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Abstract
We propose a new neural network architecture
and use it for the task of statement-by-statement
alignment of source code and its compiled ob-
ject code. Our architecture learns the alignment
between the two sequences – one being the trans-
lation of the other – by mapping each statement
to a context-dependent representation vector and
aligning such vectors using a grid of the two se-
quence domains. Our experiments include short
C functions, both artificial and human-written,
and show that our neural network architecture
is able to predict the alignment with high accu-
racy, outperforming known baselines. We also
demonstrate that our model is general and can
learn to solve graph problems such as the Travel-
ing Salesman Problem.

1. Introduction
The problem of aligning sequences is well studied in
the literature across many domains, e.g., machine trans-
lation (Brown et al., 1993; Dyer et al., 2013; Bahdanau
et al., 2014), speech recognition (Graves et al., 2006;
2013), handwriting recognition (Graves et al., 2009; Graves
& Schmidhuber, 2009), alignment of books with movies
made based on them (Zhu et al., 2015) and more. The
alignment is often done sequentially, one step at a time. We
propose a neural network architecture, capable of aligning
two input sequences globally and at once.

We focus on the alignment of source code and its trans-
lation to the compiled object code. During compilation,
source code typically written in a human-readable high
level programming language, such as C, C++ and Java, is
transformed by the compiler to object code. Every object
code statement stems from a specific location in the source
code, and, therefore, there is a statement-level alignment

1The School of Computer Science, Tel Aviv University
2Facebook AI Research. Correspondence to: Dor Levy
<dor.levy@cs.tau.ac.il>, Lior Wolf <wolf@cs.tau.ac.il>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

between source code and object code.

As far as we know, statement-by-statement alignment of
source- and object-code is not treated in the literature. It is
challenging, since the per-statement outcome of the com-
pilation process also depends on other statements of the
source code. In addition, this outcome is produced in in-
creasing levels of sophistication that are determined by the
compiler’s optimization flags.

Our compound deep neural network combines one embed-
ding and one RNN per input sequence, a CNN applied to
a grid of sequence representation pairs and multiple soft-
max layers. Training is performed using both real-world
and synthetic data that we created for this purpose. The
real-world data consists of 53,000 short functions from 90
open-source projects of the GNU project. Three levels of
compiler optimization are used and the ground truth align-
ment labels are extracted from the compiler’s output.

Our experiments1 show that the neural network presented is
able to predict the alignment considerably more accurately
than the literature baselines. Moreover, our method is gen-
eral and transcends the problem of aligning sequences. We
demonstrate it by using exactly the same architecture for
learning the Traveling Salesman Problem.

1.1. Our Contributions

We propose a novel network architecture and challenge it
with a difficult alignment problem, which has unique char-
acteristics: the input sequences’ representations are not per
token, but per statement (a subsequence of tokens). The
alignment is predicted by our architecture not sequentially
(e.g., by employing attention), but by considering the en-
tire grid of potential alignments at once. This is done us-
ing an architecture that combines a top-level CNN with
LSTMs (Hochreiter & Schmidhuber, 1997).

While neural networks have been shown to be capable of
aligning sequences in the domain of NLP, where a sen-
tence in one natural (human) language is aligned with its
translation (Bahdanau et al., 2014), the current domain has
additional challenges. First, each source or object-code
statement contains both an operation (a reserved C key-
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word or an opcode) and potentially multiple parameters,
and are, therefore, typically more complex than natural lan-
guage words. Second, highly optimized compilation means
that the alignment is highly non-monotonous. Third, the
alignment is very often partial, since not all source-code
statements are aligned with the object-code statements. Fi-
nally, the meaning of each code statement is completely
context dependent, since, for example, the variables are
reused within multiple statements. In natural languages,
the context helps to resolve ambiguities. However, a direct
dictionary based alignment already provides a moderately
accurate result. In the current domain, the alignment pro-
cess has to depend entirely on the context.

