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Abstract
Most existing sequence labelling models rely on
a fixed decomposition of a target sequence into
a sequence of basic units. These methods suffer
from two major drawbacks: 1) the set of basic
units is fixed, such as the set of words, charac-
ters or phonemes in speech recognition, and 2)
the decomposition of target sequences is fixed.
These drawbacks usually result in sub-optimal
performance of modeling sequences. In this pa-
per, we extend the popular CTC loss criterion
to alleviate these limitations, and propose a new
loss function called Gram-CTC. While preserv-
ing the advantages of CTC, Gram-CTC automat-
ically learns the best set of basic units (grams), as
well as the most suitable decomposition of tar-
get sequences. Unlike CTC, Gram-CTC allows
the model to output variable number of charac-
ters at each time step, which enables the model
to capture longer term dependency and improves
the computational efficiency. We demonstrate
that the proposed Gram-CTC improves CTC in
terms of both performance and efficiency on the
large vocabulary speech recognition task at mul-
tiple scales of data, and that with Gram-CTC we
can outperform the state-of-the-art on a standard
speech benchmark.

1. Introduction
In recent years, there has been an explosion of interest in
sequence labelling tasks. Connectionist Temporal Classi-
fication (CTC) loss (Graves et al., 2006) and Sequence-
to-sequence (seq2seq) models (Cho et al., 2014; Sutskever
et al., 2014) present powerful approaches to multiple ap-
plications, such as Automatic Speech Recognition (ASR)
(Chan et al., 2016a; Hannun et al., 2014; Bahdanau et al.,
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2016), machine translation (Sébastien et al., 2015), and
parsing (Vinyals et al., 2015). These methods are based on
1) a fixed and carefully chosen set of basic units, such as
words (Sutskever et al., 2014), phonemes (Chorowski et al.,
2015) or characters (Chan et al., 2016a), and 2) a fixed
and pre-determined decomposition of target sequences into
these basic units. While these two preconditions greatly
simplify the problems, especially the training processes,
they are also strict and unnecessary constraints, which usu-
ally lead to suboptimal solutions. CTC models are espe-
cially harmed by fixed basic units in target space, because
they build on the independence assumption between suc-
cessive outputs in that space - an assumption which is often
violated in practice.

The problem with fixed set of basic units is obvious: it is
really hard, if not impossible, to determine the optimal set
of basic units beforehand. For example, in English ASR,
if we use words as basic units, we will need to deal with
the large vocabulary-sized softmax, as well as rare words
and data sparsity problem. On the other hand, if we use
characters as basic units, the model is forced to learn the
complex rules of English spelling and pronunciation. For
example, the "oh" sound can be spelled in any of follow-
ing ways, depending on the word it occurs in - { o, oa,
oe, ow, ough, eau, oo, ew }. While CTC can easily model
commonly co-occuring grams together, it is impossible to
give roughly equal probability to many possible spellings
when transcribing unseen words. Most speech recognition
systems model phonemes, sub-phoneme units and senones
e.g, (Xiong et al., 2016a) to get around these problems.
Similarly, state-of-the-art neural machine translation sys-
tems use pre-segmented word pieces e.g, (Wu et al., 2016a)
aiming to find the best of both worlds.

In reality, groups of characters are typically cohesive units
for many tasks. For the ASR task, words can be decom-
posed into groups of characters that can be associated with
sound (such as ‘tion’ and ‘eaux’). For the machine trans-
lation task, there may be values in decomposing words as
root words and extensions (so that meaning may be shared
explicitly between ‘paternal’ and ‘paternity’). Since this
information is already available in the training data, it is
perhaps, better to let the model figure it out by itself. At
the same time, it raises another import question: how to de-
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compose a target sequence into basic units? This is coupled
with the problem of automatic selection of basic units, thus
also better to let the model determine. Recently, there are
some interesting attempts in these directions in the seq2seq
framework. For example, Chan et al (Chan et al., 2016b)
proposed the Latent Sequence Decomposition to decom-
pose target sequences with variable length units as a func-
tion of both input sequence and the output sequence.

