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Abstract
We develop the method of stochastic modified
equations (SME), in which stochastic gradient
algorithms are approximated in the weak sense
by continuous-time stochastic differential equa-
tions. We exploit the continuous formulation
together with optimal control theory to derive
novel adaptive hyper-parameter adjustment poli-
cies. Our algorithms have competitive perfor-
mance with the added benefit of being robust to
varying models and datasets. This provides a
general methodology for the analysis and design
of stochastic gradient algorithms.

1. Introduction
Stochastic gradient algorithms are often used to solve opti-
mization problems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f, fi : Rd → R for i = 1, . . . , n. In machine
learning applications, f is typically the total loss function
whereas each fi represents the loss due to the ith training
sample. x is a vector of trainable parameters and n is the
training sample size, which is typically very large.

Solving (1) using the standard gradient descent (GD) re-
quires n gradient evaluations per step and is prohibitively
expensive when n � 1. An alternative, the stochastic gra-
dient descent (SGD), is to replace the full gradient ∇f by
a sampled version, serving as an unbiased estimator. In its
simplest form, the SGD iteration is written as

xk+1 = xk − η∇fγk(xk), (2)
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where k ≥ 0 and {γk} are i.i.d uniform variates taking val-
ues in {1, 2, · · · , n}. The step-size η is the learning rate.
Unlike GD, SGD samples the full gradient and its com-
putational complexity per iterate is independent of n. For
this reason, stochastic gradient algorithms have become in-
creasingly popular in large scale problems.

Many convergence results are available for SGD and its
variants. However, most are upper-bound type results for
(strongly) convex objectives, often lacking the precision
and generality to characterize the behavior of algorithms
in practical settings. This makes it harder to translate theo-
retical understanding into algorithm analysis and design.

In this work, we address this by pursuing a different ana-
lytical direction. We derive continuous-time stochastic dif-
ferential equations (SDE) that can be understood as weak
approximations (i.e. approximations in distribution) of
stochastic gradient algorithms. These SDEs contain higher
order terms that vanish as η → 0, but at finite and small
η they offer much needed insight of the algorithms un-
der consideration. In this sense, our framework can be
viewed as a stochastic parallel of the method of modified
equations in the analysis of classical finite difference meth-
ods (Noh & Protter, 1960; Daly, 1963; Hirt, 1968; Warm-
ing & Hyett, 1974). For this reason, we refer to these SDEs
as stochastic modified equations (SME). Using the SMEs,
we can quantify, in a precise and general way, the leading-
order dynamics of the SGD and its variants. Moreover, the
continuous-time treatment allows the application of opti-
mal control theory to study the problems of adaptive hyper-
parameter adjustments. This gives rise to novel adaptive al-
gorithms and perhaps more importantly, a general method-
ology for understanding and improving stochastic gradient
algorithms.

Notation. We distinguish sequential and dimensional in-
dices by writing a bracket around the latter, e.g. xk,(i) is
the ith coordinate of the vector xk, the kth SGD iterate.

2. Stochastic Modified Equations
We now introduce the SME approximation. Background
materials on SDEs are found in Supplementary Materials
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(SM) B and references therein. First, rewrite the SGD iter-
ation rule (2) as

xk+1 − xk = −η∇f(xk) +
√
ηVk, (3)

where Vk =
√
η(∇f(xk)−∇fγk(xk)) is a d-dimensional

random vector. Conditioned on xk, Vk has mean 0 and
covariance matrix ηΣ(xk) with

Σ(x) =
1

n

n∑
i=1

(∇f(x)−∇fi(x))(∇f(x)−∇fi(x))T . (4)

Now, consider the Stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0, (5)

whose Euler discretization Xk+1 = Xk + ∆tb(Xk) +√
∆tσ(Xk)Zk, Zk ∼ N (0, I) resembles (3) if we set

∆t = η, b ∼ −∇f and σ ∼ (ηΣ)1/2. Then, we would
expect (5) to be an approximation of (2) with the identifi-
cation t = kη. It is now important to discuss the precise
meaning of “an approximation”. The noises that drive the
paths of SGD and SDE are independent processes, hence
we must understand approximations in the weak sense.

Definition 1. Let 0 < η < 1, T > 0 and set N = bT/ηc.
Let G denote the set of functions of polynomial growth,
i.e. g ∈ G if there exists constants K,κ > 0 such that
|g(x)| < K(1 + |x|κ). We say that the SDE (5) is an
order α weak approximation to the SGD (2) if for every
g ∈ G, there exists C > 0, independent of η, such that for
all k = 0, 1, . . . , N ,

|Eg(Xkη)− Eg(xk)| < Cηα.

