3,...,c;} to denote the optimal solution.

The k clustering problem is NP-hard to solve exactly, thus
we consider approximate solutions. We say that a clus-
tering generated from a set of centers ¢ is a-approximate if
cost, (X, ¢) < a-opt,(X). The best known approximation
factors are 2 for the k-CENTER problem (Gonzalez, 1985),
1 4+ /3 + € for the k-MEDIAN problem (Li & Svensson,
2016), and 9 + € for the k-MEDOIDS problem (Kanungo
et al., 2004).

3. Consistency

As noted in the introduction, in many online clustering ap-
plications the choices made by the online algorithm are not
irrevocable, but simply expensive to change. Moreover, by
allowing a small number of full recomputations, we can
circumvent the stringent lower bounds on competitive ratio
for online clustering.

To this end, our goal in this work is to better understand the
trade-off between the approximation ratio of online cluster-
ing algorithms, and the number of times the representative
centers change.

We focus on a dynamic setting where the points arrive se-
quentially. Let x; denote the point that arrives at time ¢,
and denote by X; the set of points that has arrived from the
beginning. Thus Xo = 0, and X; 11 = X; U {z;41} =

{Il,IEQa e ,3€¢+1}~
For any two sets of centers ¢, ¢’ let |c—c’| denote the number
of elements present in ¢, but not in ¢’: [¢ — ¢/| = |¢\ (¢cN

¢’)|. Observe that when ¢ and ¢’ have the same cardinality,
l[c—¢| =1 — ¢l

Definition 3.1. Given a sequence of sets of centers, ¢y, ¢1,
.., ¢ and a positive monotone non-decreasing function

B : Z — R, we say that the sequence is [3-consistent if for

T
all T, 32,y |er — coa| < B(T).
In other words, a sequence is [3-consistent, if at time 7" at

*In the Euclidean space if the centers do not need to be part of
the input, setting p = 2 recovers the k-MEANS problem.

most 3(7T) centers have changed between successive sets.

Definition 3.2. Given a sequence of points x1, o, . . .
and a parameter p, a sequence of centers ¢1, Ca, . .
(a, B)-consistent if:

(i) Approximation. At every time t, the centers ¢; form
an o approximate solution to the optimum solution at that
time: costy (X, ¢r) < a-opt,(Xy) forallt <T.

(ii) Consistency. The sets of centers form a (-consistent
sequence.

y LT,
., Cr is

3.1. A lower bound

Before we look for («,) consistent algorithms it is use-
ful to understand what values are possible. We show that it
is impossible to get a constant approximation and achieve
consistency of o(logn) for any of the k clustering prob-
lems. Later, in Section 6 we will give a non-constructive
result that shows that there is always a sequence of clus-
terings that is simultaneously constant-approximate and
O(klog® n) consistent.>

Lemma 3.3. There exists a sequence of points such that
for any constant o« > 0, any algorithm that returns an
a-approximate solution while processing n points must be
Q(klog n)-consistent.

Proof. For ease of exposition, assume that p = 1, and con-
sider points lying in (k — 1)-dimensional Euclidean space,
R*~!. We begin by adding a point z at the origin, and
points 1, ..., Zx_1 in positions ey, €3, ..., ex_1, where ¢;
is the standard basis vector that is 1 in the j-th dimension,
and 0 everywhere else.

We then proceed in phases, where in phase 1 < i < logn
we add points at position ()’ - e; for each j € [1,k — 1],
for some v > 0 that we will set later. In phase logn we
add the remaining n — (k — 1) log n — 1 points at arbitrary
positions within the convex hull of already added points.

Let P; be the set of points at the end of phase i. Consider
any algorithm that returns an c-approximate solution on P;.
Let p1, po, ..., pr—1 be the points added to the input during
phase ¢, p; = ’)/i -e;. Then P, = P;_1 U {pl, R ,pk_l}.
One feasible solution choses as centers the points added in
phase ¢ as well as the origin, C' = {p1, po, ..., pk—1,0}.