1.2. Related Work

Extensive work was done on the problem of predicting the
alignment and computing its probability given a pair con-
sisting of a source sentence and a candidate target sen-
tence (Brown et al., 1993; Dyer et al., 2013). The align-
ment probability is then used for re-ranking the translation
candidates in the translation pipeline.

Bahdanau et al. (2014) propose an architecture for jointly
aligning and translating between two languages. The en-
coder of the source language is based on a bidirectional
RNN. During the decoding process, in which the new sen-
tence in the target language is created, an RNN is used to
predict one word at a time. This RNN pools as one of its
inputs, a weighted combination of the representations of
the various words in the source language. The weights of
this combination are pseudo-probabilities that represent the
similarity of the predicted word in the translated sentence
to each of the words in the source sentence. In contrast to
our work, the model described in (Bahdanau et al., 2014)
implicitly aligns an input sequence to an output sequence,
as part of the translation process, while our model explic-
itly aligns two input sequences. Note that most human lan-
guages are relatively similar and are constructed by similar
rules. It is unlikely that the same translation architectures
could successfully and accurately translate, for example, C
code to object code.

Our work is close in concept to Pointer Networks (Vinyals
et al., 2015), where the proposed architecture outputs dis-
crete tokens corresponding to positions in the input se-
quence. The input sequence is first encoded by an LSTM to
a representation sequence. A second LSTM, at each time
step, then points to a location in the input sequence through
an attention mechanism and given the previously pointed
value of the input sequence. Similarly, our architecture also
points to locations in an input sequence. However, in con-
trast to Vinyals et al. (2015), our architecture receives two
input sequences and points to locations on a grid formed by
the two.

The approach that is most closely related to ours is Match-
LSTM (Wang & Jiang, 2015). This architecture is used
to determine, given a premise sentence and a hypothesis
sentence, whether the hypothesis can be inferred from the
premise. The Match-LSTM is designed to do so by match-
ing of the hypothesis and premise word-by-word. First, the
two sentences are processed using two LSTM networks.
A third LSTM then processes sequentially the hypothesis
representation sequence and for every word in the hypoth-
esis sentence produces a match score for all words in the
premise representation sequence using an attention mech-
anism. Finally, after the third LSTM is done processing
the hypothesis sentence, its last hidden state is used to pro-
duce a single prediction for the relation between the hy-
pothesis and the premise. Although our work is aimed to
align two sequences, our proposed architecture is far from
Match-LSTM. While Match-LSTM matches sequentially
every word in the hypothesis sentence to all words in the
premise, our architecture represents all the statement pairs
as a grid and aligns all of them globally and combined, us-
ing a CNN. Another difference is that the alignment pro-
duced by Match-LSTM is only implicit, since the goal of
the architecture is to predict the relation between the two
sequences. In our architecture, the alignment is explicit
and fully supervised during training.

Another aspect in which our architecture differs from the
ones proposed by Bahdanau et al. (2014); Vinyals et al.
(2015); Wang & Jiang (2015), is that in order to align state-
ments, it does not learn representations that correspond to
tokens in the input sequences, but learns representations
that correspond to segments in the input sequence – each
segment being a mini-sequence of tokens that corresponds
to one statement.

Sequence processing with CNNs The use of CNNs for se-
quence processing tasks has been expanding recently. Such
tasks include sequence encoding (Zhang et al., 2015; Lee
et al., 2016), sentiment prediction (Blunsom et al., 2014),
document summarization (Denil et al., 2014) and transla-
tion (Gehring et al., 2017). One reason is the computa-
tional efficiency of CNNs compared to RNNs, which leads
to faster computations both on GPU and CPU. Another rea-
son is their ability to capture translation invariant features
in text, as shown by, e.g., Allamanis et al. (2016), who use
a convolutional attention mechanism in order to generate
extreme summarization of source code functions.

