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Non-smooth Concave Maximization

Supplementary File

A. Technical Proofs
A.1. Proof of Theorem 1

Proof. “⇐”: If the pair (w̄, ᾱ) is a sparse saddle point for L, then from the definition of conjugate convexity and inequali-
ty (3) we have

P (w̄) = max
α∈FN

L(w̄, α) ≤ L(w̄, ᾱ) ≤ min
‖w‖0≤k

L(w, ᾱ).

On the other hand, we know that for any ‖w‖0 ≤ k and α ∈ FN

L(w,α) ≤ max
α′∈FN

L(w,α′) = P (w).

By combining the preceding two inequalities we obtain

P (w̄) ≤ min
‖w‖0≤k

L(w, ᾱ) ≤ min
‖w‖0≤k

P (w) ≤ P (w̄).

ThereforeP (w̄) = min‖w‖0≤k P (w), i.e., w̄ solves the problem in (1), which proves the necessary condition (a). Moreover,
the above arguments lead to

P (w̄) = max
α∈FN

L(w̄, α) = L(w̄, ᾱ).

Then from the maximizing argument property of convex conjugate we know that ᾱi ∈ ∂li(w̄
>xi). Thus the necessary

condition (b) holds. Note that

L(w, ᾱ) =
λ

2

∥∥∥∥∥w +
1

Nλ

N∑
i=1

ᾱixi

∥∥∥∥∥
2

− 1

N

N∑
i=1

l∗i (ᾱi) + C, (11)

where C is a quantity not dependent on w. Let F̄ = supp(w̄). Since the above analysis implies L(w̄, ᾱ) =
min‖w‖0≤k L(w, ᾱ), it must hold that

w̄ = HF̄

(
− 1

Nλ

N∑
i=1

ᾱixi

)
= Hk

(
− 1

Nλ

N∑
i=1

ᾱixi

)
.

This validates the necessary condition (c).

“⇒”: Conversely, let us assume that w̄ is a k-sparse solution to the problem (1) (i.e., conditio(a)) and let ᾱi ∈ ∂li(w̄>xi)
(i.e., condition (b)). Again from the maximizing argument property of convex conjugate we know that li(w̄>xi) =
ᾱiw̄

>xi − l∗i (ᾱi). This leads to

L(w̄, α) ≤ P (w̄) = max
α∈FN

L(w̄, α) = L(w̄, ᾱ). (12)

The sufficient condition (c) guarantees that F̄ contains the top k (in absolute value) entries of− 1
Nλ

∑N
i=1 ᾱixi. Then based

on the expression in (11) we can see that the following holds for any k-sparse vector w

L(w̄, ᾱ) ≤ L(w, ᾱ). (13)

By combining the inequalities (12) and (13) we get that for any ‖w‖0 ≤ k and α ∈ FN ,

L(w̄, α) ≤ L(w̄, ᾱ) ≤ L(w, ᾱ).

This shows that (w̄, ᾱ) is a sparse saddle point of the Lagrangian L.
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A.2. Proof of Theorem 2

Proof. “⇒”: Let (w̄, ᾱ) be a saddle point for L. On one hand, note that the following holds for any k-sparse w′ and
α′ ∈ FN

min
‖w‖0≤k

L(w,α′) ≤ L(w′, α′) ≤ max
α∈FN

L(w′, α),

which implies
max
α∈FN

min
‖w‖0≤k

L(w,α) ≤ min
‖w‖0≤k

max
α∈FN

L(w,α). (14)

On the other hand, since (w̄, ᾱ) is a saddle point for L, the following is true:

min
‖w‖0≤k

max
α∈FN

L(w,α) ≤ max
α∈FN

L(w̄, α)

≤ L(w̄, ᾱ) ≤ min
‖w‖0≤k

L(w, ᾱ)

≤ max
α∈FN

min
‖w‖0≤k

L(w,α).

(15)

By combining (14) and (15) we prove the equality in (4).