The definition above is standard in numerical analysis of
SDEs (Milstein, 1995; Kloeden & Platen, 2011). Intu-
itively, weak approximations are close to the original pro-
cess not in terms of individual sample paths, but their dis-
tributions. We now state informally the approximation the-
orem.

Informal Statement of Theorem 1. Let T > 0 and define
Σ : Rd → Rd×d by (4). Assume f, fi are Lipschitz con-
tinuous, have at most linear asymptotic growth and have
sufficiently high derivatives belonging to G. Then,

(i) The stochastic process Xt, t ∈ [0, T ] satisfying

dXt = −∇f(Xt)dt+ (ηΣ(Xt))
1
2 dWt, (6)

is an order 1 weak approximation of the SGD.

(ii) The stochastic process Xt, t ∈ [0, T ] satisfying

dXt = −∇(f(Xt) + η
4
|∇f(Xt)|2)dt+ (ηΣ(Xt))

1
2 dWt

(7)

is an order 2 weak approximation of the SGD.

The full statement, proof and numerical verification of
Thm. 1 is given in SM. C. We hereafter call equations (6)
and (7) stochastic modified equations (SME) for the SGD
iterations (2). We refer to the second order approxima-
tion (7) for exact calculations in Sec. 3 whereas for sim-
plicity, we use the first order approximation (6) when dis-
cussing acceleration schemes in Sec. 4, where the order of
accuracy is less important.

Thm. 1 allows us to use the SME to deduce distributional
properties of the SGD. This result differs from usual con-
vergence studies in that it describes dynamical behavior
and is derived without convexity assumptions on f or fi.
In the next section, we use the SME to deduce some dy-
namical properties of the SGD.

3. The Dynamics of SGD
3.1. A Solvable SME

We start with a case where the SME is exactly solvable. Let
n = 2, d = 1 and set f(x) = x2 with f1(x) = (x−1)2−1
and f2(x) = (x+ 1)2− 1. Then, the SME (7) for the SGD
iterations on this objective is (see SM. D.1)

dXt = −2(1 + η)Xtdt+ 2
√
ηdWt,

withX0 = x0. This is the well-known Ornstein-Uhlenbeck
process (Uhlenbeck & Ornstein, 1930), which is exactly
solvable (see SM. B.3), yielding the Gaussian distribution

Xt ∼ N (x0e
−2(1+η)t, η

1+η (1− e−4(1+η)t)).

We observe that EXt = x0e
−2(1+η)t converges exponen-

tially to the optimum x = 0 with rate −2(1 + η) but
VarXt = η

(
1− e−4(1+η)t

)
/(1 + η) increases from 0 to

an asymptotic value of η/(1 + η). The separation t∗ be-
tween the descent phase and the fluctuations phase is given
by EXt∗ =

√
VarXt∗ , whose solution is

t∗ = 1
4(1+η) log(1 + η+1

η x2
0)

For t < t∗, descent dominates and when t > t∗, fluctua-
tion dominates. This two-phase behavior is known for con-
vex cases via error bounds (Moulines, 2011; Needell et al.,
2014). Using the SME, we obtained a precise characteri-
zation of this behavior, including an exact expression for
t∗. In Fig. 1, we verify the SME predictions regarding the
mean, variance and the two-phase behavior.

3.2. Stochastic Asymptotic Expansion

In general, we cannot expect to solve the SME exactly, es-
pecially for d > 1. However, observe that the noise terms
in the SMEs (6) and (7) are O(η1/2). Hence, we can write
Xt as an asymptotic series Xt = X0,t +

√
ηX1,t + . . .
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Figure 1. Comparison of the SME predictions vs SGD for the sim-
ple quadratic objective. We set x0 = 1, η =5e-3. (a) The pre-
dicted mean and standard deviations agree well with the empir-
ical moments of the SGD, obtained by averaging 5e3 runs. (b)
50 sample SGD paths the predicted transition time k∗ = t∗/η.
We observe that k∗ corresponds to the separation of descent and
fluctuating regimes for typical sample paths.

where each Xj,t is a stochastic process with initial condi-
tion X0,0 = x0 and Xj,0 = 0 for j ≥ 1. We substitute
this into the SME and expand in orders of η1/2 and equate
the terms of the same order to get equations for Xj,t for
j ≥ 0. This procedure is justified rigorously in Freidlin
et al. (2012). We obtain to leading order (see SM. B.5),