Neural networks and source code tasks Neural networks
have been shown to be useful in tasks involving source
code. For example, In (Zaremba & Sutskever, 2014) a
sequence-to-sequence LSTM learns to execute simple class
of python programs only from seeing input-output pairs.
In Allamanis et al. (2016), a model learns to generate mean-
ingful summaries to short functions written in Java.
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Figure 1. The alignment matrix, presenting statement-by-
statement alignment between a sample C function (columns) and
the object code that results from compiling the C code (rows). The
white cells indicate correspondence.

2. The Code Alignment Problem
We consider source code written in the C programming
language, in which statements are generally separated by
a semicolon (;). The compiler translates the source code
to object code. For example, the GCC compiler (Stall-
man et al., 2009) is used. We view the object code as as-
sembly, where each statement contains an opcode and its
operands. Since the source code is translated to object code
during compilation, there is a well-defined alignment be-
tween them, which is known to the compiler. GCC outputs
this information when it runs with a debug configuration.

2.1. Problem Formalization

In the GCC alignment output, the statement level align-
ment between source- and object-code is a many-to-one
map from object code statements to source code state-
ments: while every object-code statement is aligned to
some source-code statement, not all source-code state-
ments are covered. This is due to optimization performed
by the compiler. Our definition of a statement is slightly
modified, due to the convention used in the GCC align-
ment output. A C statement can be one of the follow-
ing: (i) a simple statement in C containing one com-
mand ending with a semicolon; (ii) curly parentheses ({,});
(iii) the signature of a function; (iv) one of if(EXP1),

for(EXP1;EXP2;EXP3), or while(EXP1), includ-
ing the corresponding expressions; (v) else or do. Note
that the following code

1 do
2 {
3 a += 4 ;
4 }
5 w h i l e ( i < 5 0 0 ) ;

contains five statements (as numbered) since the do, the {,
the }, and the while are all separate statements.

The object code statements follow the conventional defi-
nition, as shown, for example, in assembly code listings.
Each statement contains a single opcode such as mov, jne,
or pop, and its operands.

An example is shown in Fig. 1, which depicts both the
source code of a single C language function, which con-
tains M = 10 statements, and the compiled object code
of this function, which contains N = 14 statements. The
alignment between the two is shown graphically by using
a matrix of size N ×M . Each column (row) of this ma-
trix corresponds to one source (object) code statement. The
matrix (i, j) element encodes the probability of aligning
object-code statement i ∈ 1, . . . , N with the source-code
statement j ∈ 1, . . . ,M . Since the matrix is the ground
truth label, all probabilities are either 0 (black) or 1 (white).
In other words, each row i is a one-hot vector showing the
alignment of one object-code statement i.

As can be seen in the figure, the first opcode push corre-
sponds to the function’s statement {, that opens the func-
tion’s block. As expected, there are also many opcodes that
implement the for statement, which comprises compar-
ing, incrementing and jumping.

The matrix representation is the target value of the neu-
ral alignment network. The network will output the rows
of the alignment matrix as vectors of pseudo probabili-
ties. We can view the resulting prediction matrix as a soft-
alignment. In order to obtain hard alignments, we simply
take the index of the maximal element in each row.

Another dimension in which we challenge our alignment
network, is compilation optimization, which drastically
changes the object code based on the level of optimization
used (see Fig. 1 of supplementary material). This optimiza-
tion makes the object code more efficient and can render it
shorter (more common) or longer than the code without op-
timization, see supplementary material.
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3. The Neural Alignment Network
Each statement is treated as a sequence of tokens, where
the last token of each such sequence is always the end-of-
statement (EOS) token. A function is given by concatenat-
ing all such sequences to one sequence.

