Generalized Linear Contextual Bandits

Supplementary for
Provably Optimal Algorithms for Generalized Linear Contextual Bandits

A. Proof of Theorem 1

In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, V;, is denoted V' and
SO on.

To prove normality-type results of the maximum likelihood estimator 0, typically we first show the n =1/ 2-consistAency of
0 to 0*. Then, by using a second-order Taylor expansion or Newton-step, we can prove the desired normality of . More

details can be found in standard textbooks such as Van der Vaart (2000).

Since m is twice differentiable with /n > 0, the maximum-likelihood estimation can be written as the solution to the
following equation

> (V- u(X[0)) X; =0. (15)
i=1

Define G(0) := Y i | (u(X/0) — pn(X[0*)) X;, and we have

G(0") =0 and G(A) =) e Xi, (16)

i=1
where the noise ¢; is defined in (1). For convenience, define Z := G(é) = 6X.

Step 1: Consistency of 0. We first prove the consistency of 6. For any 61,60y € R mean value theorem implies that
there exists some 6 = vf; + (1 — v)f2 with 0 < v < 1, such that

G(61) — G(02) = [zn: /:L(Xz{é)Xin{‘| (61 — 02) := F(0)(61 — 02) a7

i=1
Since 1 > 0 and Apin (V') > 0, we have
(01 — 02)'(G(61) — G(62)) > (61 — 02) (kV) (01 — 02) > 0

for any 6; # 0. Hence, G(#) is an injection from R to RY, and so G~! is a well-defined function. Consequently, (15)
has a unique solution § = G~1(Z2).

Let us consider an 7-neighborhood of 6*, B, := {0 : [|0 — 6*|| < n}, where > 0 is a constant that will be specified
later. Note that B, is a convex set, thus 6 € B, as long as 61,02 € B,). Define r,, := infycp, i1(2'8) > 0. From (17), for
any 0 € B,

1G(6) ~ GOy
= (@6 YF@OV'F@)(6 -0
K )‘mm(V) ||0 9*”

IGO)[I—s

V

where the last inequality is due to the fact that F/() = &, V.
On the other hand, Lemma A of Chen et al. (1999) implies that

{9 GO < n,,m/)\min(V)} CB,.

Now it remains to upper bound || Z|,,—, = HG(@’
V-

| to ensure 0 c B,. To do so, we need the following technical

lemma, whose proof is deferred to Section C.
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Lemma 7. Recall o which is the constant in (2). For any 0 > 0, define the following event:

50;::{Hznv,15;40\A1+¢ogu/5)}.

Then, E¢ holds with probability at least 1 — 6.

d+log(1/6)

Suppose £ holds for the rest of the proof. Then, n > i—: (1) implies 0, — 0H < . Since kK = k1, we have
Ky > k aslong as 7 < 1. Thus, we have
. 4o [d+log(1/6)
o— (9” <20 JeTost0) 18
s (V)= (18)

when Apin (V) > 1602 [d + log(1/5)] /2

Step 2: Normality of 0. Now, we are ready to precede to prove the normality result. The following assumes ¢ holds
(which is high-probability event, according to Lemma 7).

Define A :=  — 0*. It follows from (17) that there exists a v € [0, 1] such that
Z=G0)—GO") = (H+ E)A,
where 6 := v0* 4+ (1 —v)f, H := F(§*) = .7, 4(X[6*)X; X/ and E := F(0) — F(6*). Intuitively, when § and 6* are

close, elements in F are small. By the mean value theorem,

E= Z( XG*))XX Z,umXAXX'

=1

for some r; € R. Since ji < M, and v € [0,1], for any z € R?\ {0}, we have

n 2
dHYV2EH Y22 = (1—0) Z,u(n) x’H_1/2XZ-H
i=1
n 2
< Y M xA] o B
=1
< M, |A| (:C’H—l/? (Z XZ-X{> H_1/2x>
=1

M, 2
< —FlAll«]
K
where we have used the assumption that || X;|| < 1 for the second inequality. Therefore,

4M o [d+1log(1/6)

H'?EH- WH < Z1Al < 19
H Al Amin(V) (19)
When Ayin (V) > 64M 20 (d + log(1/6))/k*, we have
HH*V?EH*/?H <1/2. (20)
Now we are ready to prove the theorem. For any 2 € R¢,
20—0") =2/ (H+E)"'Z =2/H'Z—2/H 'E(H+E)"'Z. (21)