Xt ∼ N (X0,t, ηSt), (8)

where X0,t solves Ẋ0,t = −∇f(X0,t), X0,0 = x0 and
Ṡt = −StHt −HtSt + Σt, where Ht = Hf(X0,t), with
Hf denoting the Hessian of f , and Σt = Σ(X0,t), S0 = 0.
It is then possible to deduce the dynamics of the SGD. For
example, there is generally a transition between descent
and fluctuating regimes. St has a steady state (assuming
it is asymptotically stable) with |S∞| ∼ |Σ∞|/|H∞|. This
means that one should expect a fluctuating regime where
the covariance of the SGD is of order O(η|Σ∞|/|H∞|).
Preceding this fluctuating regime is a descent regime gov-
erned by the gradient flow.

We validate our approximations on a non-convex objective.
Set d = 2, n = 3 with the sample objectives f1(x) = x2

(1),
f2(x) = x2

(2) and f3(x) = δ cos(x(1)/ε) cos(x(2)/ε). In
Fig. 2(a), we plot f for ε = 0.1, δ = 0.2, showing the
complex landscape. In Fig. 2(b), we compare the SGD mo-
ments |E(xk)| and |Cov(xk)| with predictions of the SME
and its asymptotic approximation (8). We observe that our
approximations indeed hold for this objective.

4. Adaptive Hyper-parameter Adjustment
We showed in the previous section that the SME formula-
tion help us better understand the precise dynamics of the
SGD. The natural question is how this can translate to de-
signing practical algorithms. In this section, we exploit the
continuous-time nature of our framework to derive adaptive
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Figure 2. Comparison of the moments of SGD iterates with the
SME and its asymptotic approximation (Asymp, Eq. 8) for the
non-convex objective with δ = 0.2 and ε = 0.1. The landscape
is shown in (a). In (b), we plot the magnitude of the mean and the
covariance matrix for the SGD, SME and Asymp. We take η =1e-
4 and x0 = (1, 1.5). All moments are obtained by sampling over
1e3 runs (the SME and Asymp are integrated numerically). We
observe a good agreement.

learning rate and momentum parameter adjustment poli-
cies. These are particular illustrations of a general method-
ology to analyze and improve upon SGD variants. We will
focus on the one dimensional case d = 1, and subsequently
apply the results to high dimensional problems by local di-
agonal approximations.

4.1. Learning Rate

4.1.1. OPTIMAL CONTROL FORMULATION

1D SGD iterations with learning rate adjustment can be
written as

xk+1 = xk − ηukf ′(xk), (9)

where uk ∈ [0, 1] is the adjustment factor and η is the
maximum allowed learning rate. The corresponding SME
for (9) is given by (SM. D.1)

dXt = −utf ′(Xt)dt+ ut
√
ηΣ(Xt)dWt, (10)

where ut ∈ [0, 1] is now the continuous time analogue of
the adjustment factor uk with the usual identification t =
kη. The effect of learning rate adjustment on the dynamics
of SGD is clear. Larger uk results in a larger drift term
in the SME and hence faster initial descent. However, the
same factor is also multiplied to the noise term, causing
greater asymptotic fluctuations. The optimal learning rate
schedule must balance of these two effects. The problem
can therefore be posed as follows: given f, fi, how can we
best choose a schedule or policy for adjusting the learning
rate in order to minimize Ef at the end of the run? More
precisely, this can be cast as an optimal control problem1

min
u

Ef(XT ) subject to (10),

1See SM. E for a brief overview of optimal control theory.
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where the time-dependent function u is minimized over an
admissible control set to be specified. To make headway
analytically, we now turn to a simple quadratic objective.

4.1.2. OPTIMAL CONTROL OF THE LEARNING RATE

Consider the objective f(x) = 1
2a(x − b)2 with a, b ∈ R.

Moreover, we assume the fi’s are such that Σ(x) = Σ > 0
is a positive constant. The SME is then

dXt = −aut(Xt − b)dt+ ut
√
ηΣdWt. (11)

Now, assume u take values in the non-random control set
containing all Borel-measurable functions from [0, T ] to
[0, 1]. Defining mt = Ef(Xt), and applying Itô formula
to (11), we have

ṁt = −2autmt + 1
2aηΣu2

t . (12)

Hence, we may now recast the control problem as

min
u:[0,T ]→[0,1]

mT subject to (12).

This problem can solved by dynamic programming, using
the Hamilton-Jacobi-Bellman equation (Bellman, 1956).
We obtain the optimal control policy (SM. E.3)

u∗t =

{
1 a ≤ 0,

min(1, 2mt
ηΣ ) a > 0.