We employ a compound deep neural network for predict-
ing the alignment, as explained in Sec. 3.2. It consists of
four parts: the first part is used for representing each source
code statement j as a vector vj . The second part does the
same for the object code, resulting in a representation vec-
tor ui. The third part processes using a convolutional neural
network pairs of vector representations, one of each type,
as a multi-channel grid, and produces an alignment score
s(i, j). It is not a probability. However, the higher the
alignment value, the more likely the two statements are to
be aligned. The alignment scores are fed to the top-most
part of the network, which computes the pseudo probabil-
ities pij of aligning object code statement i to the source
code statement j. Specifically, the fourth part considers
for an object-code statement i, all source-code statements
j = 1, 2, . . . ,M the alignment score, and employs the soft-
max function: pij =

exp(s(ui,vj))∑M
k=1 exp(s(ui,vk))

.

3.1. Encoding the Input Statements

Our model incorporates two LSTM networks to encode the
sequences, one for each sequence domain: source code and
object code. Therefore, we first embed each token in the in-
put sequences in a high-dimensional space. We use differ-
ent embeddings for source code and for object code, since
each is composed of a different vocabulary. The vocabular-
ies are hybrid, in the sense that they consist of both words
and characters.

The source code vocabulary is a hybrid of characters and
the C language reserved words. A C reserved word is em-
bedded to a single vector, while variable names, arguments
and numeric values are decomposed to character by char-
acter sequences. The vocabulary contains the C language
reserved words as atomic units, EOS, and the following sin-
gle character elements: (i) alphanumeric characters includ-
ing all letters and digits; (ii) the operators +, -, /, *, &,
|, ˆ, ∼, ?; and (iii) the following punctuation marks: (,
), [, ], {, }, <, >, =, !, ,, ’, ", ;, #, \. Let ε(α) de-
note the embedding of a C token α to a vector. Then the C
code string if (a5<42), for example, is decomposed to
the following sequence: ε(if), ε((), ε(a), ε(5), ε(<), ε(4),
ε(2), ε()), ε(EOS).

Similarly, the object code vocabulary is also a hybrid, and
contains opcodes, registers and characters of numeric val-
ues and is based on the assembly representation of the ob-
ject code. The opcode of each statement is one out of
dozens of possible values. The operands are either regis-

ters or numeric values. The vocabulary also includes the
punctuation marks of the assembly language and, therefore,
contains the following types of elements: (i) the various
opcodes; (ii) the various registers; (iii) hexadecimal dig-
its; (iv) the symbols (,),x,-,:; and (v) EOS, which ends
every statement. Let ε′(β) denote the embedding of an ob-
ject code token β to a vector. Then the following assem-
bly string mov %eax,-0x8(%rbp), for example, is de-
composed to the following sequence: ε′(mov), ε′(%eax),
ε′(-), ε′(0), ε′(x), ε′(8), ε′((), ε′(%rbp), ε′()), ε′(EOS).

3.2. Neural Network Architecture

The network architecture is depicted in Fig. 2(a). The input
sequences introduce many complex and long-range depen-
dencies. Therefore, the network employs two LSTM en-
coders: one for creating a representation of the source code
statements and one is used for representing the object code
statements. In all of our experiments, the LSTMs have one
layer and 128 cells.

Recall that each statement in the input sequences is a se-
quence of tokens. However, for alignment, only a single
vector representation is required per statement. In order
to obtain a single vector representation per statement, we
sample the representation sequences output by the encoders
only at time steps corresponding to EOS’s. It should be
noted that information from other statements is not lost,
since each RNN activation is affected by other activations
in the sequence. Moreover, since EOS is ubiquitous, its
representation must be based on its context. Otherwise, it
is meaningless. During training, the network learns to cre-
ate meaningful representations at the location of the EOS
inputs.

The result of the LSTM encoders areM representation vec-
tors output by the source-code encoding LSTM, denoted by
{vj}j∈(1,...,M), and N representation vectors output by the
object-code encoding LSTM, denoted by {ui}i∈(1,...,N).
The statement representation vectors are then assembled in
anN×M grid, such that the (i, j) element is [ui; vj ], where
; denotes vector concatenation. Since each encoder LSTM
has 128 cells, the vector [ui; vj ] has 256 channels.