For every point in P;_; the origin is closer than any of
the other centers, therefore the total cost is: opt(P;) <
- i
cost(P;,C) = (k—1)>" 17" < (k- 1)“;—_11 On
the other hand, consider a set of centers ¢’ that does not
include some p; = ~'e;. The closest point to p; is at

v*~1e;, which is at distance y*~!(y — 1) away. There-

3Note that we assume throughout the paper that the maximum
distance between any two points, A, is polynomial in n. Al-

ternatively we can restate the lower bound in this section as a
Q(klog A) upper bound in section 6 as a O(klog® A).

Consistent & clustering

fore, cost(P;,¢') > cost({p;},¢) = ~""1(y — 1). If
v > (2 4 ka) then we can bound the approximation ra-
’ i—1 i—1 2

2 i e Tl 2 E e
so ¢/ cannot be an «-approximate solution. Therefore at
the end of phase 1 < i < logn, any a-approximate set of
centers, must include all points added in phase <. Thus any
sequence of sets of centers must be Q(k log n)-consistent.

tio as:

Note that considering any p > 1 only makes any omission
of point p; even more costly, as compared to the optimum
solution. O

4. Warm up: k-CENTER Clustering

To gain some intuition about consistent clustering, we be-
gin with the k-CENTER objective. Given a dataset X, the
goal is to identify k centers ¢ = {cy,...,c;} that mini-
mize: maxgex Mince, d(z,c). This problem is known to
be NP-hard, but a simple 2-approximation algorithm ex-
ists in the batch setting (Gonzalez, 1985). In the stream-
ing setting, when points arrive one at a time, the DOU-
BLING algorithm by Charikar et al. (2004) was the first
algorithm discovered for this problem. The algorithm
maintains an 8-approximation. Furthermore, it works in
O(log A) = O(logn) phases and the total consistency cost
of each phase is k; thus we get the following lemma.

Lemma 4.1. The DOUBLING algorithm for the k-CENTER
problem is (8, O(klog n))-consistent.

5. Main Algorithm

In this section we present our main result, an algorithm that
achieves a polylogarithmic consistency factor. More pre-
cisely, we show that for every constant p > 1, it is possi-
ble to design an algorithm for the Consistent k-clustering
problem under cost, that is constant approximate, and
O(k?1og* n)-consistent.

In the remainder of the section we first present the main
ideas behind our algorithm, then prove some useful techni-
cal lemmas, and finally present the full algorithm.

5.1. Main ideas

Before delving into the details, we highlight the three main
building blocks of our algorithm.

The first is the Meyerson sketch for online facility loca-
tion (Meyerson, 2001). This sketch has already been used
by Charikar et al. (2003) to solve the k-median problem
on data streams. We show that the main ingredients of the
sketch continue to work under cost,, objectives, and use it
to generally reduce the number of points under considera-
tions from n to k - poly log n.

One caveat of this sketch is that to use it we need to have
access to a good lower bound on the cost of the optimal
solution at any point in time. We obtain it by running the
O(p) approximation algorithm described by Gupta & Tang-
wongsan (2008) on all available points. In this way, at any
point in time we have a good approximation of the optimum
solution. Then we divide the progress of our algorithm into
log n phases based on this lower bound and in each phase
we use a different sketch.

Finally, while the Meyerson sketch maintains O(k log? n)
possible centers, to computer the k-clustering, we have to
reduce these points into exactly k final centers. We first
show that this is possible and then we prove that we do
not need to recluster frequently. In fact we will do it only
when either a new point is added to the Meyerson sketch—
O(k log? n) times—or when the number of points assigned
to one of these elements of the Meyerson sketch doubles—
O(klogn) events per sketch.

By putting all of these ingredients together, we show that
the number of times we need to fully recluster is at most
O(klog® n) per phase, or that we have O(k? log* n) cluster
changes in total.

5.2. The Meyerson sketch

We present the Meyerson sketch and prove some useful
properties. We assume to have access to a lower bound to
the cost of the optimal solution L, such that LP > [Sopt,,
for some constant 0 < 3 < 1. (We will remove the as-
sumption later.) Then the algorithm works in phases, such
that at any time in phase j, L € [2771,27). So in each
phase j we can use the same lower bound Lf = 29~ and

P Bopt
have L i > ==
In each phase j we create 2 log n Meyerson sketches as de-

scribed in Algorithm 1. Then we combine them in a single
sketch as described in Algorithm 2.