(13)

This policy is of feed-back form since it depends on the
current value of the controlled variable mt. Let us interpret
the solution. First, if a < 0 we always set the maximum
learning rate ut = 1. This makes sense because we have
a concave objective where symmetrical fluctuations about
any point x results in a lower average value of f(x). Hence,
not only do high learning rates improve descent, the high
fluctuations that accompany it also lowers Ef . Next, For
the convex case a > 0, the solution tells us that when the
objective value is large compared to variations in the gradi-
ent, we should use the maximum learning rate. When the
objective decreases sufficiently, fluctuations will dominate
and hence we should lower the learning rate according to
the feed-back policy ut = 2mt/ηΣ.

With the policy (13), we can solve (12) and plug the solu-
tion for mt back into (13) to obtain the annealing schedule

u∗t =

{
1 a ≤ 0 or t ≤ t∗,

1
1+a(t−t∗) a > 0 and t > t∗,

where t∗ = (1/2a) log(4m0/ηΣ− 1). Note that by
putting a = 2, b = 0,Σ = 4, for small η, this expres-
sion agrees with the transition time (8) between descent
and fluctuating phases for the SGD dynamics considered in
Sec. 3.1. Thus, this annealing schedule says that maximum

learning rate should be used for descent phases, whereas
∼ 1/t decay on learning rate should be applied after onset
of fluctuations. Our annealing result agree asymptotically
with the commonly studied annealing schedules (Moulines,
2011; Shamir & Zhang, 2013), but the difference is that we
suggest maximum learning rate before the onset of fluctua-
tions. Of course, the key limitation is that our result is only
valid for this particular objective. This naturally brings us
to the next question: how does one apply the optimal con-
trol results to general objectives?

4.1.3. APPLICATION TO GENERAL OBJECTIVES

Now, we turn to the setting where d > 1 and f, fi are
not necessarily quadratic. The most important result in
Sec. 4.1.2 is the feed-back control law (13). To apply it, we
make a local diagonal-quadratic assumption: we assume
that for each x ∈ Rd, there exists a(i), b(i) ∈ R so that
f(x) ≈ 1

2

∑d
i=1 a(i)(x(i) − b(i))2 holds locally in x. We

also assume Σ(x) ≈ diag{Σ(1), . . . ,Σ(d)}where each Σ(i)

is locally constant. By considering a separate learning rate
scale u(i) for each trainable dimension, the control problem
decouples to d separate problems of the form considered in
Sec. 4.1.2. And hence, we may set u∗(i) element-wise ac-
cording to the policy (13).

Since we only assume that the diagonal-quadratic as-
sumption holds locally, the terms a(i), b(i), Σ(i) and
m(i) ≈ 1

2a(i)(x(i) − b(i))
2 must be updated on the

fly. There are potentially many methods for doing so.
The approach we take exploits the linear relationship
∇f(i) ≈ a(i)(x(i) − b(i)). Consequently, we may es-
timate a(i), b(i) via linear regression on the fly: for
each dimension, we maintain exponential moving aver-
ages (EMA) {gk,(i), g2

k,(i), xk,(i), x
2
k,(i), xgk,(i)} where

gk,(i) = ∇fγk(xk)(i). For example, gk+1,(i) =
βk,(i)gk,(i) + (1 − βk,(i))gk,(i). The EMA decay parame-
ter βk,(i) controls the effective averaging window size. We
adaptively adjust it so that it is small when gradient vari-
ations are large, and vice versa. We employ the heuris-
tic βk+1,(i) = (g2

k,(i) − g2
k,(i))/g

2
k,(i). This is similar to

the approach in Schaul et al. (2013). We also clip each
βk+1,(i) to [βmin, βmax] to improve stability. Here, we use
[0.9, 0.999] for all experiments, but we checked that per-
formance is insensitive to these values. We can now com-
pute ak,(i), bk,(i) by the ordinary-least-squares formula and
Σk,(i) as the variance of the gradients:

ak,(i) =
gxk,(i) − gk,(i)xk,(i)
x2
k,(i) − x2

k,(i)

,

bk,(i) = xk,(i) −
gk,(i)

ak,(i)
,

Σk,(i) = g2
k,(i) − g2

k,(i). (14)
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Algorithm 1 controlled SGD (cSGD)

