Supplementary Material: Bayesian inference on random simple graphs
with power law degree distributions
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1. Proofs

We prove Theorem 3.1 and Theorem 5.1 in the paper. First consider the following redefinition of our model with slightly
different notation; let W,, be a random variable constrained on (0, C,,], with density

1
fn(dw) = 7w_a_1(1 —e ) ljpcw<c,ydw, (N
where C1, Cs, .. ., is a sequence of positive numbers satisfying
lim C,, = oo, lim Cy/n=0. 2)
n—oo n—oo

Note that Z,, — I'(1 — )/ as n — oo, and so the sequence of densities f,,(dw) converges pointwise to the density of
the BFRY distribution
a

—a—1 —w
= 57 1- 1 w ) 3
f(’LU) F(l—O{)w ( € ) {w>0} ( )
and W,, converges in distribution to a BFRY random variable. Let W,, 1,...,W,, ,, be n i.i.d. copies of W,,. A random
simple graph X is then defined to be a collection of Bernoulli random variables as follows:
reo W, .
P{Xij =1|ri;} = —2—, ri;=UU; U =—72==, 4
{Xij | 7i5} 1+, Ti,j J VIn )
where L, := > """ | W, ;. We will write X | 7 ~ GRG(n,r), where r := (r; ;: i < j < n).
We begin with a sequence of Lemmas. Define a sequence of random variables V ,,, for every s,n > 1, by
Wy
V; n ‘= . 5
"= o ®
Let Vi1, -+, Vsn,n be niid. copies of V; ;,, and denote the empirical mean of these copies by
Vin = ! Zn:V 6)
s,m n 4 S,M,%"
=1
The expectation of V; ,, is finite for all s,n < 0o, and is computed as
1 Cn,
E[Vsn] = ﬁ/ w1 = e )dw
ZnCn 0
1 1 s—a,C,
_ 1 i ek ) ’ 7
Zn ls—a cy
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Supp: Power-law simple graphs

where (-, ) is the lower incomplete gamma function.

P . . . .
Let — denote convergence in probability. The following lemma is a standard mean convergence result:

Lemma L.1. V., 5 E[V, ], as n — .

Proof. For all € > 0, by Chebyshev’s inequality and the condition in Eq. (2),

_ Var(Vs.,) E[VZ,)] 1 ce v(2s — a, Cy)
P{|Vsn — E[Vin]| > < ’ > — = n — — 0, 8
v, Vanll = £} ne2 ne2 Zne2 | n(2s — a) nC2s—2« ®
as n — oo, as desired. O
The following lemma will be used to study various higher order moments in later results:
Lemma 1.2. Fors > 2,
W,
M, = Z,fl s - LN 0, asn — oo. 9)
(ZZ:I Wnal)
Proof. We have
sV, ceN* T o,
Ms n — 717”_ > — (n) —— (10)
7 n? CZ Sa‘/ls,n n Vljn

As n — o0, the first factor on the right hand side clearly converges to zero (c.f. Eq. (2)), and, by Lemma 1.1, the second
term converges to a constant in probability. O

Recall that Dy, ; := 3, Xi,; is the degree of the i-th node in the graph X | r ~ GRG(n,r), given by Eq. (4). The
following result will show up in later calculations involving the probability generating function (PGF) of the degree random
variables D,, ;:

Lemma 1.3. For every collection ty, ..., t, with |t;| <1, fori <mn,
L, + tit;ww;
0 Wiy = wi, .o Wiy = n}: Zn Ui Wit 1
[H . w=wa] = [ =250 (11)
i<j<n
for positive wy, . . ., Wy,
Proof. The proof is given by Britton et al. (2006). O

The following result studies a representation of the PGF of the degree random variables and their higher order moments:
Lemma 1.4. Fix a node k < n. Define

Sor|t| <1, and wy, > 0, (12)

—k +wg + tw W,
Fo o (t; wr) H i

b
ik Lk +wp + weWi,

where Ly, _j := Z#k W,,.,i. Note that the s-th derivative Fésll(t, wy,) exists for all s > 0. For all s > 0, the following
hold:

1. (S,Z( wy) is uniformly bounded, for alln > 1;

’I’L

\/

2. FT(L (t; wy) 5 wj exp{(t — L)wy}, as n — oo.
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Proof. In the case s = 0, F), (t; wy) is trivially bounded by 1 since |¢t| < 1. By the Taylor series expansion log(1 + z) =

x + O(2?), we have

Lnfk 2 Ez;ékWQ )}
F,r(t,wg) =€ t—Dwy,————+0 v — " .
st =exp { (¢~ g 222 o ST
By Lemma 1.1,

Ln,—k . ‘71,77,,—]6 E}
Lok +we Vi, _p+wy/(n—1)/Cp~®

where 171,,17_ % 1s the empirical mean in Eq. (6) excluding the element V; ,, ;.. Furthermore, by Lemma 1.2,

ik Wi ]
O w} =51} < 0w My, i) 5 0
<wk (Ln,—k +wk)2> < O(wj; 2n, k) — U,

where M ,, _j, is M ,, computed without Vj ,, .. Combining, we have
P
Fp i (t;we) — exp{(t — Dwg}.

Before proceeding for s > 1, we define

T
Wy

t, w = )
Qr,n,k( k) Z#Zk (Ln,—k +wy + tkan,i)r

for all r,n > 1. One can easily see that Q, , x(¢; wg) < 1forall r,n > 1. For r = 1, we have

Wni
’ = tiwe) < 1,
#Zk Ly +wy + tw,Cp, — Qlan,k( k) <

and

Z Wn 7 _ 1
i Lnyfk + wy, + tw,Cy, 1+ wk/Ln’,k + twkC’n/Lnﬁ,k

Hence, by the squeeze theorem, Ql’n,k(t; W) B) 1. For r > 2, we have
P
0 < Qr,n,k(t; wk) < M'mn,fk — 07

by Lemma 1.2. Hence, we have Q. ,, (t; wy) 5 0forr > 2.
Now we show that
S
Ffzsll(t’ wk?) = kaT(:I;l) (t; wk?)Ql,n,k(t; wk) + Z as,r (s~ T) (t wk)Qr n k(t wk)
r=2

for some constants {asyr} for all s > 1 and r > 2. We proceed by the mathematical induction. For s = 1,

W Wi Ly, —i +wy + twp, Wy,
t w) Z T -

n,—k + Wr +wip Wy, ; ik Ly +wi +wpWhy

= wk:Fn,k(t; W) Q1,m,k (t; w).

_ oL _ -1
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Now by the inductive hypothesis,

FUD (twg) = w FS) (8 0) Qi (6 wre) — wR FC ) (8 w3) Qi (108

+ Zaw FEE (4w0)Qrne (b wr) — 1wrF 7 Qrt e (£01)

s+1
= wi FaL (6 wk)Qu k(b wk) + Y awirr Py " (108 Qo (8 w1, (23)
r=2
where
Asi12 = Qg2 — We, syl = Qsy — Qs pr1(r — Dwy,  forr > 2, (24)

so the inductive argument holds.

Having (21), by mathematical induction, we can easily show that (’S,)C(t; wy,) is uniformly bounded for all s,n > 1.

Moreover,

F( )(t wi) = Wi Fy k(6 wE) Q1. k(W) 5 wy, exp{(t — Dwy}, (25)
by (16) and (19). Combining this with (20), by mathematical induction, we can show that for all s > 1,
s P s
FL) (twy) 5 wi exp{(t — Dwy}. (26)
O

We will now use our collected results to analyze the asymptotic distribution of the degree random variables; the following
result characterizes this distribution:

Lemma 1.5. Fix a node k. Given {W,, j, = wy}, for some wy, > 0, the degree D,, 1, of node k converges in distribution to
a Poisson random variable with rate wy, as n — 0o.

Proof. The PGF of D,, j, is given by
E[tP"* | Wi = wi] = E[F, 5 (t;wg)],  for [t| < 1. 27)

Note that these expectations are under the o-field generated by {W}, = wy}. For all s > 0, we will derive the limit of
]P’{Dm k = S | wk}, as n — oo, which we note is given by the s-th order derivatives of the PGF in Eq. (27), evaluated at

the argument ¢ = 0. It therefore suffices to show that E[Fff,l (t; wg)] — wi exp{(t — 1)wk} asn — oo, forall s > 0.