“⇐”: Assume that the equality in (4) holds. Let us define w̄ and ᾱ such that

max
α∈FN

L(w̄, α) = min
‖w‖0≤k

max
α∈FN

L(w,α)

min
‖w‖0≤k

L(w, ᾱ) = max
α∈FN

min
‖w‖0≤k

L(w,α)
.

Then we can see that for any α ∈ FN ,

L(w̄, ᾱ) ≥ min
‖w‖0≤k

L(w, ᾱ) = max
α′∈FN

L(w̄, α′) ≥ L(w̄, α),

where the “=” is due to (4). In the meantime, for any ‖w‖0 ≤ k,

L(w̄, ᾱ) ≤ max
α∈FN

L(w̄, α) = min
‖w′‖0≤k

L(w′, ᾱ) ≤ L(w, ᾱ).

This shows that (w̄, ᾱ) is a sparse saddle point for L.

A.3. Proof of Lemma 1

Proof. For any fixed α ∈ FN , then it is easy to verify that the k-sparse minimum of L(w,α) with respect to w is attained
at the following point:

w(α) = arg min
‖w‖0≤k

L(w,α) = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

Thus we have
D(α) = min

‖w‖0≤k
L(w,α) = L(w(α), α)

=
1

N

N∑
i=1

(
αiw(α)>xi − l∗i (αi)

)
+
λ

2
‖w(α)‖2

ζ1
=

1

N

N∑
i=1

−l∗i (αi)−
λ

2
‖w(α)‖2,

where “ζ1” follows from the above definition of w(α).

Now let us consider two arbitrary dual variables α′, α′′ ∈ FN and any g(α′′) ∈ 1
N [w(α′′)>x1−∂l∗1(α′′1), ..., w(α′′)>xN−

∂l∗N (α′′N )]. From the definition of D(α) and the fact that L(w,α) is concave with respect to α at any fixed w we can derive
that

D(α′) = L(w(α′), α′)

≤ L(w(α′′), α′)

≤ L(w(α′′), α′′) + 〈g(α′′), α′ − α′′〉 .
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This shows that D(α) is a concave function and its super-differential is as given in the theorem.

If we further assume that w(α) is unique and {l∗i }i=1,...,N are differentiable at any α, then ∂D(α) = 1
N [w(α)>x1 −

∂l∗1(α1), ..., w(α)>xN −∂l∗N (αN )] becomes unique, which implies that ∂D(α) is the unique super-gradient of D(α).

A.4. Proof of Theorem 3

Proof. “⇒”: Given the conditions in the theorem, it can be known from Theorem 1 that the pair (w̄, ᾱ) forms a sparse
saddle point of L. Thus based on the definitions of sparse saddle point and dual function D(α) we can show that

D(ᾱ) = min
‖w‖0≤k

L(w, ᾱ) ≥ L(w̄, ᾱ) ≥ L(w̄, α) ≥ D(α).

This implies that ᾱ solves the dual problem in (5). Furthermore, Theorem 2 guarantees the following

D(ᾱ) = max
α∈FN

min
‖w‖0≤k

L(w,α) = min
‖w‖0≤k

max
α∈FN

L(w,α) = P (w̄).

This indicates that the primal and dual optimal values are equal to each other.

“⇐”: Assume that ᾱ solves the dual problem in (5) and D(ᾱ) = P (w̄). Since D(ᾱ) ≤ P (w) holds for any ‖w‖0 ≤ k, w̄
must be the sparse minimizer of P (w). It follows that

max
α∈FN

min
‖w‖0≤k

L(w,α) = D(ᾱ) = P (w̄) = min
‖w‖0≤k

max
α∈FN

L(w,α).

From the “⇐” argument in the proof of Theorem 2 and Corollary 1 we get that the conditions (a)∼(c) in Theorem 1 should
be satisfied for (w̄, ᾱ).

