Dual Iterative Hard Thresholding: From Non-convex Sparse Minimization to
Non-smooth Concave Maximization

Supplementary File

A. Technical Proofs
A.1. Proof of Theorem 1

Proof. “<": If the pair (w, @) is a sparse saddle point for L, then from the definition of conjugate convexity and inequali-
ty (3) we have

P(w) = max L(w,a) < L(w,&) < min L(w, &).
(@) = max L(5,0) < L(@.a) < min L(w.a)

On the other hand, we know that for any ||wl||o < k and o € FV

L(w,a) < Jmax, L(w,a') = P(w).

By combining the preceding two inequalities we obtain

P(w )ﬂgﬁlgkL( ; )<Hgﬁing( w) < P(w).

Therefore P(w) = min |0 <k P(w), i.e., w solves the problem in (1), which proves the necessary condition (a). Moreover,
the above arguments lead to

P(w) = max L(w,a) = L(w, &).

Then from the maximizing argument property of convex conjugate we know that &; € Ol;(w ' x;). Thus the necessary
condition (b) holds. Note that

L(w,a) =

w—i——ZazxZ

where C is a quantity not dependent on w. Let I = supp(w). Since the above analysis implies L(w,a) =
min\leoﬁk L(w, 07), it must hold that

1 1
i=1

This validates the necessary condition (c).

—*Zlf(@i)ﬂLC, (a1

“="": Conversely, let us assume that w is a k-sparse solution to the problem (1) (i.e., conditio(a)) and let &; € 0l; ( x;)
(i.e., condition (b)). Again from the maximizing argument property of convex conjugate we know that [;(w ' z;) =
aszxZ I#(a;). This leads to

L(w,a) < P(w) = max L(w,a) = L(w, @). (12)
aeFN

The sufficient condition (c) guarantees that F contains the top k (in absolute value) entries of — ﬁ Zf\il a;x;. Then based
on the expression in (11) we can see that the following holds for any k-sparse vector w

L(w,a) < L(w, &). (13)
By combining the inequalities (12) and (13) we get that for any |Jwl||o < k and o € FV,
L(w,a) < L(w,a) < L(w, @).

This shows that (w, @) is a sparse saddle point of the Lagrangian L. O
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A.2. Proof of Theorem 2
Proof. “=": Let (w, &) be a saddle point for L. On one hand, note that the following holds for any k-sparse w’ and
o e FN

min L(w,a’) < L(w', o) < max L(w', a),

llwllo<k a€FN

which implies
max min L(w,a) < min max L(w,a). (14)
a€FN |lwlo<k lwllo<k acFN

On the other hand, since (w, @) is a saddle point for L, the following is true:

min  max L(w,a) < max L(w,a)
lwl|lo<k aeFN aeFN

< L(w,a) < min L(w,x
< L(@,a) < min L(w,a) (15)

< max min L(w,a).
a€FN flwllo<k

By combining (14) and (15) we prove the equality in (4).

“<": Assume that the equality in (4) holds. Let us define w and & such that

max L(w,a) = min max L(w, )
aEFN |wl|lo<k aeFN

min L(w,&) = max min L(w,a)
lwllo<k a€FN [lwllo<k

Then we can see that for any o € FV,

L(w,a) > min L(w,a) = L > L(w, a),
(w a)fl‘ur)r”lérék (w, @) arréa}_xN (0, a’) (w, @)

where the “="is due to (4). In the meantime, for any ||w]||o < k,
L(w,&) < max L(w,a) = min L(vw', &) < L(w, &).
(@, a) < max L(@,a) = min L', &)< L(w,q)
This shows that (w, @) is a sparse saddle point for L. O

A.3. Proof of Lemma 1

Proof. For any fixed o € F7, then it is easy to verify that the k-sparse minimum of L(w, ) with respect to w is attained

at the following point:
1N
w(a) = argmin L(w, o) = Hg <_N)\ ; aixZ-) .

llwllo<k

Thus we have
D(a) = min L(w,a) = L(w(a), a)

lwllo<k

1 Y T * A 2
= 5 2 (ww(@) e =1 (ai) + Fllw(@)]
. ;
2 = Z (c) = f||w<a>\|2,

where “(;” follows from the above definition of w(«).