Algorithm 1 Single Meyerson sketch

1: Input: A sequence of points xo, 1, x2, ..., ZTs. A finite p.

2: Output: A set S that is a constant bi-criteria approximate
solution for the k-clustering problem.

3: S« 0

4: Let X be a set of points and let L be such that L >
~yopt, (X), for some constant y > 0

5: for x € X do

6: if S == () then

7: S« {z}

8

9

else
Letd = d(z, S)?

10: With probability min (w 1) add z to S
11: Return S

For simplicity we first analyze the property of a single Mey-
erson sketch. In particular we give a bound on both the

Consistent & clustering

number of points selected by a single sketch, as well as the
quality of the approximation. The Lemma generalizes the
results in (Charikar et al., 2003; Meyerson, 2001) to all fi-
nite p and follows the general structure their proof so it is
deferred to the extended version of the paper.

Lemma 5.1. For a constant v € (0,1), with probabil-
ity at least % the set S computed by Algorithm 1 has: (i)

n 1)~ (ii) cost,(S) <

22p+1

size at most 4k(1 + logn) (
64opt,,(X).

From Lemma 5.1 we know that with constant probability a
single Meyerson sketch is of size O(klogn) and contains
a set of points that give a good solution to our problem.
Thus, if we construct 21og n single Meyerson sketches in
parallel, at least one of them gives a constant approximation
to the optimum at every point in time with probability at
least 1 — O(n~!). The observation inspired the design of
Algorithm 2, whose properties are formalized next.

Lemma 5.2. For a constant v € (0,1), with probability
1 — O(n~Y) the set M = UZ'B™ M, computed by Algo-
rithm 2 has: size at most O(klog®n) and cost,(M) <
64opt,, (X).

Proof. As mentioned above, Lemma 5.1 implies that if
we construct 2logn single Meyerson sketches in paral-
lel, with probability 1 — O(n~!), at least one of them
gives a constant approximation to the optimum at ev-
ery point in time. Furthermore in total it contains only

4k(1 + logn) (227:) points.

Now in Algorithm 2 we are almost building 2 log n Mey-
erson sketches; the only difference is that we stop adding
points to a single sketch when it becomes too large. This
modification does not change the probability that there ex-
ist at least one single sketch that gives a constant approx-
imation to the optimum at every point in time and has at

most 4k(1 + logn) (2 AL 1) points.

Thus with probability 1 — O(n~!) at least one of the
sketches constructed in Lemma 5.1 gives a constant ap-
proximation to the optimum at every point in time. Merg-
ing other sketches to this sketch does not affect this prop-
erty. Furthermore the number of points in each sketch is

explicitly bounded by 4k(1 + logn) (szj !
total number of points in M is bounded by 8k logn(1 +
logn) (2szrl + 1) O

so the

Note that in some cases we do not need to recompute all
the sketches from scratch but we need only to update them,
so we can define a faster update function described in Al-
gorithm 3.

Algorithm 2 Compute Meyerson(X;, ¢)
1: Input: A sequence of points X¢, a lower bound to the opti-

mum ¢.
2: Output: 2logn independent Meyerson sketches
M1> e 7M210gn
P =2

3)

4: for i € [2logn]| do: > Initialize all Meyerson sketches
5: Mi <— Xo

6: for z € X; do:
7.

8

9

for i € [2logn] do: > If M; is not too large, analyze =

if | M| < 4k(1 + log n) (2 AL 1) then:
Let 6 = d(x, M;)?
10: b= min (2E0pEm 1
11: Add z to M; with probability p
12: Return My, ..., M2iogn
Algorithm 3 UpdateMeyerson(Ma, . .., Ms,z, d)

1: Input: A point z;, a lower bound to the optimum ¢ and s
independent Meyerson sketches M, . .., M.