A.5. Proof of Theorem 4

We need a series of technical lemmas to prove this theorem. The following lemmas shows that under proper conditions,
w(α) is locally smooth around w̄ = w(ᾱ).
Lemma 2. Let X = [x1, ..., xN ] ∈ Rd×N be the data matrix. Assume that {li}i=1,...,N are differentiable and

ε̄ := w̄min −
1

λ
‖P ′(w̄)‖∞ > 0.

If ‖α− ᾱ‖ ≤ λNε̄
2σmax(X) , then supp(w(α)) = supp(w̄) and

‖w(α)− w̄‖ ≤ σmax(X, k)

Nλ
‖α− ᾱ‖.

Proof. For any α ∈ FN , let us define

w̃(α) = − 1

Nλ

N∑
i=1

αixi.

Consider F̄ = supp(w̄). Given ε̄ > 0, it is known from Theorem 3 that w̄ = HF̄ (w̃(ᾱ)) and P ′(w̄)
λ = HF̄ c (−w̃(ᾱ)). Then

ε̄ > 0 implies F̄ is unique, i.e., the top k entries of w̃(ᾱ) is unique. Given that ‖α− ᾱ‖ ≤ λNε̄
2σmax(X) , it can be shown that

‖w̃(α)− w̃(ᾱ)‖ =
1

Nλ
‖X(α− ᾱ)‖ ≤ σmax(X)

Nλ
‖α− ᾱ‖ ≤ ε̄

2
.

This indicates that F̄ still contains the (unique) top k entries of w̃(α). Therefore,

supp(w(α)) = F̄ = supp(w̄).

Then it must hold that
‖w(α)− w(ᾱ)‖ = ‖HF̄ (w̃(α))−HF̄ (w̃(ᾱ)) ‖

=
1

Nλ
‖XF̄ (α− ᾱ)‖

≤ σmax(X, k)

Nλ
‖α− ᾱ‖.

This proves the desired bound.
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The following lemma bounds the estimation error ‖α − ᾱ‖ = O(
√
〈D′(α), ᾱ− α〉) when the primal loss {li}Ni=1 are

smooth.
Lemma 3. Assume that the primal loss functions {li(·)}Ni=1 are 1/µ-smooth. Then the following inequality holds for any
α, α′′ ∈ F and g(α′′) ∈ ∂D(α′′):

D(α′) ≤ D(α′′) + 〈g(α′′), α′ − α′′〉 − λNµ+ σ2
min(X, k)

2λN2
‖α′ − α′′‖2.

Moreover, ∀α ∈ F and g(α) ∈ ∂D(α),

‖α− ᾱ‖ ≤

√
2λN2〈g(α), ᾱ− α〉
λNµ+ σ2

min(X, k)
.

Proof. Recall that

D(α) =
1

N

N∑
i=1

−l∗i (αi)−
λ

2
‖w(α)‖2,

Now let us consider two arbitrary dual variables α′, α′′ ∈ F . The assumption of li being 1/µ-smooth implies that its
convex conjugate function l∗i is µ-strongly-convex. Let F ′′ = supp(w(α′′)). Then

D(α′) =
1

N

N∑
i=1

−l∗i (α′i)−
λ

2
‖w(α′)‖2

=
1

N

N∑
i=1

−l∗i (α′i)−
λ

2

∥∥∥∥∥Hk

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

(
−l∗i (α′′i )− l∗

′

i (α′′i )(α′i − α′′i )− µ

2
(α′i − α′′i )2

)
− λ

2

∥∥∥∥∥HF ′′

(
− 1

Nλ

N∑
i=1

α′ixi

)∥∥∥∥∥
2

≤ 1

N

N∑
i=1

(
−l∗i (α′′i )− l∗

′

i (α′′i )(α′i − α′′i )− µ

2
(α′i − α′′i )2

)
− λ

2
‖w(α′′)‖2 +

1

N

N∑
i=1

x>i w(α′′)(α′i − α′′i )

− 1

2λN2
(α′ − α′′)>X>F ′′XF ′′(α

′ − α′′)

≤D(α′′) + 〈g(α′′), α′ − α′′〉 − λNµ+ σ2
min(X, k)

2λN2
‖α′ − α′′‖2.