Now let us consider two arbitrary dual variables o/, o’ € FN and any g(o”’) € % [w(a”) @1 —0l}(af), ..., w(a”) "oy —
Ol (a%)]. From the definition of D(«) and the fact that L(w, ) is concave with respect to « at any fixed w we can derive
that
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This shows that D(«) is a concave function and its super-differential is as given in the theorem.

If we further assume that w(«) is unique and {I;};—y,... v are differentiable at any o, then dD(a) = +[w(a) z; —

Ol (1), ..., w(a) Txn — Ol (a )] becomes unique, which implies that 9D («) is the unique super-gradient of D(a). [

)T

A.4. Proof of Theorem 3

Proof. “=": Given the conditions in the theorem, it can be known from Theorem 1 that the pair (w, @) forms a sparse
saddle point of L. Thus based on the definitions of sparse saddle point and dual function D(«) we can show that

D(a) = ||Jjﬂi2kL(w’@) > L(w,a) > L(w,a) > D(a).

This implies that & solves the dual problem in (5). Furthermore, Theorem 2 guarantees the following

D(a) = max min L(w,o) = min max L(w,a) = P(w).
a€FN |lwllo<k lwllo<k acFN

This indicates that the primal and dual optimal values are equal to each other.

“«<": Assume that & solves the dual problem in (5) and D(&) = P(w). Since D(&) < P(w) holds for any ||w||o < k, w
must be the sparse minimizer of P(w). It follows that

max min L(w,a)=D(@) = P(w) = min max L(w,a).
a€FN |lwllo<k wllo<k acFN

From the “<” argument in the proof of Theorem 2 and Corollary 1 we get that the conditions (a)~(c) in Theorem 1 should
be satisfied for (w, @). O
A.5. Proof of Theorem 4

We need a series of technical lemmas to prove this theorem. The following lemmas shows that under proper conditions,
w(a) is locally smooth around @ = w(&).

Lemma 2. Let X = [11,...,xn] € RN be the data matrix. Assume that {li}i=1,...,n are differentiable and
€ = Wy — §||P'(w>||oo > 0.

If|la—al < ﬁ]\ifx) then supp(w(a)) = supp(w) and

Tmax (X, k)

< Pt o~ al)

Proof. For any o € FV, let us define

| XN
(o) = “ X Zaixi.
i=1

P'(®)

Consider F' = supp(w). Given € > 0, it is known from Theorem 3 that w = H (w(a@)) and —~ = Hp. (—w(a)). Then
€ > 0 implies F is unique, i.e., the top k entries of (&) is unique. Given that ||a — a|| < ﬁNEX), it can be shown that
5 - 1 Omax(X) B €
— )| = —|| X —a)|| < ——= — < —.
() ~ (@) = 551X (@~ )l < 722 o~ af < &

This indicates that [ still contains the (unique) top k entries of (). Therefore,

supp(w(a)) = F' = supp(w).
Then it must hold that
[w(a) —w(@)|| = [Hp (@(a)) — Hp (@(a)) |
1

= [X7(a—a)
Tmax (X, k) _

< TmaxA Mo — all.

< o — &l

This proves the desired bound. O
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The following lemma bounds the estimation error ||a — @| = O(y/(D’(a), & — «)) when the primal loss {;}Y; are
smooth.

Lemma 3. Assume that the primal loss functions {l;(-)}}\., are 1/u-smooth. Then the following inequality holds for any
a,o" € Fand g(a) € D(a):

ANp+ o2, (X, k)
N < " ANV RN min \<»
D(e') < Dla") + (gla"). o/ — o) — M1 T

Moreover, Vo € F and g(a) € 0D(a),

||O/ _ O//HQ-

ANp+o2. (X, k)

min

lo —al < \/2AN2<g<a>7a —a)

Proof. Recall that

1 N

A
Dle) = 7 3 ~ti(n) = Flu(@
Now let us consider two arbitrary dual variables o/, o € F. The assumption of /; being 1/u-smooth implies that its
convex conjugate function [} is p-strongly-convex. Let ' = supp(w(a’’)). Then

! 1 al * A )\ / 2
D(a) =+ >_ =1 (@) = Sllw(a)]
i=1
N N 2
1 e A 1 .
_N; l; (a3) b) Hk( N)\;O%xz>
2

1 N
_75 !
HF” ( NA - CV,LZ'1>

N N
1 / A 1
< 2 (i) =17 (@) (e = af) = ah = al)?) = Slluw(@) 2 + = D a T w(a”) (e} - of)
i=1 i=1
1
W(O/ - Oé”)TX;//XFU (Oé/ - OLH)

_ AN:LL+O—2 (Xvk)HO/fO//”Z.

min

2AN?

