Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization

Supplementary Materials

A. Proof of Theorem 1

We first recall the following lemma.

Lemma 1 (Lemma 1, (Gong et al., 2013)). Under Assumption 1.{3}. For any n > 0 and any x,y € R? such that
x = prox, (y — nV f(y)), one has that

F(x) < F(y) = (5, — §)lIx - yl*

Applying Lemma 1 with X = x;,y = Y, we obtain that

F(xi) < F(yr) = (55 — 5)lIxe — vl (12)

Since n < 1, it follows that F'(x;;) < F(yy). Moreover, the update rule of APGnc guarantees that F(y41) < F(x;). In
summary, for all & the following inequality holds:

F(yr+1) < F(xx) < F(yk) < F(Xp-1). (13)

Combing further with the fact that F'(xy), F(yx) > inf F > —oo for all k, we conclude that { F(xx)}, { F(yx)} converge
to the same limit ', i.e.,

lim F(xi) = lim F(yg)=F". (14)
k—o00 k—o00
On the other hand, by induction we conclude from eq. (13) that for all k
F(yr) < F(x0), F(xx) < F(xo).

Combining with Assumption 1.1 that F" has bounded sublevel set, we conclude that {x;} and {y}} are bounded and thus
have bounded limit points. Now combining eq. (12) and eq. (13) yields

(3 = S)llye = xxl> < Flyr) = F(xz)
< F(yx) = F(yg+1), (15)

which, after telescoping over k and letting k — oo, becomes

o0

> (5= S)lyr —xxl* < F(yr) —inf F < oo, (16)
k=1

This further implies that ||y, — xx|| — 0, and hence {x;,} and {y} share the same set of limit points 2. Note that 2 is
closed (it is a set of limit points) and bounded, we conclude that €2 is compact in R.

By optimality condition of the proximal gradient step of APGnc, we obtain that
~Vf(yr) = 5 (xx — yr) € Og(xx)
& VI(xi) = VI(yr) = 5 (xk — yr) € OF (xx), (17)

up

which further implies that
[urll = IV f(xx) = VF(yr) = 5 (% = yu)l
<L+ Dlye =il = 0. (18)

Consider any limit point z’ € Q, and w.l.o.g we write x;, — z’, y — 2z’ by restricting to a subsequence. By the definition
of the proximal map, the proximal gradient step of APGnc implies that

(VE(yr),xi —yr) + o5 |ye — xil* + g(xx)
<(VI(yr),2' —yi) + ;12 —yil* + g(2). (19)
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Taking lim sup on both sides and note that x;, — yr — 0, yr — 2z’, we obtain that limsup,,_, . g(xx) < g(z'). Since
g is lower semicontinuous and x; — 2/, it follows that limsup,_, ., g(xx) > ¢(z’). Combining both inequalities, we
conclude that limy_, o, g(xx) = ¢g(2’). Note that the continuity of f yields limy_, o f(xx) = f(2z’), we then conclude that
limg 00 F(xx) = F(2'). Since limy,_, o F'(x) = F* by eq. (14), we conclude that

F(z)=F*, vz eqQ. (20)

Hence, F' remains constant on the compact set 2. To this end, we have established x;, — z’, F(x;) — F(z') and that
OF (xx) 2 ug — 0. Recall the definition of limiting sub-differential, we conclude that 0 € 9F(z’) for all z’ € ).

B. Proof of Theorem 2

Throughout the proof we assume that F'(xy,) 7# F™* for all k because otherwise the algorithm terminates and the conclusions
hold trivially. We also denote kg as a sufficiently large positive integer.