In this work, we propose Gram-CTC - a strictly more gen-
eral version of CTC - to automatically seek the best set
of basic units from the training data, called grams, and
automatically decompose target sequences into sequences
of grams. Just as sequence prediction with cross entropy
training can be seen as special case of the CTC loss with
a fixed alignment, CTC can be seen as a special case of
Gram-CTC with a fixed decomposition of target sequences.
Since it is a loss function, it can be applied to many seq2seq
tasks to enable automatic selection of grams and decompo-
sition of target sequences without modifying the underly-
ing networks. Extensive experiments on multiple scales of
data validate that Gram-CTC can improve CTC in terms of
both performance and efficiency, and that using Gram-CTC
the models outperform state-of-the-arts on standard speech
benchmarks.

2. Related Work
The basic text units that previous works utilized for text
prediction tasks (e.g,, automatic speech recognition, hand-
writing recognition, machine translation, and image cap-
tioning) can be generally divided into two categories: hand-
crafted ones and learning-based ones.

Hand-crafted Basic Units. Fixed sets of characters
(graphemes) (Graves et al., 2006; Amodei et al., 2015),
word-pieces (Wu et al., 2016b; Collobert et al., 2016;
Zweig et al., 2016a), words (Soltau et al., 2016; Sébastien
et al., 2015), and phonemes (Lee and Hon, 1988; Sercu and
Goel, 2016; Xiong et al., 2016b) have been widely used as
basic units for text prediction, but all of them have draw-
backs. Using these fixed deterministic decompositions of
text sequences defines a prior, which is not necessarily op-
timal for end-to-end learning.

• Word-segmented models remove the component of
learning to spell and thus enable direct optimization to-
wards reducing Word Error Rate (WER). However, these
models suffer from having to handle a large vocabulary
(1.7 million in (Soltau et al., 2016)), out-of-vocabulary
words (Soltau et al., 2016; Sébastien et al., 2015) and
data sparsity problems (Soltau et al., 2016).

• Using characters results in much smaller vocabularies
(e.g, 26 for English and thousands for Chinese), but it re-
quires much longer contexts compared to using words or
word-pieces and poses the challenge of composing char-
acters to words (Graves et al., 2006; Chan et al., 2015),

which is very noisy for languages like English.

• Word-pieces lie at the middle-ground of words and char-
acters, providing a good trade-off between vocabulary
size and context size, while the performance of using
word pieces is sensitive to the choice of the word-piece
set and its decomposition.

• For the ASR task, the use of phonemes was popular
in the past few decades as it eases acoustic modeling
(Lee and Hon, 1988) and good results were reported
with phonemic models (Xiong et al., 2016b; Sercu and
Goel, 2016). However, it introduces the uncertainties
of mapping phonemes to words during decoding (Doss
et al., 2003), which becomes less robust especially for
accented speech data.

Learning-based Basic Units. More recently, attempts
have been made to learn basic unit sets automatically.
(Luong and Manning, 2016) proposed a hybrid Word-
Character model which translates mostly at the word level
and consults the character components for rare words.
Chan et al (Chan et al., 2016b) proposed the Latent Se-
quence Decompositions framework to decomposes target
sequences with variable length-ed basic units as a function
of both input sequence and the output sequence.

There exist some earlier works on the “unit discovery” task
(Cartwright and Brent, 1994; Goldwater et al., 2006). A
standard problem with MLE solutions to this task is that
there are degenerate solutions, i.e., predicting the full cor-
pus with probability 1 at the start. Often Bayesian priors or
“minimum description length” constraints are used to rem-
edy this.

3. Gram-CTC
3.1. CTC

CTC (Graves et al., 2006) is a very popular method in
seq2seq learning since it does not require the alignment
information between inputs and outputs, which is usually
expensive, if not impossible, to obtain.