Hyper-parameters: η, u0

Initialize x0; β0,(i) = 0.9 ∀i
for k = 0 to (#iterations− 1) do

Compute sample gradient∇fγk(xk)
for i = 1 to d do

Update EMA {gk,(i), g2
k,(i), xk,(i), x

2
k,(i), xgk,(i)}

with decay parameter βk,(i)
Compute ak,(i), bk,(i), Σk,(i) using (14)
Compute u∗k,(i) using (15)

βk+1,(i) = (g2
k,(i) − g2

k,(i))/g
2
k,(i) and clip

uk+1,(i) = βk,(i)uk,(i) + (1− βk,(i))u∗k,(i)
xk+1,(i) = xk,(i) − ηuk,(i)∇fγk(xk)(i)

end for
end for

This allows us to estimate the policy (13) as

u∗k,(i) =

{
1 ak,(i) ≤ 0,

min(1,
ak,(i)(xk,(i)−bk,(i))2

ηΣk,(i)
) ak,(i) > 0.

(15)
for i = 1, 2, . . . , d. Since quantities are computed from
exponentially averaged sources, we should also update our
learning rate policy in the same way. The algorithm is sum-
marized in Alg. 1. Due to its optimal control origin, we
hereafter call this algorithm the controlled SGD (cSGD)

Remark 1. Alg. 1 can similarly be applied to mini-batch
SGD. Let the batch-size be M , which reduces the covari-
ance by M times and so η in the SME is replaced by η/M .
However, at the same time estimating Σk from mini-batch
gradient sample variances will underestimate Σ(xk) by a
factor ofM . Thus the product ηΣk remains unchanged and
Alg. 1 can be applied with no changes.

Remark 2. The additional overheads in cSGD are
from maintaining exponential averages and estimating
ak, bk,Σk on the fly with the relevant formulas. These are
O(d) operations and hence scalable. Our current rough
implementation runs ∼ 40 − 60% slower per epoch than
the plain SGD. This is expected to be improved by optimiza-
tion, parallelization or updating quantities less frequently.

4.1.4. PERFORMANCE ON BENCHMARKS

Let us test cSGD on common deep learning benchmarks.
We consider three different models. M0: a fully con-
nected neural network with one hidden layer and ReLU
activations, trained on the MNIST dataset (LeCun et al.,
1998); C0: a fully connected neural network with two hid-
den layers and Tanh activations, trained on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009); C1: a convolution
network with four convolution layers and two fully con-
nected layers also trained on CIFAR-10. Model details

are found in SM. F.1. In Fig. 3, we compare the perfor-
mance of cSGD with Adagrad (Duchi et al., 2011) and
Adam (Kingma & Ba, 2015) optimizers. We illustrate in
particular their sensitivity to different learning rate choices
by performing a log-uniform random search over three or-
ders of magnitude. We observe that cSGD is robust to
different initial and maximum learning rates (provided the
latter is big enough, e.g. we can take η = 1 for all ex-
periments) and changing network structures, while obtain-
ing similar performance to well-tuned versions of the other
methods (see also Tab. 1). In particular, notice that the best
learning rates found for Adagrad and Adam generally differ
for different neural networks. On the other hand, many val-
ues can be used for cSGD with little performance loss. For
brevity we only show the test accuracies, but the training
accuracies have similar behavior (see SM. F.5).

4.2. Momentum Parameter

Another practical way of speeding up the plain SGD is to
employ momentum updates - an idea dating back to deter-
ministic optimization (Polyak, 1964; Nesterov, 1983; Qian,
1999). However, the stochastic version has important dif-
ferences, especially in regimes where sampling noise dom-
inates. Nevertheless, provided that the momentum param-
eter is well-tuned, the momentum SGD (MSGD) is very
effective in speeding up convergence, particularly in early
stages of training (Sutskever et al., 2013).

Selecting an appropriate momentum parameter is important
in practice. Typically, generic values (e.g. 0.9, 0.99) are
suggested without fully elucidating their effect on the SGD
dynamics. In this section, we use the SME framework to
analyze the precise dynamics of MSGD and derive effec-
tive adaptive momentum parameter adjustment policies.