Combining eq. (12) and eq. (13) yields that

F(xgi1) < F(xi) = (55 = $)yren — X [”. (21)

Moreover, eq. (17) and eq. (18) imply that
diStaF(xk)(O) < (L + %)”yk — ka (22)

We have shown in Appendix A that F/(x;) | F™*, and it is also clear that distq(x;) — 0. Thus, for any €,§ > 0 and all
k > kg, we have

xi € {x | dista(x) <€, F* < F(x) < F* 4+ 0}.
Since (2 is compact and F’ is constant on it, the uniformized KL property implies that for all £ > kg
¢’ (F(x1) — F*)distor(x,)(0) = 1. (23)
Recall that 1, := F(x)) — F™*. Then eq. (23) is equivalent to
. 2
1 < (¢’ (ri) distop(xy) (0))
© ’ 2 (1 2 2
< (0 ) (L) e —xul

(i) L)
oy )

P (x0-1) = F ()]

< di (¢ (11))* (re—1 — 1),

[Ny

2
where (i) is due to eq. (22), (ii) follows from eq. (21), and d; = (% + L) / (% — %) Since ¢ (t) = gta, we have that

¢’ (t) = ct?~1. Thus the above inequality becomes
1< dic®rd? =2 (rp—1 — 1) (24)

It has been shown in (Frankel et al., 2015; Li & Lin, 2015) that sequence {rj} satisfying the above inductive property
converges to zero at different rates according to 6 as stated in the theorem.

C. Proof of Theorem 3

g non-convex, €, = 0: In this setting, we first prove the following inexact version of Lemma 1.

Lemma 2. Under Assumption 1.3. For any n) > 0 and any x,y € R? such that x = prox,, (y = n(Vf(y) +e)), one has
that

F(x) < F(y)+ (5 — g)lx=yl* + x = ylle].
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Proof. By Assumption 1.3 we have that

fx) < fy) +x =y, Vi) + 5lx—y|*

Also, by the definition of proximal map, the proximal gradient step implies that

9x) + 55lx =y +0(Vf(y) +e)lI” < gv) + 55 [0(Vf(y) + )%,

which, after simplifications becomes that

9(x) < g(y) — &lx - yI* - (x =y, (Vf(y) +e)).
Combine the above two inequalities further gives that

F(x) < F(y)+ (5 — g)lx=yl” + [x = ylle].

Using Lemma 2 with x = X3,y = ¥k, € = e and notice the fact that |lex|| < v||xx — y«||, we obtain that
F(xk) < Flyr) + (v+ 5 = 5l = el (25)

Moreover, the optimality condition of the proximal gradient step with gradient error gives that By optimality condition of
the proximal gradient step of APGnc, we obtain that

Vf(xk) = VIyr) —ex — o (xi —yr) € OF(xy),

which further implies that

distor(e,)(0) < (7 + L+ 1)llyx — xul. (26)

Notice that eq. (25) and eq. (26) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis of exact APGnc.
Thus, by choosing 1 < ﬁ and redefining d; = ( + L +7)2/ (— - é ), all the statements in Theorem 1 remain

true and the convergence rates in Theorem 2 remain the same order With a worse constant.

g convex: We first present the following lemma.

Lemma 3. Forany x,v € R% letu’ € 0.g(x) such that V f(x) 4+ u’ has minimal norm. Denote & := distyg(x) (0'), then

we have

distyr(x)(0) < disty r(x)4a.g(x)(0) +&. 27)
Proof. We observe the following

distor(o(0) = min [[V(x) +u]

= uer%;n [Vf(x)+u +u—u|, Vu' € dg(x)

< Vi) +u] + oSin u—u II, Va' € deg(x)

< min gX)IVF(x) +u'|| +¢

= disty s(x)+0.9(x) (0) + & (28)

O

Recall that we have two inexactness, i.e., x; = prox;s (yx — n(Vf(yx) + ex)). Following a proof similar to that of
Lemma 2 and notice that ¢, < J||x; — y||?, we can obtain that

F(xi) < Fyr) + (v + 5 — o) lIxe = yill* + e
< F(ye) + (Y + 5 = 3-) 1%k — yall? (29)
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for some 4" > v > 0. Since g is convex, by Lemma 2 in (Schmidt et al., 2011) one can exhibit v with ||vg| < /2nex
such that