In order to transform the statement representation pairs
to alignment scores, we employ a decoding Convolutional
Neural Network (CNN) over the 256-channel grid. The de-
coding CNN has five convolutional layers, each with 32
5 × 5 filters followed by ReLU non-linearities, except for
the last layer which consists of one 5× 5 filter and no non-
linearities. The CNN output is, therefore, a single channel
N ×M grid, s(i, j), representing the alignment score of
object code statement i and source code statement j.

In the many-to-one alignment problem, the network’s out-
put for each row should contain pseudo probabilities.
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(a) (b)

(c) (d)

Figure 2. Various alignment networks, showing three source code statements and two object code statements. The sequences’ tokens are
first embedded (gray rectangles). The embedded sequences are then encoded by LSTMs (elongated white rectangles). The statement
representations are fed to a decoder (different in every figure) and then the alignment scores (s) output by the decoder are fed into
one softmax layer per each object code statement (rounded rectangles), which generates pseudo probabilities (p). (a) Our proposed
Grid Decoder, in which the grid of encoded statements is processed by a CNN. (b),(c) The Ptr1 and Ptr2 baselines, respectively, in
which a Ptr-Net decoder (Vinyals et al., 2015) processes sequentially the previously pointed source code statement (”prev src”) and
either the current (Ptr1) or previous (Ptr2, ”prev obj”) object code statement. (d) The Match-LSTM baseline (Wang & Jiang, 2015), in
which an LSTM decoder processes sequentially the current object code statement and the current attention-weighted sum of source code
statements. The attention model receives the LSTM output of the previous time step. The Match-LSTM is similar to Ptr2, except that
instead of the pointed source code statement, it receives the attention-weighted sum of source code statements (”prev att”).

Therefore, we add a softmax layer on top of the list of
alignment scores computed for each object-code statement
i: s(ui, v1), s(ui, v2), . . . , s(ui, vM ), i.e., there are N
softmax layers, each converting M alignment scores to a
vector of probabilities {pij}j∈(1,...,M) for each row i ∈
(1, . . . , N).

During training, the Negative Log Likelihood (NLL) loss
is used. Let A be the set of N object-code to source-code
alignments (i, j). The training loss for a single training
sample is given by 1

N

∑
(i,j)∈A−log(pij) , i.e., the loss is

the mean of NLL values of all N rows.

3.3. Local Grid Decoder

For comparison, we also consider a model that performs
decoding directly over the statements grid. In this model,
the decoder consists only of a single layer network s at-
tached to each one of the NM pairs of object code and
source code statement representations (ui and vj). The
same network weights are shared between all NM pairs
and are trained jointly. This network is given by:

s(ui, vj) = vT tanh(Woui +Wsvj)
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where v, Wo and Ws are the network’s weights. We con-
sider another, simpler version of the Local Grid Decoder,
where s(ui, vj) = uTi · vj , i.e., an inner product operation
is employed, instead of the single layer network.

4. Literature Baseline Methods
In this section, we describe the baseline methods that we
compare to our architecture. Our architecture and all base-
lines use LSTM encoders to encode the input sequences,
and softmax layers on top of the decoder output in order to
produce an alignment probability, as explained in Sec. 3.2.
The architectures differ only in the decoder part that pro-
duces alignment scores, i.e., in the model s(i, j). A pro-
found difference between our architecture and the base-
lines, is that while our architecture predicts the alignment
over the whole statements grid at once, the baselines pre-
dict the alignment sequentially.