This proves the first desirable inequality in the lemma. By invoking the above inequality and using the fact D(a) < D(&)
we get that

<D(a") + (9(a”), 0’ = a")

3 ANp+ o2, (X, k)

D(a) £D(a) + (g(a), & — a) it o - 6
_ _ )‘NM+01211in(X> k) -
which leads to the second desired bound. O

The following lemma gives a simple expression of the gap for properly related primal-dual pairs.
Lemma 4. Given a dual variable o € FN and the related primal variable

1 XN
w = Hy, <_N)\ Z%‘%‘) .
i=1

The primal-dual gap epp(w, o) can be expressed as:

N
epp(w,a) = % Z (li(wai) + 1 (o) — ainxi) )
i=1
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Proof. Tt is directly to know from the definitions of P(w) and D(«) that

P(w) — D(e)
1 & 1
T 2 2
:N ;lZ(w ;) + 5““’” - (N ; (azw zi —1; (al)) + 5”“’” )
1N
= 2 (i ) + 1 (0n) — v ;)
i=1
This shows the desired expression. O

Based on Lemma 4, we can derive the following lemma which establishes a bound on the primal-dual gap.

Lemma 5. Consider a primal-dual pair (w, o) satisfying

Then the following inequality holds for any g(o)) € 0D (o) and § € [3ll(wTa:1), s Oy (w )
P(w) - D(a) < (g(a), B — ).
Proof. Forany i € [1, ..., N], from the maximizing argument property of convex conjugate we have
Li(w z;) = w2l (w" x;) — U (U(w z;)),

and / ,
(i) = il (i) = Li(l7 ().
By summing both sides of above two equalities we get
Li(w" z) + 17 (o)
—w Tl 2 + ol (o) — (605 (@) + 1w 2,) (16)
> %! / T
<U} mzl (w mz)+azl ( l) _li (al)lz(w ,’Ei),

where “(;” follows from Fenchel-Young inequality. Therefore

<g(04),ﬁ—04>
N
NZw wi = 17 () (I (w T 2) — o)

:% Z (U}szl (wz) — 1 () l(w T 2;) — agw T + ail;‘,(ai))

el &
>7Z(l (w'z;) + il () —w ' a;)

where “(5” follows from (16) and “(3” follows from Lemma 4. This proves the desired bound. O]

The following simple result is also needed in our iteration complexity analysis.

Lemma 6. Foranye > 0,

1+lnt<
t t_e

holds when t > max {% In %, 1}.
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Proof. Obviously, the inequality % + lnTt < e holds for e > 1. When € < 1, it holds that ln(%) > 1. Then the condition on
t implies that % < § Also, we have
Int _ In(2In2) In(2)2 2¢
< € €/ < € =,
t — % In % - % In % 3

where the first “<” follows the fact that In ¢/t is decreasing when ¢ > 1 while the second “<” follows lnz < z for all
z > 0. Therefore we have 1 + 12 < ¢. O

We are now in the position to prove the main theorem.
of Theorem 4. Part(a): Let us consider g(*) € dD(a(!)) with gz(t) =L(@w® -1 (agt))). From the expression of w(®)
we can verify that ||w®|| < /). Therefore we have

T+ Ap
AWN

Let h®) = |la® — a|| and vV = (¢, & — a®). The concavity of D implies v(¥) > 0. From Lemma 3 we know that
r® < \/2AN20® /(AN i + 0min (X, k)). Then

lg | < co =

(KO)2 =[P rx (=) 490 =Dgt=D) — G|
SHa(tfl) + ,r’(tfl)g(tfl) o 5[”2
:(h(t—l))2 _ 2,',](t—1),u(t—1) + (n(t—l))2||g(t—1)||2

_ N ANp + omin(X, k)

t—1)12 t—1)\2 t—1)y2 2
<(r*=) S (RETD)2 4 (" 71)2ef,
)\NQ .
Let (V) = N (XD Then we obtain
1 AZNAc2
h(t) 2 <(1=Z2 h(t—l) 2 0 )
( ) = t ( )"+ ()\N/L+Umixl(Xak))2t2

By recursively applying the above inequality we get

A2 N2 1 Int 1 Int
)2 « 0 1 Ity 1 Int
W < e 1) = ()

This proves the desired bound in part(a).