Sk =%k = n(Vf(yn) +ex) = vi] € 9, g(xk).
This implies that
disty f ()40, 90xx) (0) < (v + 5 + L)Ixs — yll + /2=

Apply Lemma 3 and notice that €5, < §||xx — y&l|?, & < Al|xe — &l

. 1
distyp(x,)(0) < (v + " + L)|Ixr — yxll (30)

for some 7 > v > 0. Now eq. (29) and eq (30) are parallel to the key inequalities eq. (21) and eq. (22) in the analysis

of exact APGnc. Thus, by choosing ) < 5—+— ~ and redefining d; = ( +L++")2/ (— — £ — /), all the statements in

Theorem 1 remain true and the Convergence rates in Theorem 2 remain the same order w1th a worse constant.

D. Proof of Theorem 4
We first define the following quantities for the convenience of the proof.
o =con(l+2)+ 25 en =0, 31)
Ry =E[F(x}) + ct|x}, — xp|°] , (32)
2—"_1 - prOXng (Xic - va(xic)) (33)

Note that )’cfjl is a reference sequence introduced for the convenience of analysis, and is not being computed in the
implementation of the algorithm. Then it has been shown in the proof of Theorem 5 of (Reddi et al., 2016b) that

R < R4 (L - %) [l = xt 2] . (34)
Telescoping eq. (34) over ¢t fromt = 1 to t = m — 1, we obtain

E[F(x;")] <E

m—1
F(sh) +eallzh = x012 + D (2 - &) I=6 — xzn?] . (35)

t=1

Following from eq. (31), a simple induction shows that ¢; < nL?*m. Setting ) < 5 and recalling that F(y;) < F(x}" ).,
eq. (35) further implies that

E[F(yr+1)] < E[F(x")] < E[F(%;)] + nL*mE[]| %), — x;[%]- (36)

Now telescoping eq. (34) again over ¢t from ¢ = 0 to ¢ = m — 1 and applying eq. (36), we obtain
m—1
E[F(x}")] < N+ D (L= 5B [ = xi))*] - (37)
t=0
Combining all the above facts, we conclude that for n < i
E[F(yw)] < E[F(yr-1)] < ... < F(yo). (38)

Since E[F(+)] is bounded below, E[F(y})] decreases to a finite limit, say, F**. Define r, = E [F(yx) — F*], and assume
ri > 0 for all k (since otherwise 7, = 0 and the algorithm terminates). Applying the K¥. property with 6 = 1/2, we obtain

L(F(x) — F*)? < distopx)(0). (39)

Setting x = X,lg, we further obtain

2
L(F(xL) = F*) < distdsg (0) < (L+3) Ik =yl (40)
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where the last inequality is due to eq. (33). Taking expectation over both sides and using eq. (36), we obtain

2
LEFGE) - F7] - 22 sk — %] < (L+2) E[Ixk - val?]. (1)

Noting that x{ = yj and EF (y;+1) < EF(x}"), we then rearrange the above inequality and obtain

c2

2 2
KBIF () - ] < SEFG) - 71 < |(£+3) + 242 B 1k - ) @)

- % (E[F(y&)] — E[F(yk+1)]) s “43)

which can be further rewritten as

Tht1 < d(Tk — Tht1) (44)
c? 1)2 2m
where d = % Then a simple induction yields that
2n
PN .
ren < (74) (Flyo) = F). (45)
E. Proof of Theorem 5

We first introduce some auxiliary lemmas.