: Output: s independent Meyerson sketches My, ..., M,
ILP = E’
: for i € [s] do: > If M; is not too large, analyze x;

22p+1

if |M;| < 4k(1 + logn) (&

Let§ = d(we, M;)?
6k(1+4logn) 1
Lpr)

+ 1) then:

P = min (
Add z to M; with probability p
: Return My, ..., Mg

VR DDA

In the rest of the paper we refer to a single Meyerson sketch
as M, and to their union as M.

5.3. From Meyerson to % clusters

Our next step is to show that in the Meyerson sketch there
exists a subset of k centers that gives an approximately
optimal solution. We follow the approach in Guha et al.
(2000) and show that by weighing the points in the Meyer-
son sketch with the number of original data points assigned
to them, and then running a weighted k-clustering algo-
rithm to recluster them into k& clusters, we can achieve a
constant approximate solution.

Before formalizing this observation we give some addi-
tional notation. In the remainder of the section we denote
the weight of a point x in the Meyerson sketch with w(z),
the cost of the centers used in Meyerson sketch with costy,
and the cost of the aforementioned weighted clustering in-
stance with cost.. Finally we refer to the optimal set of
centers for the weighted k-clustering instance as ¢’.

We begin with two technical Lemmas.

Lemma 5.3. For any constant p > 1, cost,(X,¢') <
2P~1 (costy + costy)
Lemma 5.4. For any constant p > 1, costy <

Consistent & clustering

2?7~ (costy + opt,,)

Note that combining Lemmas 5.3 and 5.4 the following
Corollary follows.

Corollary 5.5. For any constant p > 1, cost,(¢’) <
237~ (costy + opt,,)

We defer the proofs of lemma 5.3 and lemma 5.4 to the
extended version of the paper. Those proofs are similar in
spirit to those in (Bateni et al., 2014; Guha et al., 2000), but
are generalized here for all p.

Thanks to Corollary 5.5 we know that by using a Meyerson
sketch, M contains a good approximation for our problem.
In the next subsection we show how to use this to obtain a
solution for the consistency problem.

Before doing this we define two algorithms that allow us
to construct a weighted clustering instance starting from a
Meyerson sketch (Algorithm 4) and to update the weights
for a weighted instance (Algorithm 5).

Algorithm 4 CreateW eightedInstance(Mu, . .., My, ¢, X4)

1: Input: A sequence of points X, a lower bound to the opti-
mum ¢ and s independent Meyerson sketches My, ..., M.

: Output: A weighted k-clustering instance (M, w).

: Let M = U; M;

: Assign points in X, to the closest point in M

: Let w(y) to be equal to the number of points assigned to y €
M

AW

[*))

: Return (M, w)

Algorithm 6 Consistent k-clustering algorithm
: Input: A sequence of points xo, 1,22, ..., Tn.
: Output: A sequence of centers co, €1, €2, ..., Cp
. Select the first k points as centers ¢o = {zo, 1, T2, . ..
t<0
: while cost, (¢o, X;) = 0 do:
¢t < ¢o; Output ¢35t <t +1
¢+ 0 > Initialize lower bound to the optimum
Mi, ..., Maiog n < ComputeMeyerson(Xo, ¢)
8: ¢+ 0; s« 2logn
9: while ¢t < n do:

axk}

10: Run A on X; to get approximated solution ¢/

11: if costy (X, ¢') > 2¢ then: > New Lb. for ¢
12: ¢ < costy(Xy, '),

13: M, ..., M, < ComputeMeyerson(X, ¢)

14: (M, w) + GetWeightedProb(Mi, ..., Ms, ¢, X:)
15: Solve (M, w) using algorithm A

16: Let ¢, be the set of centers computed by A

17: else: > Update Meyerson and recluster if needed

18: My, Ms, .. + UpdateMeyerson(Mi, .., Mg, ¢,)
19: Let M = U; M;,

20: if z; € M then: > z; is in Meyerson sketch
21: (M, w) + GetWeightedProb(Mi, ..., Ms, ¢, X+)
22: Solve (M, w) using algorithm A

23: Let ¢, be the set of centers computed by A

24: else:

25: (M, w) « UpdateW eights(M,w,)

26: Let m. be the closest point to x; in M

27: if w(my¢) is a power of 2 then:

28: > Weight of a point “doubled”
29: Solve (M, w) using algorithm A

30: Let ¢; be the set of computed centers

31: else:

32: € = C4—1

33: Output ¢¢5t +—t+ 1

Algorithm 5 UpdateW eights(M, w, x)

1: Input: A point x, the current weights w and the Meyerson
sketch M.