Since there is no alignment information, CTC marginalizes
over all possible alignments. That is, it tries to maximize
p(l|x) =

∑
π p(π|x), where x is input, and π represent a

valid alignment. For example, if the size of input is 3, and
the output is ‘hi’, whose length is 2, there are three possible
alignments, ‘-hi’, ‘h-i’ and ‘hi-’, where ‘-’ represents blank.
For the details, please refer to the original paper (Graves
et al., 2006).

3.2. From CTC to Gram-CTC
In CTC, the basic units are fixed, which is not desirable in
some applications. Here we generalize CTC by considering
a sequence of basic units, called gram, as a whole, which
is usually more reasonable in many applications.
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Figure 1. Illustration of the states and the forward-backward transitions for the label ‘CAT’. Here we let G be the set of all uni-grams and
bi-grams of the English alphabet. The set of all valid states S for the label l = ‘CAT’ are listed to the left. The set of states and transitions
that are common to both vanilla and Gram-CTC are in black, and those that are unique to Gram-CTC are in orange. In general, any
extension that collapses back to l is a valid transition - For example, we can transition into (‘CAT’, 1) from (‘CAT’, 1), (‘CA’, 2), (‘CA’,
1) and (‘CA’, 0) but not from (‘CAT’, 0) or (‘CAT’, 2)

Let G be a set of n-grams of the set of basic units C of the
target sequence, and τ be the length of the longest gram in
G. A Gram-CTC network has a softmax output layer with
|G|+1 units, that is, the probability over all grams inG and
one additional symbol, blank. To simplify the problem, we
also assume C ⊆ G. 1

For an input sequence x of length T , let y = Nw(x) be
the sequence of network outputs, and denote by ytk as the
probability of the k-th gram at time t, where k is the index
of grams in G′ = G ∪ {blank}, then we have

p(π|x) =
T∏
t=1

ytπt
,∀π ∈ G′T (1)

Just as in the case of CTC, here we refer to the elements
of G′T as paths, and denote them by π, which represents
a possible alignment between input and output. The dif-
ference is that for each word in the target sequence, it may
be decomposed into different sequences of grams. For ex-
ample, the word ‘hello’ can only be decomposed into the
sequence [‘h’, ‘e’, ‘l’, ‘l’, ‘o’] for CTC (assume uni-gram
CTC here), but it also can be decomposed into the sequence
[‘he’, ‘ll’, ‘o’] if ‘he’ and ‘ll’ are in G.

For each π, we map it into a target sequence in the same
way as CTC using the collapsing function that 1) removes
all repeated labels from the path and then 2) removes all
blanks. Note that essentially it is these rules which de-

1This is because there may be no valid decompositions for
some target sequences if C 6⊆ G. Since Gram-CTC will figure
out the ideal decomposition of target sequences into grams during
training, this condition guarantees that there is at least one valid
decomposition for every target sequence.

termine the transitions between the states of adjacent time
steps in Figure 1. This is a many-to-one mapping and we
denote it by B. Note that other rules can be adopted here
and the general idea presented in this paper does not depend
on these specific rules. For a target sequence l, B−1(l) rep-
resents all paths mapped to l. Then, we have

p(l|x) =
∑

π∈B−1(l)

p(π|x) (2)

This equation allows for training sequence labeling mod-
els without any alignment information using CTC loss, be-
cause it marginalizes over all possible alignments during
training. Gram-CTC uses the same effect to enable the
model to marginalize over not only alignments, but also
decompositions of the target sequence.

Note that for each target sequence l, the set B−1(l) has
O(τ2) more paths than it does in CTC. This is because
there are O(τ) times more valid states per time step, and
each state may have a valid transition from O(τ) states in
the previous time step. The original CTC method is thus,
a special case of Gram-CTC when G = C and τ = 1.
While the quadratic increase in the complexity of the algo-
rithm is non trivial, we assert that it is a trivial increase in
the overall training time of typical neural networks, where
the computation time is dominated by the neural networks
themselves. Additionally, the algorithm extends generally
to any arbitrary G and need not have all possible n-grams
up to length τ .