4.1. Pointer Network

This baseline adapts the Pointer Network (Ptr-Net) archi-
tecture proposed by (Vinyals et al., 2015) in two ways. Ptr-
Net is designed to solve the task of producing a sequence
of pointers to an input sequence. The Ptr-Net architecture
employs an encoder LSTM to represent the input sequence
as a sequence of hidden states ej . A second decoder LSTM
then produces hidden states that are used to point to lo-
cations in the input sequence via an attention mechanism.
Denote the hidden states of the decoder as di. The attention
mechanism is then given by:

uij = vT tanh(W1ej +W2di) j ∈ (1, . . . , n)

pi = softmax(ui)

where n is the input sequence length and pi is the soft pre-
diction at time step i of the decoder LSTM. The input to
the decoder LSTM at time step i is argmax

j
(ui−1j ), i.e., the

input token ”pointed” by the attention mechanism at the
previous step. Thus, the output of the decoder LSTM can
be considered as a sequence of pointers to locations at the
input sequence.

Since in the alignment problem we need to align each ob-
ject code statement to one of the source code statements,
we adapt Ptr-Net to produce ”pointers” to the source code
statements sequence for every object code statement. The
adaptation is not trivial: our problem presents two input
sequences, while Ptr-Net is originally designed to handle
one. We create two such adaptations, Ptr1 and Ptr2, which
are depicted in Fig. 2(b) and (c), respectively.

In Ptr1, we employ a Ptr-Net decoder at each time step
i over the sequence of object code statement representa-
tions ui. The decoder is an LSTM network, whose hid-

den state hi is fed to an attention model employed over the
whole sequence of source code statement representations
vj : s(i, j) = vT tanh(Wsvj +Whhi).

The outputs s(i, j) of the attention model are used as the
alignment scores that will be fed later to the softmax lay-
ers. The Ptr-Net decoder receives at each time step i,
the source code statement representation that the attention
model ”pointed” to at the previous step i − 1, i.e., vpi−1

where pi = argmax
j

(s(i, j)).

Finally, in order to condition the output of the pointer de-
coder at the current object code statement representation
ui, the input of the pointer decoder LSTM is the concate-
nation of ui and vpi−1

:

hi = LSTM([ui; vpi−1
], hi−1, ci, ci−1),

where ci is the contents of the LSTM memory cells at time
step i. At the first time step i = 1, the value of vp0

is the
all-0 vector, and h0 is initialized with the last hidden state
of the source-code statements encoding LSTM.

It should be noted, that at each step, the Ptr-Net decoder
sees the current object code statement and the previous
”pointed” source code statement. It means that the LSTM
sees the source code statement that is aligned to the pre-
vious object code statement. A wiser adaptation would
present the Ptr-Net decoder LSTM with the explicit align-
ment decision, i.e., the previous ”pointed” source code
statement and the previous object code statement, such that
the input is a pair of two statements that were predicted
to align. Thus, in the second adaptation of Ptr-Net to our
problem, which we call Ptr2, the input to the Ptr-Net de-
coder LSTM is the concatenation of ui−1 and vpi−1

:

hi = LSTM([ui−1; vpi−1 ], hi−1, ci, ci−1).

The current object code statement representation ui is then
fed directly to the attention model, in addition to the Ptr-
Net decoder output and the source code statement repre-
sentation: s(i, j) = vT tanh(Woui +Wsvj +Whhi).

4.2. Match-LSTM

This baseline uses the matching scores of the Match-LSTM
architecture (Wang & Jiang, 2015). The architecture re-
ceives as inputs two sentences, a premise and a hypothesis.
First, the two sentences are processed using two LSTM net-
works, to produce the hidden representation sequences vj
and ui for the premise and hypothesis, respectively. Next,
attention ai vectors are computed over the premise repre-
sentation sequence as follows: ai =

∑M
k=1 αijvj , where
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Table 1. Mean±SD for the two code alignment datasets.