This proves the first desirable inequality in the lemma. By invoking the above inequality and using the fact D(α) ≤ D(ᾱ)
we get that

D(ᾱ) ≤D(α) + 〈g(α), ᾱ− α〉 − λNµ+ σ2
min(X, k)

2λN2
‖α− ᾱ‖2

≤D(ᾱ) + 〈g(α), ᾱ− α〉 − λNµ+ σ2
min(X, k)

2λN2
‖α− ᾱ‖2,

which leads to the second desired bound.

The following lemma gives a simple expression of the gap for properly related primal-dual pairs.
Lemma 4. Given a dual variable α ∈ FN and the related primal variable

w = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

The primal-dual gap εPD(w,α) can be expressed as:

εPD(w,α) =
1

N

N∑
i=1

(
li(w

>xi) + l∗i (αi)− αiw>xi
)
.
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Proof. It is directly to know from the definitions of P (w) and D(α) that

P (w)−D(α)

=
1

N

N∑
i=1

li(w
>xi) +

λ

2
‖w‖2 −

(
1

N

N∑
i=1

(
αiw

>xi − l∗i (αi)
)

+
λ

2
‖w‖2

)

=
1

N

N∑
i=1

(
li(w

>xi) + l∗i (αi)− αiw>xi
)
.

This shows the desired expression.

Based on Lemma 4, we can derive the following lemma which establishes a bound on the primal-dual gap.

Lemma 5. Consider a primal-dual pair (w,α) satisfying

w = Hk

(
− 1

Nλ

N∑
i=1

αixi

)
.

Then the following inequality holds for any g(α) ∈ ∂D(α) and β ∈ [∂l1(w>x1), ..., ∂lN (w>xN )]:

P (w)−D(α) ≤ 〈g(α), β − α〉.

Proof. For any i ∈ [1, ..., N ], from the maximizing argument property of convex conjugate we have

li(w
>xi) = w>xil

′
i(w
>xi)− l∗i (l′i(w>xi)),

and
l∗i (αi) = αil

∗′
i (αi)− li(l∗

′

i (αi)).

By summing both sides of above two equalities we get

li(w
>xi) + l∗i (αi)

=w>xil
′
i(w
>xi) + αil

∗′
i (αi)− (li(l

∗′
i (αi)) + l∗i (l

′
i(w
>xi)))

ζ1
≤w>xil′i(w>xi) + αil

∗′
i (αi)− l∗

′

i (αi)l
′
i(w
>xi),

(16)

where “ζ1” follows from Fenchel-Young inequality. Therefore

〈g(α), β − α〉

=
1

N

N∑
i=1

(w>xi − l∗
′

i (αi))(l
′
i(w
>xi)− αi)

=
1

N

N∑
i=1

(
w>xil

′
i(w
>xi)− l∗

′

i (αi)l
′
i(w
>xi)− αiw>xi + αil

∗′
i (αi)

)
ζ2
≥ 1

N

N∑
i=1

(li(w
>xi) + αil

∗
i (αi)− w>xi)

ζ3
=P (w)−D(α),

where “ζ2” follows from (16) and “ζ3” follows from Lemma 4. This proves the desired bound.

The following simple result is also needed in our iteration complexity analysis.

Lemma 6. For any ε > 0,
1

t
+

ln t

t
≤ ε

holds when t ≥ max
{

3
ε ln 3

ε , 1
}

.
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Proof. Obviously, the inequality 1
t + ln t

t ≤ ε holds for ε ≥ 1. When ε < 1, it holds that ln( 3
ε ) ≥ 1. Then the condition on

t implies that 1
t ≤

ε
3 . Also, we have

ln t

t
≤

ln( 3
ε ln 3

ε )
3
ε ln 3

ε

≤
ln( 3

ε )2

3
ε ln 3

ε

=
2ε

3
,

where the first “≤” follows the fact that ln t/t is decreasing when t ≥ 1 while the second “≤” follows lnx < x for all
x > 0. Therefore we have 1

t + ln t
t ≤ ε.