3.3. The Forward-Backward Algorithm

To efficiently compute p(l|x), we also adopt the dynamic
programming algorithm. The essence here is identifying
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the states of the problem, so that we may solve future
states by reusing solutions to earlier states. In our case, the
state must contain all the information required to identify
all valid extensions of an incomplete path π such that the
collapsing function will eventually collapse the complete
π back to l. For Gram-CTC, this can be done by collaps-
ing all but the last element of the path π. Therefore, the
state is a tuple (l1:i, j), where the first item is a collapsed
path, representing a prefix of the target label sequence, and
j ∈ {0, . . . , τ} is the length of the last gram (li−j+1:i)
used for making the prefix. j = 0 is valid and means that
blank was used. We denote the gram (li−j+1:i) by gji (l),
and the state (l1:i, j) as sji (l). For readability, we will fur-
ther shorten sji (l) to sji and gji (l) to gji . For a state s, its
corresponding gram is denoted by sg , and the positions of
the first character and last character of sg are denoted by
b(s) and e(s), respectively. During dynamic programming,
we are dealing with sequence of states, for a state sequence
ζ, its corresponding gram sequences is unique, denoted by
ζg .

Figure 1 illustrates partially the dynamic programming pro-
cess for the target sequence ‘CAT’. Here we suppose G
contains all possible uni-grams and bi-grams. Thus, for
each character in ‘CAT’, there are three possible states as-
sociated with it: 1) the current character, 2) the bi-gram
ending in current character, and 3) the blank after current
character. There is also one blank at beginning. In total we
have 10 states.

Supposing the maximum length of grams inG is τ , we first
scan l to get the set S of all possible states, such that for all
sji ∈ S, its corresponding gji ∈ G′. i ∈ {0, . . . , |l|} and
j ∈ {0, . . . , τ}. For a target sequence l, define the forward
variable αt(s) for any s ∈ S to the total probability of all
valid paths prefixes that end at state s at time t.

αt(s)
def
=

∑
ζ|B(ζg)=l1:e(s),ζt=s

t∏
t′=1

yt
′

ζt′g
(3)

Following this definition, we have the following rules for
initialization

α1(s) =


y1b s = s00
y1
gii

s = sii ∀i ∈ {1, . . . , τ}
0 otherwise

(4)

and recursion

αt(s) =



α̂it−1 ∗ ytb
when s = s0i ,

[α̂i−jt−1 + αt−1(s)] ∗ ytgji
when s = sji and gji 6= gji−j ,

[α̂i−jt−1 + αt−1(s)− αt−1(sji−j)] ∗ ytgji
when s = sji and gji = gji−j

(5)

where α̂it =
∑τ
j=0 αt(s

j
i ) and ytb is the probability of blank

at time t.

The total probability of the target sequence l is then ex-
pressed in the following way:

p(l|x) =
τ∑
j=0

αT (s
j
|l|) (6)

similarly, we can define the backward variable βt(s) as:

βt(s)
def
=

∑
ζ|B(ζg)=lb(s):l,ζt=s

T∏
t′=t

yt
′

ζt′g
(7)

For the initialization and recursion of βt(s), we have

βT (s) =


yTb s = s0T
yT
giT

s = siT ∀i ∈ {1, . . . , τ}
0 otherwise

(8)

and

βt(s) =



β̂it+1 ∗ ytb
when s = s0i ,

[β̂i+jt+1 + βt+1(s)] ∗ ytgji
when s = sji and gji 6= gji+j ,

[β̂i+jt+1 + βt+1(s)− βt+1(s
j
i+j)] ∗ ytgji

when s = sji and gji = gji+j
(9)

where β̂it =
∑τ
j=0 βt(s

j
i+j)

3.4. BackPropagation
Similar to CTC, we have the following expression:

p(l|x) =
∑
s∈S

αt(s)βt(s)

ytsg
∀t ∈ {1, . . . ,T} (10)

The derivative with regards to ytk is:

∂p(l|x)
∂ytk

=
1

ytk
2

∑
s∈lab(l,k)

αt(s)βt(s) (11)

where lab(l, k) is the set of states in S whose correspond-
ing gram is k. This is because there may be multiple states
corresponding to the same gram.