4.2.1. SME FOR MSGD

The SGD with momentum can be written as the following
coupled updates

vk+1 = µvk − ηf ′γk(xk),

xk+1 = xk + vk+1. (16)

The parameter µ is the momentum parameter taking values
in the range 0 ≤ µ ≤ 1. Intuitively, the momentum term
vk remembers past update directions and pushes along xk,
which may otherwise slow down at e.g. narrow parts of the
landscape. The corresponding SME is now a coupled SDE

dVt = (−η−1(1− µ)Vt − f ′(Xt))dt+ (ηΣ(Xt))
1
2 dWt,

dXt = η−1Vtdt. (17)

This can be derived by comparing (16) with the Euler dis-
cretization scheme of (17) and matching moments. Details
can be found in SM. D.3.
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Figure 3. cSGD vs Adagrad and Adam for different models and
datasets, with different hyper-parameters. For M0, we per-
form log-uniform random search with 50 samples over intervals:
cSGD: u0 ∈[1e-2,1], η ∈[1e-1,1]; Adagrad: η ∈[1e-3,1]; Adam:
η ∈[1e-4,1e-1]. For C0, we perform same search over intervals:
cSGD: u0 ∈[1e-2,1], η ∈[1e-1,1]; Adagrad: η ∈[1e-3,1]; Adam:
η ∈[1e-6,1e-3]. We average the resulting learning curves for
each choice over 10 runs. For C1, due to long training times we
choose 5 representative learning rates for each method. cSGD:
η ∈{1e-2,5e-2,1e-1,5e-1,1}, u0 = 1; Adagrad: η ∈{1e-3,5e-
3,1e-2,5e-2,1e-1}; Adam: η ∈{5e-4,1e-3,1e-2,2e-2,5e-2}. One
sample learning curve is generated for each choice. In all cases,
we use mini-batches of size 128. We evaluate the resulting learn-
ing curves by the area-under-curve. The worst, median and best
learning curves are shown as dotted, solid, and dot-dashed lines
respectively. The shaded areas represent the distribution of learn-
ing curves for all searched values. We observe that cSGD is
relatively robust with respect to initial/maximum learning rates
and the network structures, and requires little tuning while having
comparable performance to well-tuned versions of the other meth-
ods (see Tab. 1). This holds across different models and datasets.

4.2.2. THE EFFECT OF MOMENTUM

As in Sec. 4.1, we take the prototypical example
f(x) = 1

2a(x − b)2 with Σ constant and study the ef-
fect of incorporating momentum updates. Define Mt =
(Ef(Xt),EV 2

t ,EVtf ′(Xt)) ∈ R3. By applying Itô for-
mula to (17), we obtain the ODE system

Ṁt = A(µ)Mt+B,

A(µ) =

(
0 0 a/η
0 −2(1−µ)/η −2
−2 1/η −(1−µ)/η

)
, B =

(
0
ηΣ
0

)
. (18)
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Figure 4. (a) Comparison of the SME prediction (18) with SGD
for the same quadratic example in Sec. 3.1, which has a = 2,
b = 0 and Σ = 4. We set η =5e-3 so that µopt = 0.8. We
plot the mean of f averaged over 1e5 SGD runs against the SME
predictions for µ = 0.65, 0.8, 0.95. We observe that in all cases
the approximation is accurate. In particular, the SME correctly
predicts the effect of momentum: µ = µopt gives the best aver-
age initial descent rate, µ > µopt causes oscillatory behavior, and
increasing µ generally increases asymptotic fluctuations. (b) The
dynamics of averaged equation (20), which serves as an approxi-
mation of the solution of the full SME moment equation (18).

If a < 0, A(µ) has a positive eigenvalue and hence Mt

diverges exponentially. Since f is negative, its value must
then decrease exponentially for all µ, and the descent rate
is maximized at µ = 1. The more interesting case is
when a > 0. Instead of solving (18), we observe that
all eigenvalues of A(µ) have negative real parts as long as
µ < 1. Therefore, Mt has an exponential decay domi-
nated by |Rλ(µ)|, where R denotes real part and λ(µ) =
− 1
η [(1− µ)−

√
(1− µ)2 − 4aη] is the eigenvalue with

the least negative real part. Observe that the descent rate
|Rλ(µ)| is maximized at

µopt = max(1− 2
√
aη, 0) (19)

and when µ > µopt, λ becomes complex. Also, from (18)
we have Mt → M∞ = −A(µ)−1B =

(
ηΣ

4(1−µ)
η2Σ

2(1−µ)
0
)
,

provided the steady state is stable. The role of momen-
tum in this problem is now clear. To leading order in η
we have λ(µ) ∼ −2a/(1 − µ) for µ ≤ µopt. Hence, any
non-zero momentum will improve the initial convergence
rate. In fact, the choice µopt is optimal and above it, oscil-
lations set in because of a complex λ. At the same time,
increasing momentum also causes increment in eventual
fluctuations, since |M∞| = O((1 − µ)−1). In Fig. 4(a),
we demonstrate the accuracy of the SME prediction (18)
by comparing MSGD iterations. Armed with an intuitive
understanding of the effect of momentum, we can now use
optimal control to design policies to adapt the momentum
parameter.