We are now in the position to prove the main theorem.

of Theorem 4. Part(a): Let us consider g(t) ∈ ∂D(α(t)) with g(t)
i = 1

N (x>i w
(t) − l∗′i (α

(t)
i )). From the expression of w(t)

we can verify that ‖w(t)‖ ≤ r/λ. Therefore we have

‖g(t)‖ ≤ c0 =
r + λρ

λ
√
N
.

Let h(t) = ‖α(t) − ᾱ‖ and v(t) = 〈g(t), ᾱ − α(t)〉. The concavity of D implies v(t) ≥ 0. From Lemma 3 we know that
h(t) ≤

√
2λN2v(t)/(λNµ+ σmin(X, k)). Then

(h(t))2 =‖PFN
(
α(t−1) + η(t−1)g(t−1)

)
− ᾱ‖2

≤‖α(t−1) + η(t−1)g(t−1) − ᾱ‖2

=(h(t−1))2 − 2η(t−1)v(t−1) + (η(t−1))2‖g(t−1)‖2

≤(h(t−1))2 − η(t−1)(λNµ+ σmin(X, k))

λN2
(h(t−1))2 + (η(t−1))2c20.

Let η(t) = λN2

(λNµ+σmin(X,k))(t+1) . Then we obtain

(h(t))2 ≤
(

1− 1

t

)
(h(t−1))2 +

λ2N4c20
(λNµ+ σmin(X, k))2t2

.

By recursively applying the above inequality we get

(h(t))2 ≤ λ2N4c20
(λNµ+ σmin(X, k))2

(
1

t
+

ln t

t

)
= c1

(
1

t
+

ln t

t

)
.

This proves the desired bound in part(a).

Part(b): Let us consider ε = λNε̄
2σmax(X) . From part(a) and Lemma 6 we obtain

‖α(t) − ᾱ‖ ≤ ε

after t ≥ t0 = 3c1
ε2 ln 3c1

ε2 . It follows from Lemma 2 that supp(w(t)) = supp(w̄).

Let β(t) := [l′1((w(t))>x1), ..., l′N ((w(t))>xN )]. According to Lemma 5 we have

ε
(t)
PD = P (w(t))−D(α(t))

≤ 〈g(t), β(t) − α(t)〉
≤ ‖g(t)‖(‖β(t) − ᾱ‖+ ‖ᾱ− α(t)‖).

Since ε̄ = w̄min − 1
λ‖P

′(w̄)‖∞ > 0, it follows from Theorem 2 that ᾱ = [l′1(w̄>x1), ..., l′N (w̄>xN )]. Given that t ≥ t0,
from the smoothness of li and Lemma 2 we get

‖β(t) − ᾱ‖ ≤ 1

µ
‖w(t) − w̄‖ ≤ σmax(X, k)

µλN
‖α(t) − ᾱ‖, .
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where in the first “≤” we have used ‖xi‖ ≤ 1. Therefore, the following is valid when t ≥ t0:

ε
(t)
PD ≤ ‖g

(t)‖(‖β(t) − ᾱ‖+ ‖ᾱ− α(t)‖)

≤ c0
(

1 +
σmax(X, k)

µλN

)
‖α(t) − ᾱ‖.

Since t ≥ t1, from part(a) and Lemma 6 we get ‖α(t) − ᾱ‖ ≤ ε

c0(1+
σmax(X,k)

µλN )
, which according to the above inequality

implies ε(t)PD ≤ ε. This proves the desired bound.

A.6. Proof of Theorem 5

Proof. Part(a): Let us consider g(t) with g(t)
j = 1

N (x>j w
(t)− l∗′j (α

(t)
i )). Let h(t) = ‖α(t)− ᾱ‖ and v(t) = 〈g(t), ᾱ−α(t)〉.