For the backpropagation, the most important formula is the
partial derivative of loss with regard to the unnormalized
output utk.

∂ ln p(l|x)
∂utk

= ytk −
1

ytkZt

∑
s∈lab(l,k)

αt(s)βt(s) (12)

where Zt
def
=

∑
s∈S

αt(s)βt(s)
ytsg

.
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(a) Training curves before (blue) and after (or-
ange) auto-refinement of grams.

(b) Training curves without (blue) and with
(orange) joint-training
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(c) Joint-training Architecture

Figure 2. (Figure 2a) compares the training curves before (blue) and after (orange) auto-refinement of grams. They look very similar,
although the number of grams is greatly reduced after refinement, which makes training faster and potentially more robust due to less
gram sparsity. Figure (2b) Training curve of model with and without joint-training. The model corresponding to the orange training
curve is jointly trained together with vanilla CTC, such models are often more stable during training. Figure (2c) Typical joint-training
model architecture - vanilla CTC loss is best applied a few levels lower than the Gram-CTC loss.

4. Methodology
Here we describe additional techniques we found useful in
practice to enable the Gram-CTC to work efficiently as well
as effectively.

4.1. Iterative Gram Selection

Although Gram-CTC can automatically select useful
grams, it is challenging to train with a large G. The to-
tal number of possible grams is usually huge. For example,
in English, we have 26 characters, then the total number of
bi-grams is 262 = 676, the total number of tri-grams are
263 = 17576, . . . , which grows exponentially and quickly
becomes intractable. However, it is unnecessary to con-
sider many grams, such as ‘aaaa’, which are obviously use-
less.

In our experiments, we first eliminate most of useless
grams from the statistics of a huge corpus, that is, we count
the frequency of each gram in the corpus and drop these
grams with rare frequencies. Then, we train a model with
Gram-CTC on all the remaining grams. By applying (de-
coding) the trained model on a large speech dataset, we get
the real statistics of gram’s usage. Ultimately, we choose
high frequency grams together with all uni-grams as our fi-
nal gram set G. Table 1 shows the impact of iterative gram
selection on WSJ (without LM). Figure 2a shows its corre-
sponding training curve. For details, please refer to Section
5.2.

4.2. Joint Training with Vanilla CTC

Gram-CTC needs to solve both decomposition and align-
ment tasks, which is a harder task for a model to learn than
CTC. This is often manifested in unstable training curves,
forcing us to lower the learning rate which in turn results

in models converging to a worse optima. To overcome this
difficulty, we found it beneficial to train a model with both
the Gram-CTC, as well as the vanilla CTC loss (similar
to joint-training CTC together with CE loss as mentioned
in (Sak et al., 2015)). Joint training of multiple objectives
for sequence labelling has also been explored in previous
works (Kim et al., 2016; Kim and Rush, 2016).

A typical joint-training model looks like Figure 2c, and the
corresponding training curve is shown in Figure 2b. The
effect of joint-training are shown in Table 4 and Table 5 in
the experiments.

5. Experiments
We test the Gram-CTC loss on the ASR task, while both
CTC and the introduced Gram-CTC are generic techniques
for other sequence labelling tasks. For all of the experi-
ments, the model specification and training procedure are
the same as in (Amodei et al., 2015) - The model is a recur-
rent neural network (RNN) with 2 two-dimensional convo-
lutional input layers, followed by K forward (Fwd) or bidi-
rectional (Bidi) Gated Recurrent layers, N cells each, and
one fully connected layer before a softmax layer. In short
hand, such a model is written as ‘2x2D Conv - KxN GRU’.
The network is trained end-to-end with the CTC, Gram-
CTC or a weighted combination of both. This combination
is described in the earlier section.