: Output: A weighted k-clustering instance (M, w).

: Assign z to the closest point in M

: Let m. be the closest point to « in M

s w(mg) =w(mg) + 1

: Return (M, w)

NN AW

5.4. The algorithm

We are now ready to formally state and prove the cor-
rectness of our main algorithm, which we present in Al-
gorithm 6. The input of our algorithm is a sequence of
points zg, 1, 2, . . ., Ty. Recall, that we denote the prefix
up to ¢t as Xy, and the cost of the solution using centers ¢
as cost, (X, ¢). Finally we assume to have access to a y-
approximation algorithm A for the weighted k-clustering
problem for any constant p-norm (we can use for exam-
ple the local search algorithm described by Gupta & Tang-
wongsan (2008)).

We can now state our main theorem.

Theorem 5.6. For any constant p > 1, with proba-
bility 1 — O(n™1), Algorithm 6 returns a sequence of

centers ¢, 1, C2,...,Cy Such that at any point in time t
costy(¢r, X¢) < aPopt,(X¢) for a constant o and the total

inconsistency factor of the solution is O(k? log* n)

Proof. We start by bounding the inconsistency factor,
S e —cil.

During the execution of Algorithm 6 the set of centers
changes if and only if one of the three following condi-
tions is met: (i) the cost of the clustering on X; computed
by A increases by a factor of 2, (ii) we add a new point to a
Meyerson sketch, (iii) a new point is assigned to a point of
the Meyerson sketch, m;, and the weight of m; is a power
of 2 after this addition. Note that every time we change the
centers, we fully recluster, and so increase the consistency
factor by k£ in the worst case. Therefore to prove the theo-
rem we need to show that one of these conditions is met at
most O(klog* n) times.

From our assumptions we know that the spread of the point
set is polynomial in n, which implies the same bound on
the cost of the optimum solution. Therefore, the cost of the
solution computed by A doubles at most O(log n) times.

Consistent & clustering

For the same reason we update the lower bounds, ¢ at most
O(logn) times during the execution of our algorithm. This
in turn implies that we rebuild the Meyerson sketches from
scratch at most O(log n) times. Given that we run O(logn)
Meyerson sketches in parallel, during the execution of the
algorithm we use at most O(log2 n) Meyerson sketches.
Furthermore each Meyerson sketch has at most O(k logn)
centers, thus in total we can add at most O (k log® n) points
under condition (ii).

Finally note that while a Meyerson sketch is fixed, the
weight of every point in the sketch can only grow. In ad-
dition, the weight is always is bounded by n, and there-
fore can double at most logn times per sketch point, re-
sulting in O(k log® n) changes under a fixed Meyerson
sketch. Therefore condition (iii) holds at most O(klog® n)
times. So overall at least one of the conditions is sat-
isfied at most O(klog" n) times, thus the algorithm is
O(k?log* n)-consistent.

To finish our proof we need to show that at any point in time
our algorithm returns with probability 1—o(n~!) a constant
approximation to the optimum. Note that by corollary 5.5
we know that for any constant p > 1 the cost of a solu-
tion computed on the Meyerson sketch can be bounded by
cost,(¢/) < 2%~ (costy + opt,,). From Lemma 5.2 we
know that the Meyerson sketch guarantees with probability
1 — o(n™") that costy < 160pt,(X). So we have the cost
of the optimal set of centers in the Meyerson sketch at any
point in time is at most O (aPopt,,) w.h.p. for a constant o*.