4.2.3. OPTIMAL CONTROL OF THE MOMENTUM
PARAMETER

For a < 0, we have discussed previously that µ = 1 max-
imizes the descent rate and fluctuations generally help de-
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crease concave functions. Thus, the optimal control is al-
ways µ = 1. The non-trivial case is when a > 0. Due
to its bi-linearity, directly controlling (18) leads to bang-
bang type solutions2 that are rarely feed-back laws (Parda-
los & Yatsenko, 2010) and thus difficult to apply in prac-
tice. Instead, we notice that the descent rate is dominated
byRλ(µ), and the leading order asymptotic fluctuations is
ηΣ/(4(1− µ)), hence we may consider

ṁt = Rλ(µ)(mt −m∞(µ)) (20)

where mt ∈ R and m∞(µ) = ηΣ/(4(1− µ)) is the lead-
ing order estimate of |M∞|. Equation (20) can be under-
stood as the approximate evolution, in an averaged sense, of
the magnitude of Mt. Fig. 4(b) shows that (20) is a reason-
able approximation of the dynamics of MSGD. This allows
us to pose the optimal control problem on the momentum
parameter as

min
µ:[0,T ]→[0,1]

mT subject to (20),

with µ = µt. Solving this control problem yields the (ap-
proximate) feed-back policy (SM. E.4)

µ∗t =

{
1 a ≤ 0,

min(µopt,max(0, 1− ηΣ
4mt

)) a > 0,
(21)

with µopt given in (19). This says that when far from opti-
mum (mt large), we set µ = µopt which maximizes average
descent rate. When mt/ηΣ ∼ √aη, fluctuations set in and
we lower µ.

As in Sec. 4.1.3, we turn the control policy above into
a generally applicable algorithm by performing local
diagonal-quadratic approximations and estimating the rele-
vant quantities on the fly. The resulting algorithm is mostly
identical to Alg. 1 except we now use (21) to update µk,(i)
and SGD updates are replaced with MSGD updates (see
S.M. F.4 for the full algorithm). We refer to this algorithm
as the controlled momentum SGD (cMSGD).

4.2.4. PERFORMANCE ON BENCHMARKS

We apply cMSGD to the same three set-ups in Sec. 4.1.4,
and compare its performance to the plain Momentum SGD
with fixed momentum parameters (MSGD) and the anneal-
ing schedule suggested in (Sutskever et al., 2013), with
µk = min(1 − 2−1−log2(bk/250c+1), µmax) (MSGD-A). In
Fig. 5, we perform a log-uniform search over the hyper-
parameters µ0, µ and µmax. We see that cMSGD achieves
superior performance to MSGD and MSGD-A (see Tab. 1),

2Bang-bang solutions are control solutions lying on the bound-
ary of the control set and abruptly jumps among the boundary val-
ues. For example, in this case it jumps between µ = 0 and µ = 1
repeatedly.
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Figure 5. cMSGD vs MSGD and MSGD-A on the same three
models. We set η =1e-2 for M0 and η =1e-3 for C0, C1.
For M0 and C0, we perform a log-uniform random search
for 1 − µ0 and 1 − µ in [5e-3,5e-1]. For C1, we sample
µ0, µ, µmax ∈{0.9,0.95,0.99,0.995,0.999}. The remaining set-up
is identical to that in Fig. 3. Again, we observe that cMSGD is an
adaptive scheme that is robust to varying hyper-parameters and
network structures, and out-performs MSGD and MSGD-A.

Table 1. Best average test accuracy found by random/grid search.

CSGD ADAGRAD ADAM CMSGD MSGD MSGD-A

M0 0.925 0.923 0.924 0.924 0.914 0.908
C0 0.461 0.457 0.460 0.461 0.453 0.446
C1 0.875 0.878 0.881 0.876 0.868 0.869

especially when the latter has badly tuned µ, µmax. More-
over, it is insensitive to the choice of initial µ0. Just like
cSGD, this holds across changing network structures. Fur-
ther, cMSGD also adapts to other hyper-parameter varia-
tions. In Fig. 6, we take tuned µ, µmax (and any µ0) and
vary the learning rate η. We observe that cMSGD adapts to
the new learning rates whereas the performance of MSGD
and MSGD-A deteriorates and µ, µmax must be re-tuned
to obtain reasonable accuracy. In fact, it is often the case
that MSGD and MSGD-A diverge when η is large, whereas
cMSGD remains stable.