In all experiments, audio data is is sampled at 16kHz. Lin-
ear FFT features are extracted with a hop size of 10ms
and window size of 20ms, and are normalized so that
each input feature has zero mean and unit variance. The
network inputs are thus spectral magnitude maps ranging
from 0-8kHz with 161 features per 10ms frame. At each
epoch, 40% of the utterances are randomly selected to add
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Loss WER

CTC, uni-gram 16.91
CTC, bi-gram 21.63

Gram-CTC, handpick 17.01
Gram-CTC, all uni-grams + bi-grams 16.89
Gram-CTC, auto-refinement 16.66

Table 1. Results of different gram selection methods on WSJ
dataset.

background noise to. The optimization method we use
is stochastic gradient descent with Nesterov momentum.
Learning hyperparameters (batch-size, learning-rate, mo-
mentum, and etc.) vary across different datasets and are
tuned for each model by optimizing a hold-out set. Typical
values are a learning rate of 10−3 and momentum of 0.99.

5.1. Data and Setup

Wall Street Journal (WSJ). This corpora consists pri-
marily of read speech with texts drawn from a machine-
readable corpus of Wall Street Journal news text, and con-
tains about 80 hours speech data. We used the standard
configuration of train si284 dataset for training, dev93 for
validation and eval92 for testing. This is a relatively ‘clean’
task and often used for model prototyping (Miao et al.,
2015; Bahdanau et al., 2016; Zhang et al., 2016; Chan et al.,
2016b).

Fisher-Switchboard. This is a commonly used English
conversational telephone speech (CTS) corpora, which
contains 2300 hours CTS data. Following the previous
works (Zweig et al., 2016b; Povey et al., 2016; Xiong et al.,
2016b; Sercu and Goel, 2016), evaluation is carried out on
the NIST 2000 CTS test set, which comprises both Switch-
board (SWB) and CallHome (CH) subsets.

10K Speech Dataset. We conduct large scale ASR exper-
iments on a noisy internal dataset of 10,000 hours. This
dataset contains speech collected from various scenarios,
such as different background noises, far-field, different ac-
cents, and so on. Due to its inherent complexities, it is a
very challenging task, and can thus validate the effective-
ness of the proposed method for real-world application.

5.2. Gram Selection

We employ the WSJ dataset for demonstrating different
strategies of selecting grams for Gram-CTC, since it is a
widely used dataset and also small enough for rapid idea
verification. However, because it is small, we cannot use
large grams here due to data sparsity problem. Thus, the
auto-refined gram set on WSJ is not optimal for other larger
datasets, where larger grams could be effectively used, but
the procedure of refinement is the same for them.

We first train a model using all uni-grams and bi-grams (29

Loss WER Epoch Time (mins)
(stride) 2 4 2 4

CTC, uni-gram 16.91 23.76 29 16
CTC, bi-gram 20.57 21.63 23 12
Gram-CTC 16.66 18.87 35 18

Table 2. Performances with different model strides on WSJ
dataset.

uni-grams and 262 = 676 bi-grams, in total 705 grams),
and then do decoding with the obtained model on another
speech dataset to get the statistics of the usage of grams.
Top 100 bi-grams together with all 29 uni-grams (auto-
refined grams) are used for the second round of training.
For comparison, we also present the result of the best hand-
picked grams, as well as the results on uni-grams. All the
results are shown in Table 1.

Some interesting observations can be found in Table 1.
First, the performance of auto-refined grams is only slightly
better than the combination of all uni-grams and all bi-
grams. This is probably because WSJ is so small that gram
learning suffers from the data sparsity problem here (simi-
lar to word-segmented models). The auto-refined gram set
contains only a small subset of bi-grams, thus more ro-
bust. This is also why we only try bi-grams, not includ-
ing higher-order grams. Second, the performance of best
handpicked grams is worse than auto-refined grams. This
is desirable. It is time-consuming to handpick grams, es-
pecially when you consider high-order grams. The method
of iterative gram selection is not only fast, but usually bet-
ter. Third, the performance of Gram-CTC on auto-refined
grams is only slightly better than CTC on uni-grams. This
is because Gram-CTC is inherently difficult to train, since
it needs to learn both decomposition and alignment. WSJ
is too small to provide enough data to train Gram-CTC.