Lemma 4. Consider the convex function g and x,y € R? such that y = prox;, (x) for some € > 0. Then, there exists
|lil| < v/27e€ that satisfies the following inequality for all z € R,

9(y) + 55y = xI” < g(2) + 55 llz — x|I* — 5 |y —z* + {y =z, 31) +e. (46)

Proof. By Lemma 2 in (Schmidt et al., 2011), there exists ||i|| < 1/2ne such that

5 (x—y—1i) € deg(y). 47)

Then, the definition of e-subdifferential implies that
9(z) —g(y) 2 (2 —y,0.9(y)) —e=(z—y. 5 (x—y —i) —¢ Vze R" (48)
The desired result follows by rearranging the above inequality. [

Lemma 5. Consider the convex function g and x,y,d € R such thaty = prox; . (x — nd) for some € > 0. Then, there
exists ||i|| < v/2ne that satisfies the following inequality for all z € R,

9¥) =y —2z,d - ;i) < g(2) + 5; [z — x| = [ly — 2[* — [ly - x|*] +e (49)
Proof. By Lemma 4, we obtain the following inequality for all z € R<.

0
9(y) + vy = x,d) + g5 ly = x|* + 5 d||*
< g(z) + g llz —x+nd[* — o ly =zl + (y — 2, ;1) +¢

= g(2) + (2 = x,d) 55 llz — x[I* + F/|d|]* — 5;[ly — 2l* + (y — 2, 5i) + e (50)

'
The desired result follows by rearranging the above inequality. O

Lemma 6. Consider the convex function g and x,y,d € R such thaty = prox;, (x — nd) for some € > 0. Then, there
exists |[i|| < v/2ne that satisfies the following inequality for all z € R,

F(y)+(y—2zd—1i-Vf(x) < F@)+ (5= &) ly = xI?+ (5 + &) 2= x|2 = Llly — 2P +e 6D
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Proof. By Lipschitz continuity of V f, we obtain

f¥) < X))+ (Vx),y —x) + 5y — x|, (52)
f(x) < f(2) + (Vf(x),x—z) + &||x — 2| (53)

Adding the above inequalities together yields

Fy) < f(2) +(VE),y —2) + 5 [ly = x[* + 2 = x|"] . (54)
Combining with Lemma 5, we then obtain the desired result. O
Recall the reference sequence X = prox,, (xf, — nV f(x},)). Applying Lemma 6 with e = 0,y = %!,z = xt, and

d = V f(x},) and taking expectation on both sides, we obtain

B[P < B [Fixh) + (5 = 4 ) IR0 = xbl2 = 1% = x4 (55)
Similarly, applying Lemma 6 with e = €}, y = xffl, zZ = )’(}2"’1, d = v} and taking expectation on both sides, we obtain

E[F(x)] < B [FREF) + (x5 = X0 9 (xh) = vh + Sie)
(5= ) It =P+ (44 ) I =P - s -2 ] 66
Adding eq. (55) and eq. (56) together yields
E[F(x )] < E[Pxh) + (L= o) 1K = xbll? + (5 = &) 0 = xb2 = R Ix =<2+ 7] 67)
where T = (xit! — %I Vf (xh) — v + ‘;’“} + €&. Now we bound E[T] as follows.

E[T) < E [Ix™ —x[ 2] + 3E [IVF (xk) - vi + 2] + < (58)

I /\

2B [l = Xt P] B [V £
o [l =% P +nE [I1Vf

xt) = Vi I2] + B (|2 + (59)
x) — Vil?] + 3¢ (60)

(
(

I A

By Lemma 3 of (Reddi et al., 2016b), it holds that E [[|[V f (x}) — vi[?] < L?E [||x] — x}||?] . Combining with the
above inequality, we further obtain that

E[T] < 5B [lx = x 7P| + nL2E [|Ix), — x3]|°] + 3. (61)
Substituting the above result into eq. (57), we obtain

B[P < E [Fxk) + (L= 25 ) IR = xbl2+ (% = 25 ) I = xbI? + nL2xk - xQ)° + 3¢f] . 62)

Recalling that R}, .= E [F(x}) + c¢||x}, — x}||?] , where ¢; = nL2% with 3 > 0. Then, we can upper bound
RZH as