While we cannot compute the optimal set of centers in the
Meyerson sketch, we can find an O(p) approximation for
every constant p by relying on the local search algorithm of
Gupta & Tangwongsan (2008). Therefore, every time we
recompute the centers using .A we are sure that we obtain a
constant approximation.

Finally it remains to show that when none of the three con-
ditions are met, and we simply add a point to the solu-
tion without recomputing the centers we retain an approx-
imately optimal solution. By Lemma 5.3 we know that for
any constant p > 1, cost,(¢') < 2P~1 (costy + costy) .

Moreover, we can always bound the cost of Meyerson
sketch with 160pt,, (X).

It remains to get a bound on cost; . Note that the number of
points assigned to any point in M did not double since the
previous reclustering. Therefore, in the weighted reclus-
tering formulation the weight of all points increased by a
factor less than 2. Therefore, cost at this point is bounded
by at most twice cost| computed when we last reclustered.
Therefore, cost,(¢/) < 277! (costy + opt,,)and the cur-

“We do not make an attempt to optimize the constant factors.
As we show in the experimental section, in practice the algorithm
gives a very good approximation.

rent solution remains approximately optimal. O

6. Optimizing Consistency

How many times do we need to change the centers to ob-
tain a good k-clustering at any point in time? In Section 5
we presented an algorithm that is O(k? log* n)-consistent,
while in Subsection 3.1 we showed that at least Q(k logn)
changes are needed (assuming that A is polynomial in 7).
We give an existential result, we show that for any input
sequence there exist a solution that is constant approxi-
mate and O(k log® n)-consistent. In interest of space we
deferred the proof of the lemma to the extended version of
the paper.

Theorem 6.1. For any sequence xg, x1,. .., Xy there exists
a sequence of solutions cg, ¢1, ..., ¢, such that Vi,
cost, (X, ¢;) < aopt,(X;) for some constant o, and the

doileivs — ol = O(k/’logQ n).

7. Experiments

We demonstrate the efficacy of our algorithm by tracking
both the quality of the solution and the number of recluster-
ings needed to maintain it on a number of diverse datasets.
As we will show, the theoretical guarantees that we prove
in the previous section provide a loose bound on the num-
ber of reclusterings; in practice the number of times we
recompute the solution grows logarithmically with time.

Data We evaluate our algorithm on three datasets from
the UCI Repository (Lichman, 2013) that vary in data size
and dimensionality. (i) SKINTYPE has 245, 057 points ly-
ing in 4-dimensions. (ii) SHUTTLE has 58,000 points in
9 dimensions. (iii) COVERTYPE has 581, 012 points in 54
dimensions. For each of the datasets we try values of k in
{10,50, 100}, and observe that the qualitative results are
consistent across datasets and values of k.

Algorithm Modifications In the development of the al-
gorithm we made a number of decisions to obtain high
probability results. The key among them was to run
O(logn) copies of the Meyerson sketch, since each sketch
succeeds only with constant probability. We eschew this
change in the implementation, and maintain just a single
sketch, at the cost of incurring a worse solution quality.

Metrics and results The goal of this work is to give al-
gorithms that maintain a good clustering, but only recluster
judiciously, when necessary. To that end, we focus on two
main metrics: number of reclusterings and solution quality.

Reclustering We plot the number of reclusterings as a
function of time for the three different datasets in Figure 1.
Note that the x-axis is on log-scale, and thus a straight line

Consistent & clustering

Shuttle dataset

Covertype dataset

Skin dataset

— k=10

— k=10
- - k=50

- k=50

@

0|

— k=10
-~ k=50

5
3

k =100 k =100

Y
3

k =100

N

0|

Number Reclusterings
@
3
|

Number Reclusterings

5

&
v
1
"
'

\ I

'

' :
'
'

Number Reclusterings
N =
S 5]
]

100 500 1000 5000 100
Time Step

Time Step

500 1000 5000 100 500 1000 5000
Time Step

Figure 1. The number of reclusterings as a function of ¢ for three different datasets, and various values of k, plotted on a log scale.
Observe that the (i) x-axis is on Log scale, showing that after an initial warm up phase, the algorithm does a logarithmic number of
reclusterings, and (ii) the rate of reclustering is slightly higher for higher values of k.