5. Related Work
Classical bound-type convergence results for SGD and
variants include Moulines (2011); Shamir & Zhang (2013);
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Figure 6. Comparing the sensitivity of cMSGD, MSGD and
MSGD-A to different learning rates. The set-up is same as that in
Fig. 5 except that for MSGD and MSGD-A, we now fix µ, µmax

to be the best values found in Fig. 5 for each experiment, but we
vary the learning rate in the ranges: M0 and C0: η ∈[1e-3,1], C1:
η ∈{1e-3,5e-3,1e-2,2e-2,1e-1}. For cMSGD, we saw from Fig. 5
that the value of µ0 is mostly inconsequential, so we simply set
µ0 = 0 and vary η in the same ranges. We observe that the unlike
MSGD and MSGD-A, cMSGD is generally robust to changing
learning rates and this further confirms its adaptive properties.

Bach & Moulines (2013); Needell et al. (2014); Xiao &
Zhang (2014); Shalev-Shwartz & Zhang (2014). Our ap-
proach differs in that we obtain precise, albeit only distri-
butional, descriptions of the SGD dynamics that hold in
non-convex situations.

In the vein of continuous approximation to stochastic al-
gorithms, a related body of work is stochastic approxima-
tion theory (Kushner & Yin, 2003; Ljung et al., 2012),
which establish ODEs as almost sure limits of trajecto-
ries of stochastic algorithms. In contrast, we obtain SDEs
that are weak limits that approximate not individual sample
paths, but their distributions. Other deterministic continu-
ous time approximation methods include Su et al. (2014);
Krichene et al. (2015); Wibisono et al. (2016).

Related work in SDE approximations of the SGD
are Mandt et al. (2015; 2016), where the authors derived
the first order SME heuristically. In contrast, we estab-
lish a rigorous statement for this type of approximations
(Thm. 1). Moreover, we use asymptotic analysis and con-
trol theory to translate understanding into practical algo-

rithms. Outside of the machine learning literature, similar
modified equation methods also appear in numerical anal-
ysis of SDEs (Zygalakis, 2011) and quantifying uncertain-
ties in ODEs (Conrad et al., 2015).

The second half of our work deals with practical prob-
lems of adaptive selection of the learning rate and mo-
mentum parameter. There is abundant literature on learn-
ing rate adjustments, including annealing schedules (Rob-
bins & Monro, 1951; Moulines, 2011; Xu, 2011; Shamir
& Zhang, 2013), adaptive per-element adjustments (Duchi
et al., 2011; Zeiler, 2012; Tieleman & Hinton, 2012;
Kingma & Ba, 2015) and meta-learning (Andrychowicz
et al., 2016). Our approach differs in that optimal control
theory provides a natural, non-black-box framework for de-
veloping dynamic feed-back adjustments, allowing us to
obtain adaptive algorithms that are truly robust to chang-
ing model settings. Our learning rate adjustment policy is
similar to Schaul et al. (2013); Schaul & LeCun (2013)
based on one-step optimization, although we arrive at it
from control theory. Our method may also be easier to
implement because it does not require estimating diago-
nal Hessians via back-propagation. There is less litera-
ture on momentum parameter selection. A heuristic an-
nealing schedule (referred to as MSGD-A earlier) is sug-
gested in Sutskever et al. (2013), based on the original work
of Nesterov (1983). The choice of momentum parameter in
deterministic problems is discussed in Qian (1999); Nes-
terov (2013). To the best of our knowledge, a systematic
stochastic treatment of adaptive momentum parameter se-
lection for MSGD has not be considered before.

6. Conclusion and Outlook
Our main contribution is twofold. First, we propose the
SME as a unified framework for quantifying the dynam-
ics of SGD and its variants, beyond the classical convex
regime. Tools from stochastic calculus and asymptotic
analysis provide precise dynamical description of these al-
gorithms, which help us understand important phenomena,
such as descent-fluctuation transitions and the nature of ac-
celeration schemes. Second, we use control theory as a
natural framework to derive adaptive adjustment policies
for the learning rate and momentum parameter. This trans-
lates to robust algorithms that requires little tuning across
multiple datasets and model choices.

An interesting direction of future work is extending the
SME framework to develop adaptive adjustment schemes
for other hyper-parameters in SGD variants, such as
Polyak-Ruppert Averaging (Polyak & Juditsky, 1992),
SVRG (Johnson & Zhang, 2013) and elastic averaging
SGD (Zhang et al., 2015). More generally, the SME frame-
work may be a promising methodology for the analysis and
design of stochastic gradient algorithms and beyond.
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