R =E [F(G) + eop|xg ™ —xi + x5, — 1] (63)
=E [F(7) + cer (I = %017 + Ik — x001% + 206 = xg, xt — x3))] (64)
<E [FO) + covn (14 3) 0 = X412+ cog (1+ ) Ixg — <3 2] (65)
<E [Fx) + (L= 2 ) 1% =2+ [en (14 3) + & — & ] Ikt = xp)? (66)

+ [er1 (1 + B) + nL?] ||x}, — xp||* + 3€},] - (67)
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Setting 5 = 1/m in ¢; and observe that
¢ = nL?% =nL2m ((1+ )" — 1) <nL*m (e — 1) < 2nL>m, (68)

which further implies that

Ct41 (1 + %) + % < 2mL*m(1 4+ m) < 4nL*m? + % = 4pLm? + % < ﬁ (69)

Also note that ¢; = ¢;41(1 + ) + nL2. Collecting all these facts, R}i“ can be further upper bounded by

RV < RL4E KL - 7) i — x|+ 362} . (70)
Telescoping eq. (70) from ¢t = 1 tot = m — 1, we obtain

E[F(x;")] <E

m—1 m—1
F(x}) + ez —x07+ > (L - 7) I = =2+ > 36};] . (71)
t=1 t=1
Again, telescoping eq. (70) from ¢ = 0 to ¢ = m — 1 we obtain

m—1

m—1
ElF(yr+1)] S E[F(x}")] < )]+ E[[Ix == 17] +3 ) E[e]. (72)
t=0 t=0

Assume Z E [fo'H Xk HQ] > (, because otherwise the algorithm is terminated. Assume that there exists o > 0 such

m— 1 m—1
that3 Y- Elej] <a 3 E[[[x,"" —x}[|°] and 5 — L — a > 0. Then eq. (72) further implies that
t=0 t=0

E[F(yr1)] < E[F(x")] < I+ Z (L= g5 + o)E [I5" — =i |7] - (73)
t=0

That is, we have E[F(yx)] < E[F(yx-1)] < ... < F(yo), and hence E[F(yx)] | F*. We can further upper bound
eq. (71) as

m—1 m—1
E[F(x{")] <E | F(x}) + erllxh = xQ12 + > (L= &) kg = xb)2+ Y Sez]
t=1 t=1
m—1 m—1
<E [F(x}) +eallsh =32 = (L= o ) 1%k = <202+ 30 (L= o) 1= ==k + > 3¢t
t=0 t=0
m—1
<E [F(=}) + (o1 + 2 ) 1=k = xQ2+ > (L= +a) =" - x;||2]
t=0
<E [F(x})] +E [(277L2m + %) %L — xgﬂ . (74)

Define r, = E[F(yx) — F*], and suppose r > 0 for all k (otherwise the algorithm terminates in finite steps). Applying
the KE condition with § = 1/2, we obtain

L(F(x) — F*)? < distopx)(0). (75)

Setting x = X,, we obtain

1 _ N . 2
S(F(RE) = F7) < disthrg (0) < (L+ ) 1%k = vl (76)
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Taking expectation on both sides and using the result from eq. (74), we obtain

1 27]L2m+ﬁ

2
SEIF() = F] E [l = x201?) < (2+ 1) E [I%h — yal?].

c2

Note that x) = yy. Then rearranging the above inequality yields

SEFG) ~ ]

1RIF _F¥l < < (L 1) %E 2l _ 2
LE(F(yes) ~ F'] < < [(p+1) + 2 g (%] - )]
2 1
L+1 2+w
< W) I (y)] - EIF(ves))
2 1)2 2 1
which can be rewritten as 7,41 < d (rp — 741) with d = = (L+l) jLQiLa "%31 Then, induction yields that
29

d g\l
rk+1<d+1rk<(d+1) (F(yo) — F*).

(77)

(78)

(79)

(80)