ANE

Part(b): Let us consider ¢ = T (X)

. From part(a) and Lemma 6 we obtain

lot? — & <

after t > to = 2% In 34, It follows from Lemma 2 that supp(w®) = supp(w).

Let O = [I} (w®) Tz1), ..., I ((wD) T2 x)]. According to Lemma 5 we have

W = P(w®) — D(a®)
< (g®, 80 _ o)y
< lg®(I18Y = a + la — a®]).

Since € = Wwin — § ||P'(@)]|s > 0, it follows from Theorem 2 that & = [If (w ' x1), ..., I (@ "z )]. Given that t > ¢,
from the smoothness of /; and Lemma 2 we get

max ‘X-7I€
MHON) —al,.

1
O _all < Lip® _ a5l <
189 —all <~ — ] < P
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where in the first “<” we have used ||z;|| < 1. Therefore, the following is valid when ¢ > t:

b < gD 13189 - &l + lla — D)

max X7k —
<< (1 + U;;;N)> la® —a].

Since t > t;, from part(a) and Lemma 6 we get [[a) — a| < , which according to the above inequality

€
oo (14 ZmaxCCRT

implies eg)D < e. This proves the desired bound. O
A.6. Proof of Theorem 5
Proof. Part(a): Let us consider g(*) with gﬁt) = %(m}rw(t) —Z;,(agt))). Let b = ||a® —a|| and v® = (¢, @ —a®).

The concavity of D implies v > 0. From Lemma 3 we know that A(®) < \/2AN20®) /(AN 1 4 0min(X, k)). Let
ggz =Hgwo (¢g) and U(Bt3 = (g(Btg, & — o) Then
_ 1y (t-1 _
()2 =[Pz () 4 164D — g
_ — —1 _
<[lal' =D 4y Vgl — &
=(h(=D)2 2= 4 ((t=D)2) g1 2,

By taking conditional expectation (with respect to uniform random block selection, conditioned on a*~)) on both sides
of the above inequality we get

E[(hV)? | at"=Y]

_ 1o~ (1) (- 1 o=, (o _
<(At=0)2 = LS oty g LsPe-nyegne
i=1 i=1
t—1 t—1))2
:(h(tq))z . 277( )v(tfl) + (77( )) Hg(tq)Hz
m m
CUANp A+ owin (X, k) (n"—1)?
<(pt-1y2 _ 1 H min {4, pt=1)y2 2

_ AmN?
(AN pt-0min (X,k)) (E+1

B[O |00 < (1= 1) (02

Let )

3 Then we obtain

)\2mN4c%
(ANp + omin (X, k))282°

By taking expectation on both sides of the above over a*~1), we further get
A2mN*4c3
(ANp + omin (X, k))282°

B[O < (1 7 ) Bl +

This recursive inequality leads to

A2mN4c2 1 Int 1 Int
E h(t) 2 < 0 - - _ - ).
TS N ot E 2 T ) T2 T

This proves the desired bound in part(a).

Part(b): Let us consider ¢ = %Aij\'fx) From part(a) and Lemma 6 we obtain

E[llo!) —al|] < oe

after t >t = 32 In 3% . Then from Markov inequality we know that |a® — a|| < E[[|la® — al|]/§ < € holds with

probability at least 1 — §. Lemma 2 shows that ||a(*) — a|| < e implies supp(w®) = supp(w). Therefore when ¢ > t,, the
event supp(w®) = supp(w) occurs with probability at least 1 — §.
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Similar to the proof arguments of Theorem 4(b) we can further show that when ¢ > 4t,, with probability at least 1 — 6/2

ANe
) _ a5l <« 22°%
o —af < 20max(X)

which then leads to

Omax X7k _
e < co (1 + uA(N)> la® — a].

Since t > t3, from the arguments in part(a) and Lemma 6 we get that ||o(*) —al| <

at least 1 — /2. Let us consider the following events:

e A: the event of egﬁ)D <e¢

AN

e B: the event of [Ja¥) — a| < ij);

 th flla® —a| < ——— 5o
e C: the event of ||« al < (17 TG

When ¢ > max{4ts, t3}, we have the following holds:

P(A) > P(A | BIP(B) > B(C | B)B(B) > (1 - 6/2)”

This proves the desired bound.

- e
C0(1+ Urxxi?;\(]f](vk))

holds with probability

>1-24.