DATASET #FUNC- #STATEMENTS #TOKENS
TIONS PER FUNCTION PER STMT

SYNTHETIC C 150,000 21.8±8.0 8.2±9.0
SYNTH. OBJ. 150,000 17.1±8.3 3.6±2.0
GNU C 53,118 10.5±6.7 16.8±20.7
GNU OBJ. 53,118 21.2±18.1 1.2±1.1

αij are the attention weights and are given by

αij =
exp(s(ui, vj))∑M
k=1 exp(s(ui, vk))

s(i, j) = vT tanh(Woui +Wsvj +Whhi−1),

where hi is the hidden state of the third LSTM that
processes the hypothesis representation sequence together
with the attention vector computed over the whole premise
sequence: hi = LSTM([ui; ai], hi−1, ci, ci−1).

For further details about the Match-LSTM architecture,
see (Wang & Jiang, 2015). In order to adapt Match-LSTM
to our problem, we simply substitute the premise (hypoth-
esis) representation sequence with the source (object) code
statements representation sequence, and use the matching
scores s(i, j) as the alignment scores.

5. Evaluation
Data collection We employ both synthetic C functions
generated randomly and human-written C functions from
real-world projects. In order to generate random C func-
tions, we used pyfuzz, an open-source random program
generator for python (Myint, 2013), and modified it so it
will output short functions written in C rather than python.
For the real-world human-written data set, we used over
53,000 short functions from 90 open-source projects, that
are part of the GNU project and are written in C. Among
them are grep, nano, etc. Before compilation, we ran
only the preprocessor of GCC, in order to clean the sources
of non-code text, such as comments, macros, #ifdef
commands and more.

In order to compile the source code with optimizations, we
use the GCC compiler (Stallman et al., 2009) with the op-
timization levels -O1, -O2 or -O3. Each level turns on
additional optimization flags. Each of the datasets of gen-
erated and human-written C functions has three parts, each
compiled using one of the three mentioned optimization
levels. After compilation of the human-written projects,
some functions contained object code from other, inline
functions. These functions were excluded from the dataset
in order to introduce the network with pure translation

Table 2. Alignment accuracy results for synthetic code.

METHOD -O1 -O2 -O3 ALL

PTR1 99.27% 98.37% 98.49% 98.70%
PTR2 99.48% 98.71% 98.76% 98.98%
MATCH-LSTM 99.21% 97.98% 98.25% 98.46%
INNPROD GRID 99.42% 98.71% 98.81% 98.97%
LOCAL GRID 99.47% 98.75% 98.83% 99.02%
CONV. GRID 99.62% 98.77% 98.86% 99.08%

Table 3. Alignment accuracy results for GNU code.

METHOD -O1 -O2 -O3 ALL

PTR1 86.90% 83.45% 83.77% 84.91%
PTR2 86.21% 85.48% 86.35% 85.95%
MATCH-LSTM 87.02% 84.03% 84.69% 85.36%
INNPROD GRID 88.34% 88.90% 90.90% 89.09%
LOCAL GRID 88.73% 88.09% 89.70% 88.64%
CONV. GRID 91.19% 90.10% 91.54% 90.86%

pairs, i.e., source code and object code that has origi-
nated entirely from it. In addition, we tell GCC to out-
put debugging information that includes the statement-level
alignment between each C function and the object code
compiled from it. Therefore, each sample in the result-
ing dataset consists of source code, object code compiled
at some optimization level and the statement-by-statement
alignment between them. Tab. 1 reports the statistics of the
code alignment datasets.

Training procedure For each data set, we train one net-
work for all optimization levels. The length of all functions
has been limited to 450 tokens. The training set of syn-
thetic functions contains 120,000 samples. The validation
and the test sets contain 15,000 samples each. The training,
validation and test sets of human-written functions con-
tain 42,391, 5,474 and 5,253 samples, respectively. During
training, we use batches of 32 samples each.