Skin dataset

Covertype dataset

-
=3

— k=10

k=100
1

Shuttle dataset
]

Approximation Ratio
Approximation Ratio

Approximation Ratio

1000 2000 3000 4000 5000 1000 2000
Time Step

Time Step

3000 4000 5000 1000 2000 3000 4000 5000
Time Step

Figure 2. The approximation ratio as a function of ¢ for three different datasets, and various values of k. Note the stair step pattern —
when the algorithm choses not to recluster the approximation ratio slowly degrades. A reclustering step brings it down close to 1.

represents number of reclusterings that grows logarithmi-
cally with time. Qualitatively we make two observations,
across all datasets, and values of k.

First, the rate of reclustering (defined as the fraction of time
the algorithm recomputes the solution) is approximately
logn/n, which tends to 0 as the dataset size grows. Fur-
ther, the rate is higher for higher values of k, a fact also
suggested by our theoretical analysis.

Unlike the SHUTTLE and COVERT YPE datasets, the SKIN-
TYPE dataset exhibits a change in behavior, where initially
the reclustering rate is relatively high, but then it sharplly
drops after about O(2k) steps. This is explained by the
fact that the order of the points in this data set is not ran-
dom. Therefore initially the algorithm reclusters at a high
rate, once all of the parts of the input space are explored,
the rate of reclustering slows. When we run the algorithm
on a randomly permuted instance of SKINTYPE, this phase
transition in behavior disappears.

Approximation Ratio We plot the approximation ratio of
the solution (as compared to the best obtained by ten runs
of k-means++ (Arthur & Vassilvitskii, 2007)) in Figure 2.

For the SKIN and COVERTYPE datasets, the approxima-
tion ratio stays relatively low, largely bounded by 4, after
an initial period. A more careful examination of the plots
shows exactly the times when the consistent algorithm al-
lows the solution to degrade, and when it decides to recom-
pute the solution from scratch. The latter are indicated by
sharp drops in the approximation ratio, whereas the former
are the relatively flat patterns.

It is interesting to note that the additional points sometimes
worsen the approximation (as indicated by the lines sloping
upwards), but sometimes actually improve the approxima-
tion. This is due to the fact that decisions made by the
online algorithm balance optimality at that point in time,
with the potential location of points arriving in the future.
The latter is most apparent in the £ = 100 experiment of
the SHUTTLE dataset.

All of the datasets sometimes exhibit large fluctuations in
the approximation ratio. This is an artifact of using a single
Myerson sketch, which does not capture the structure of the
points with small, but constant probability.

8. Conclusions and Future Work

We introduced the notion of consistent clustering: a vari-
ant of online clustering which balances the need for main-
taining an approximately optimal solution with the cost of
reclustering. We proved §2(klog n) lower bounds, and gave
algorithms for all k-clustering variants that come close to
achieving this bound.

The notion of quantifying the worst case number of
changes necessary to maintain a constant approximate so-
lution in an online setting is interesting to study in contexts
other than k-clustering. For example, one can consider on-
line graph problems, such as online matching and online
densest subgraph, or other types of clustering problems,
such as hierarchical or correlation clustering.

Consistent & clustering

References

Anagnostopoulos, Aris, Bent, Russell, Upfal, Eli, and Hen-
tenryck, Pascal Van. A simple and deterministic compet-
itive algorithm for online facility location. Inf. Comput.,
194(2):175-202, 2004.

Arthur, David and Vassilvitskii, Sergei. K-means++: The
advantages of careful seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 07, pp. 1027-1035, 2007. ISBN
978-0-898716-24-5.

Bansal, Nikhil, Buchbinder, Niv, Madry, Aleksander, and
Naor, Joseph (Seffi). A polylogarithmic-competitive al-
gorithm for the k-server problem. J. ACM, 62(5):40:1-
40:49, November 2015. ISSN 0004-5411.

Bateni, MohammadHossein, Bhaskara, Aditya, Lattanzi,
Silvio, and Mirrokni, Vahab S. Distributed balanced
clustering via mapping coresets. In Advances in Neu-
ral Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pp.
2591-2599, 2014.