By Lemma 1.4, we know that Fr(f,)c(t, wy,) is uniformly bounded and that F(S) ) (t;wi) > w exp{(t — wy}, as n — oo.

Therefore, by uniform integrability,

lim E[F)(twg)] = E| lim FU) (8 wg) | = wi exp{(t — wy}. (28)

n—oo n— 00

O
We are now ready to prove the main theorems in the paper.
Proof of Theorem 3.1. We will first verify that, for y > 1, P{D,,, = y} — cy 1~ for every node k and for some

constant ¢ > 0 as n — co. By Lemma 1.5, conditioned on {W}, = wy}, the degree D,, , converges in distribution to a
Poisson random variable with rate wg. Then by dominated convergence,

Jim P{Dyp =y} = lim [ P{Dy = ylwy}pn(dwy)
Y —wy
. wke
e
al'(y —a)

= a2 (29)
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By the asymptotics of the Gamma function, for y >> 1, we have

lim P{D, =y} =cy 7%, (30)
n—oo
for some constant c.
Next we show that, for any finite m, the collection of random variables D,, 1, ..., Dy, are asymptotically independent,
as n — oco. We compute the (joint) probability generating function of (D, 1,. .., Dp.m), with [¢;] < 1fori=1,...,m.
By Lemma 1.3,
D 7 17 Lo HttWaiWai v1 Lo+ tWa W
E|: t»Dn’i:| _ E|: n g VVmaeVing n iV, n,gi|
=1 i=1j=i+1 ’ »J j=m+1 ) )

=K |:]E ﬁ ﬁ Ln,m+1:n + gn,l:m + titjwianj

i=1 j=it1 Ln7m+1:n + en,l:m + wiWn,j

X H L i L Thw J |Wn,1:771:w1:m]]~ (31)

j=m+1 Ln,m+1:n + En,lzm + wiWn7lj

Given wj.,,, by a similar argument as in the proof of Lemma 1.4, one can easily show that

m

L . l, 1. titiw; W, s
H n,m+1:n + n,1:m +t; Wi W 5 E} 17 as n — oo, (32)
Ln,m+1:n + én,l:m + wiWn,j

j=i+1
and

n

H Ln,m+1:n + gn,l:m + tiwiWn,j
Ln,m—i—l:n + Zn,l:m + wiWn,j

5 exp{(t; — )w;}, asn — oo. (33)
j=m+1

Hence, again by a similar argument as in the proof of Lemma 1.4, we have
. i Dn,’L _ i L )
Jim E [1_11 ] = [T Elexeit: = W3, (34)

that is, the joint PGF asymptotically factorizes into the product of the PGFs for i.i.d. random variables, and the result
follows. O

Proof of Theorem 3.2. Using the fact that the expected number of nodes E,, := Y. | D, ;/2, we may take t; = - -
t,, = 1/t and obtain

e ] 235l

i<j<n

We evaluate the derivative of the PGF to obtain the first moment

i<j<n ’ ’ i<j<n
Since
EW,) = -{ G -y} 37
we have
E[E,] = O(nCL™®). (38)
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Proof of Theorem 5.1. Recall that

n

PX oy = [] (- =c7'0) [T Ay T[um (39)

i<j<n b i<j<n i=1

where A := (A; j)i<j<n and
G(T) = H (1 +Ai7jUin). (40)
i<j<n
Since ) P{X =z | r} = 1, we have

n

Gy =>" TI A7 [[w" (41)

z i<j<n =1
The joint PGF of (D, 1, ..., Dy ) is then

n

E[H P

A, Wn,l:n:| - ZP{X =X | 7«} ﬁtan,z(Z)
® i=1

i=1
~6 0¥ T Ay [
r 1<j<n =1
14 A it UUs
- IS @
i<j<n T AijUilj
The remainder of the proof follows analogously to the proof of Theorem 3.1 above. O
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