The weights of the LSTM and attention networks are ini-
tialized uniformly in [−1.0, 1.0]. The CNN filter weights
are initialized using truncated normal distribution with a
standard deviation of 0.1. The biases of the LSTM and
CNN networks are initialized to 0.0, except for the biases
of the LSTM forget gates, which are initialized to 1.0 in
order to encourage memorization at the beginning of train-
ing (Józefowicz et al., 2015). The Adam learning rate
scheme (Kingma & Ba, 2015) is used, with a learning rate
of 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e− 08.
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(a) (b) (c)

Figure 3. A sample TSP route (a), and its connectivity matrix, before (b) and after (c) permuting the node IDs.

Table 4. Average length of predicted TSP route.

n OPT. A1 A2 A3 PTR-NET GRID D.

5 2.12 2.18 2.12 2.12 2.12 2.12
10 2.87 3.07 2.87 2.87 2.88 2.88

5.1. Alignment Results

Our proposed network and the baseline methods are trained
and evaluated over the datasets of synthetic and human-
written code. Tab. 2 and Tab. 3 present the resulting accu-
racy, which is computed per object-code statement as fol-
lows. First, the network predicts pseudo-probabilities of
aligning source code statements to each object code state-
ment. Second, in order to obtain hard alignments, we take
the index of the maximal element in each row of the pre-
dicted soft alignment matrix. Third, for every object code
statement, we count a true alignment only if the aligned
source code statement is the ground truth alignment. The
accuracy is reported separately for the three optimization
levels and for all of them combined. As can be seen in
Tab. 2, all models excel over synthetic code, reaching al-
most perfect alignment accuracy with a slight advantage to
our Convolutional and Local Grid Decoders. Tab. 3 shows
that the GNU code is more challenging to all methods.
Our proposed Grid Decoder models outperform all base-
line methods, and the Convolutional Grid Decoder is supe-
rior by a substantial margin over the local and inner prod-
uct alternatives. The Ptr1, Ptr2 and Match-LSTM baselines
reach about the same performance. It is an expected result,
since these models are very similar: they all employ a de-
coding LSTM and an attention mechanism, with only small
differences in performing the sequential processing of the
encoded representation sequences.

5.2. Traveling Salesman Problem (TSP)

We perform an additional experiment based on the TSP
benchmark presented in (Vinyals et al., 2015) in order to di-

rectly compare with the Pointer Network architecture (Ptr-
Net), where it was already tested. The input of the TSP
problem is a randomly ordered sequence of 2D points. The
output is a sequence of all the points reordered, such that
the route length (sum of distance between adjacent points)
is minimal. For our method, we consider the connectivity
matrix of the cycle graph in lieu of the alignment matrix.
As reported in (Vinyals et al., 2015), overfitting was ob-
served here. Therefore, we performed the following data
augmentation process. For each sample in the training set,
the IDs of the 2D points are permuted randomly and inde-
pendently of the other samples. It is equivalent to randomly
shuffling the order of the points in the sample sequence.
The IDs in the label are then permuted accordingly, to rep-
resent the same target route. During training, the process
was repeated at the beginning of every epoch, and indepen-
dently of past epochs. Fig. 5 depicts an example route and
its connectivity matrix before and after permutation of the
node IDs. The results are presented in Tab. 4, along with
the optimal and approximated results (see (Vinyals et al.,
2015) for further details). As can be seen, our method is
comparable to the original Ptr-Net model for both n = 5
and n = 10.

6. Summary
We present a neural network architecture for aligning two
sequences. We challenge our network with aligning source
code to its compiled object code, sequences that in some
aspects are more complex than human language sentences.
Our experiments demonstrate that the proposed architec-
ture is successful in predicting the alignment. On this task,
the network outperforms multiple literature baselines such
as Pointer Networks and Match-LSTM, suggesting that a
global, CNN-based approach to alignment is better than the
sequential, RNN-based approach.

Our model can be used for alignment of any two sequences
with a many-to-one map between them, and extended to
other graph problems, as demonstrated for TSP.
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