Note that the matrix (H + F) is nonsingular, so its inversion exists.
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For the first term, {¢; } are sub-Gaussian random variables with sub-Gaussian parameter o. Define
D :=[X1,Xs,..., X, e R™*¢

to be the design matrix. Hoeffding inequality gives

t2
P{a’H 'Z| >t} <2exp{ ——————— % . (22)
{ =< 202 ||a/ H-1D'||?
Since H > KV = kD'D, we have
1 rr—1 17112 rrr—1 1y rr—1 1/71 1 2
|’H~'D'||" =2’H'D'DH v < =a'Vilie = =< |lzy-
K K

so (22) implies

t2 2
P{la’'H'Z| >t} < 2exp —7’€2 .
20 [l

Let the right-hand side be 24 and solve for ¢, we obtain that with probability at least 1 — 26,
_ V20
o H 2] < =2 Jlog(1/5) ey (23)

For the second term,

@’ HT'B(H + B)7'Z] <zl

HV2E(H + E)*le

IA

lallyg- || H 2B + B) " HY2| 2] -0

IN

1
~lzlly— || BB + B Y212 )y 24)
where the last inequality is due to the fact that H = xV. Since (H + E)"' = H-' — H-'E(H + E)~!, we have

HH‘l/QE(H—i—E)_lHl/QH - HH—1/2E(H—1—H—lE(H+E)—1)H1/2H

= || B2 PR B+ ) Y

IN

HH*/?EH*”H + HH*/?EH*/QH HH*/?E(H n E)’lHl/QH .
By solving this inequality, we get

8M,o |d+log(1/d)
/52 Amin(‘/) ’

HH71/2EH71/2H <2HH—1/2EH—1/2H g

-1/2 —1pyl/2
HH BH+E)"H HS 1—||[H-12EH-1/2| —

where we have used (20) and (19) in the second and third inequalities, respectively. Combining it with (24) and the bound
in £z, we have

32M,,02 d + log(1/5)
K3 )\min(v)

o’ H'E(H+ E)™'Z| < 2y - (25)
From (21), (23) and (25), one can see that (5) holds as long as the lower bound (4) for A, (V') holds. Finally, an

application of a union bound on two small-probability events (given in Lemma 7 and (23), respectively) asserts that (5)
holds with probability at least 1 — 36.
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B. Proof of Proposition 1

In the following, for simplicity, we will drop the subscript n when there is no ambiguity. Therefore, V,, is denoted V' and
SO on.

Let X be a random vector drawn from the distribution v. Define Z := %.~'/2X_. Then Z is isotropic, namely, E[ZZ'] =
I;. Define U = Y1 7,7, = ¥7'/2VS~Y/2. From Lemma 1, we have that, for any ¢, with probability at least
1 — 2exp(—Cyt?),

/\min(U) 2 n — 0102m - 0'215\/7;.
—1/2

where o is the sub-Gaussian parameter of Z, which is upper-bounded by HE’l/ 2|| = A (X) (see, e.g., Vershynin

(2012)). We thus can rewrite the above inequality (which holds with probability 1 — § as
Amin(U) > n— AL (%) (Clo2x/nd n wﬁ) .

min

We now bound the minimum eigenvalue of V, as follows:

Amin(V) = m]iBn 2’'Va

zEB?
= min 2/XY2URY 22

z€B?
> Amin(U) min 2’3z

zEB?

- )\min(U))\min(E)
> Ain(D) (n = Anh (D) (Cr0*Vnd + tv/m) )
= )\min(z)n - Cl vnd — 02 nlog(l/é) .

Finally, it can be verified (Lemma 9) that the last expression above is no less than B as long as

. <C1\/g+02\/log(1/5)>2 . 2B
\

Amm(z) mm(z)’

finishing the proof.

C. Technical Lemmas and Proofs
C.1. Proof of Lemma 7
Noting that

1Zlly—2 = IV2Z)2 = sup (a,V™V2Z),
lall2<1

let B be a 1/2-net of the unit ball BY. Then |B| < 6¢ (Pollard, 1990, Lemma 4.1), and for any z € BY, there is a & € B
such that ||z — Z|| < 1/2. Consequently,

(2, V7YV22) = (@, VY22 +(x -1,V 22)
= @V e — | (2L yieg
( )+l ||<||x_$|| )

1
< (&, VY2Z)+ = sup (2, V1/22).
z€B4

Taking supremum on both sides, we get

sup (z, V™Y2Z) < 2max (i, V=Y2Z).
zeBd z€B
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Then a union bound argument implies

P{|Z|y-1 >t} < P{magq(fc,vl/22>>t/2}
zeB
< ZIP’{(Q%,V‘l/QZ)>t/2}
z2eB
t2
< ex —
- ;EI:B Pl 802 pv-12x|?