The concavity of D implies v(t) ≥ 0. From Lemma 3 we know that h(t) ≤
√

2λN2v(t)/(λNµ+ σmin(X, k)). Let
g

(t)
Bi

:= H
B

(t)
i

(g(t)) and v(t)
Bi

:= 〈g(t)
Bi
, ᾱ− α(t)〉 Then

(h(t))2 =‖PFN
(
α(t−1) + η(t−1)g

(t−1)
Bi

)
− ᾱ‖2

≤‖α(t−1) + η(t−1)g
(t−1)
Bi

− ᾱ‖2

=(h(t−1))2 − 2η(t−1)v
(t−1)
Bi

+ (η(t−1))2‖g(t−1)
Bi

‖2.

By taking conditional expectation (with respect to uniform random block selection, conditioned on α(t−1)) on both sides
of the above inequality we get

E[(h(t))2 | α(t−1)]

≤(h(t−1))2 − 1

m

m∑
i=1

2η(t−1)v
(t−1)
Bi

+
1

m

m∑
i=1

(η(t−1))2‖g(t−1)
Bi

‖2

=(h(t−1))2 − 2η(t−1)

m
v(t−1) +

(η(t−1))2

m
‖g(t−1)‖2

≤(h(t−1))2 − η(t−1)(λNµ+ σmin(X, k))

λmN2
(h(t−1))2 +

(η(t−1))2

m
c20..

Let η(t) = λmN2

(λNµ+σmin(X,k))(t+1) . Then we obtain

E[(h(t))2 | α(t−1)] ≤
(

1− 1

t

)
(h(t−1))2 +

λ2mN4c20
(λNµ+ σmin(X, k))2t2

.

By taking expectation on both sides of the above over α(t−1), we further get

E[(h(t))2] ≤
(

1− 1

t

)
E[(h(t−1))2] +

λ2mN4c20
(λNµ+ σmin(X, k))2t2

.

This recursive inequality leads to

E[(h(t))2] ≤ λ2mN4c20
(λNµ+ σmin(X, k))2

(
1

t
+

ln t

t

)
= c2

(
1

t
+

ln t

t

)
.

This proves the desired bound in part(a).

Part(b): Let us consider ε = λNε̄
2σmax(X) . From part(a) and Lemma 6 we obtain

E[‖α(t) − ᾱ‖] ≤ δε

after t ≥ t2 = 3c2
δ2ε2 ln 3c2

δ2ε2 . Then from Markov inequality we know that ‖α(t) − ᾱ‖ ≤ E[‖α(t) − ᾱ‖]/δ ≤ ε holds with
probability at least 1− δ. Lemma 2 shows that ‖α(t)− ᾱ‖ ≤ ε implies supp(w(t)) = supp(w̄). Therefore when t ≥ t2, the
event supp(w(t)) = supp(w̄) occurs with probability at least 1− δ.
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Similar to the proof arguments of Theorem 4(b) we can further show that when t ≥ 4t2, with probability at least 1− δ/2

‖α(t) − ᾱ‖ ≤ λNε̄

2σmax(X)
,

which then leads to

ε
(t)
PD ≤ c0

(
1 +

σmax(X, k)

µλN

)
‖α(t) − ᾱ‖.

Since t ≥ t3, from the arguments in part(a) and Lemma 6 we get that ‖α(t)− ᾱ‖ ≤ ε

c0(1+
σmax(X,k)

µλN )
holds with probability

at least 1− δ/2. Let us consider the following events:

• A: the event of ε(t)PD ≤ ε;

• B: the event of ‖α(t) − ᾱ‖ ≤ λNε̄
2σmax(X) ;

• C: the event of ‖α(t) − ᾱ‖ ≤ ε

c0(1+
σmax(X,k)

µλN )
.

When t ≥ max{4t2, t3}, we have the following holds:

P(A) ≥ P(A | B)P(B) ≥ P(C | B)P(B) ≥ (1− δ/2)2 ≥ 1− δ.

This proves the desired bound.