Charikar, Moses, O’Callaghan, Liadan, and Panigrahy,
Rina. Better streaming algorithms for clustering prob-
lems. In Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing, June 9-11, 2003, San
Diego, CA, USA, pp. 30-39, 2003.

Charikar, Moses, Chekuri, Chandra, Feder, Tomas, and
Motwani, Rajeev. Incremental clustering and dynamic
information retrieval. SIAM J. Comput., 33(6):1417—
1440, 2004.

Czumaj, Artur, Lammersen, Christiane, Monemizadeh,
Morteza, and Sohler, Christian. (1+ €)-approximation for
facility location in data streams. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pp. 1710-1728, 2013.

Feldman, Jon, Mehta, Aranyak, Mirrokni, Vahab S., and
Muthukrishnan, S. Online stochastic matching: Beating
1-1/e. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA, pp. 117-126, 2009.

Ferguson, Thomas S. Who solved the secretary problem?
Statist. Sci., 4(3):282-289, 1989.

Fiat, Amos, Karp, Richard, Luby, Micheal, McGeoch,
Lyle, Sleator, Daniel, and Young, Neal E. Competitive
paging algorithms. Journal of Algorithms, 12(4):685—
699, 1991. doi: 10.1016/0196-6774(91)90041-V.

Fotakis, Dimitris. On the competitive ratio for online facil-
ity location. Algorithmica, 50(1):1-57, 2008.

Gonzalez, Teofilo F. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293-306,
1985.

Guha, Sudipto, Mishra, Nina, Motwani, Rajeev, and
O’Callaghan, Liadan. Clustering data streams. In
41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pp. 359-366, 2000.

Gupta, Anupam and Tangwongsan, Kanat. Simpler anal-
yses of local search algorithms for facility location.
CoRR, abs/0809.2554, 2008.

Kanungo, Tapas, Mount, David M., Netanyahu, Nathan S.,
Piatko, Christine D., Silverman, Ruth, and Wu, An-
gela Y. A local search approximation algorithm for
k-means clustering. Comput. Geom., 28(2-3):89-112,
2004.

Karp, Richard M., Vazirani, Umesh V., and Vazirani, Vi-
jay V. An optimal algorithm for on-line bipartite match-
ing. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pp. 352-358, 1990.

Kesselheim, Thomas, Kleinberg, Robert D., and Niazadeh,
Rad. Secretary problems with non-uniform arrival or-
der. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Port-
land, OR, USA, June 14-17, 2015, pp. 879-888, 2015.

Kleinberg, Robert D. A multiple-choice secretary algo-
rithm with applications to online auctions. In Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pp. 630-631,
2005.

Li, Shi and Svensson, Ola. Approximating k-median via
pseudo-approximation. SIAM J. Comput., 45(2):530—
547, 2016.

Liang, Percy and Klein, Dan. Online em for unsupervised
models. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, NAACL ’09, pp. 611-619, 2009. ISBN 978-1-
932432-41-1.

Liberty, Edo, Sriharsha, Ram, and Sviridenko, Maxim. An
algorithm for online k-means clustering. In Proceedings
of the Eighteenth Workshop on Algorithm Engineering
and Experiments, ALENEX 2016, Arlington, Virginia,
USA, January 10, 2016, pp. 81-89, 2016.

Consistent & clustering

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Mahdian, Mohammad and Yan, Qiqi. Online bipartite
matching with random arrivals: an approach based on
strongly factor-revealing Ips. In Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011, pp. 597-606, 2011.

Manasse, Mark S., McGeoch, Lyle A., and Sleator,

Daniel Dominic. Competitive algorithms for server
problems. J. Algorithms, 11(2):208-230, 1990.

Meyerson, Adam. Online facility location. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pp.
426431, 2001.

Sleator, Daniel Dominic and Tarjan, Robert Endre. Amor-
tized efficiency of list update and paging rules. Commun.
ACM, 28(2):202-208, 1985.

http://archive.ics.uci.edu/ml