< exp{—t*/(80%) 4+ dlog6},

where we have used Hoeffding’s inequality for the third inequality and |B| < 6% for the last inequality. A choice of

t = 4o0+/d + log(1/6) completes the proof.

C.2. Proof of Lemma 2
By Abbasi-Yadkori et al. (2011, Lemma 11), we have

m—+n
det Vipan tr (Vi
3 1X:]% 1 < 2log  Vmtntl  9410g (r(ﬂ)—i—n) — 2log det Vyyr -
1 t det Vm+1 d

Note that tr (Vi 11) = 37, tr (X X)) = 7 |X,|2 < m and that det Vy, 1 = [0y A > AL (Vinga) > 1, where
{\i} are the eigenvalues of V;,, 1. Applying Cauchy-Schwartz inequality yields

5 ~ 2 n+m
Z ||XtHVt—1 <.|n Z ||Xt||‘,t—1 < \/Qndlog <d> .

t=m+1 t=m+1

C.3. Proof of Lemma 3

Define G4(0) = Zf;i(/f(Xz’Q) — w(X}6*))X; and Z, = 3.'_ ¢;X;. Following the same argument as in the proof of
Theorem 1, we have G¢(6;) = Z; and
IGO)IF, - = w210 — 077, (26)

forany 6 € {6 : || — 6*|| < 1}. Combining (26) with the following lemma and the equality Z; = G,(6;) completes the
proof.

Lemma 8. Suppose there is an integer m such that Amin(Vin) > 1, then for any § € (0, 1), with probability at least 1 — 6,
forallt >m,

d
1Ze]13,-1 < 407 (2 log(1 + 2t/d) + log(1/6)> .

Proof. For convenience, fix ¢ such that ¢ > m, and denote V; and Z; by V' and Z, respectively. Furthermore, define
V :=V + Al and let 1 be the vector of all 1s. It is easy to observe that

12152 = 25— + 2/ (VT =V )2, 27
We start with bounding the second term. The ShermanMorrison formula gives
_ AV 2
L e v
Since 1’V 11 > 0, the above implies that
0 < Z(vi-vhz
< NZ'V7*Z
< AVHZIE -
A

—||Z 2,1 .
)\min(v) || ||V
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Since Amin (V) > Amin(Vin) > 1, we now have
- o 2
0<Z/(V =V HZz < X|Z|- -
The above inequality together with (27) implies that
2 - 2
1Zlv— < Q=N 2[5 -

The proof can be finished by applying Theorem 1 and Lemma 10 from Abbasi-Yadkori et al. (2011) to bound || Z ||‘27,1,
using A = 1/2. O
C.4. Proof of Lemma 6

We will prove the first part of the lemma by induction. It is easy to check the lemma holds for s = 1. Suppose we have
af € As and we want to prove a; € A,1. Since the algorithm proceeds to stage s + 1, we know from step 2b that

()

t,a

‘m _Jj;‘,aeﬂ S w(S) < 2—5

for all a € A,. Specially, it holds for @ = a} because aj € A, by our induction step. Then the optimality of a} implies

mgsg* >y W0 —27° >, 05 —27° > mﬁj —-2.27°
Ehad 2 "t

t,a s
forall a € A,. Thus we have af € Ag 4 according to step 2d.
Suppose a; is selected at stage s; in step 2b. If s, = 1, obviously the lemma holds because 0 < u(z) < 1 for all . If

s¢ > 1, since we have proved a; € A,,, again step 2b at stage s; — 1 implies

e ) 07 < 275

,a
for a = a; and @ = af. Step 2d at stage s; — 1 implies

(s¢—1) m(st—l) <2. 9—sit+l

t,ay t,a¢

Combining above two inequalities, we get

xg’ate* > m(St*l) o 2—St+1 > m(stfl) —3. 2—st+1 > (E;’a;fe* _4. 2_5t+1 .

t,at t,a;

(s¢)

When a; is selected in step 2c, since m; a = mfgl, we have
9 sy

x;’aﬂ* > mﬁ;t) — 1/\/T > mf;tz — 1/\/T > x;,afe* — 2/\/T
Using the fact that p(z1) — p(x2) < Ly (21 — x2) for 1 > x9, we will get the desired result.

C.5. Proof of Lemma 9

Lemma 9. Let a and b be two positive constants. If m > a® + 2b, then m — a~r/m — b > 0.

Proof. The function ¢ — t2—at—>bis monotonically increasing for ¢ > a/2. Since m > a? + 2b, we have /m > a /2,50

m—aym—>b > a®>+2b—ava2+2b—b

> a®+b—ay/a®+2b+ b%/a?
a’+b—ay/(a+b/a)?

= a*+b—ala+b/a)

= 0.