5.3. Sequence Labelling in Large Stride

Using a large time stride for sequence labelling with RNNs
can greatly boost the overall computation efficiency, since
it effectively reduces the time steps for recurrent computa-
tion, thus speeds up the process of both forward inference
and backward propagation. However, the largest stride that
can be used is limited by the gram set we use. The (uni-
gram) CTC has to work in a high time resolution (small
stride) in order to have enough number of frames to out-
put every character. This is very inefficient as we know the
same acoustic feature could correspond to several grams of
different lengths (e.g., {‘i’, ‘igh’, ‘eye’}) . The larger the
grams are, the larger stride we are potentially able to use.

DS2 (Amodei et al., 2015) employed non-overlapping bi-
gram outputs to allow for a larger stride. This imposes an
artificial constraint forcing the model to learn, not only the
spelling of each word, but also how to split words into bi-
grams. For example, part is split as [pa, rt] but the word
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True Text what were they doing down there  

CTC         |h |h |a |t |_ |  |w |e |e |r |r |e |  |t |h |e |y |_ |_ |  |d |o |_ |_ |i |i |n |g |  |  |d |o |w |_ |n |_ |  |t |h |e |r |e |e |_ |_ |_ |  |  | 

Gram-CTC    |w    |hat  |     |we   |re   |re   |     |the  |y    |y    |     |do   |i    |ng   |     |d    |own  |     |the  |the  |re   |     |     |     | 

True Text that is very exciting  

CTC         |_ |_ |i |t |' |' |s |  |  |v |_ |e |r |r |_ |_ |y |  |e |e |_ |x |x |c |_ |i |_ |t |t |_ |_ |_ |i |n |g |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |  |  | 

Gram-CTC    |_    |t    |hat  |'    |s    |     |ve   |r    |y    |     |     |ex   |c    |i    |t    |i    |i    |ng   |     |     |     |     |     |     | 

True Text that sounds great  

CTC         |_ |_ |t |t |h |a |t |_ |_ |_ |  |  |s |_ |o |u |n |n |d |s |s |_ |_ |  |  |  |g |r |r |_ |e |a |_ |_ |t |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |  |  | 

Gram-CTC    |_    |t    |hat  |     |     |     |so   |und  |s    |     |     |     |     |     |g    |re   |a    |t    |     |     |     |     |     |     |     |     | 

True Text now where would that be  

CTC         |_ |_ |_ |_ |n |n |o |_ |_ |_ |_ |_ |  |  |w |h |e |r |e |e |_ |_ |  |  |w |_ |o |u |l |d |  |  |t |h |a |t |t |_ |_ |  |  |b |_ |e |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |  |  | 

Gram-CTC    |_    |_    |now  |_    |     |     |     |w    |w    |he   |re   |     |w    |o    |u    |ld   |     |t    |hat  |     |     |     |be   |     |     |     |     |     | 

True Text did you get my email today  

CTC         |d |d |i |d |d |  |y |o |u |_ |  |  |g |e |t |t |  |  |  |m |y |_ |  |  |  |e |_ |_ |_ |m |a |i |i |l |l |  |  |t |_ |o |_ |_ |_ |d |a |a |y |_ |_ |_ |_ |_ |_ |_ |_ |  |  | 

Gram-CTC    |did  |did  |     |     |you  |     |     |get  |     |     |my   |     |     |e    |_    |ma   |il   |     |     |     |to   |_    |_    |day  |     |     |     |     |     | 

True Text oh how long are you going to be there  

CTC         |_ |_ |_ |o |h |_ |_ |_ |  |  |h |o |w |w |  |l |o |o |n |g |g |  |a |r |e |  |y |o |u |_ |_ |_ |  |  |g |o |i |n |g |  |t |o |  |b |e |_ |  |t |h |e |_ |r |e |_ |_ |_ |_ |_ |  |  | 

Gram-CTC    |_    |oh   |     |     |     |how  |     |lo   |ng   |     |     |are  |     |you  |     |     |go   |go   |i    |ng   |     |to   |     |be   |     |the  |the  |re   |     |     | 

True Text well i thought she is in washington  

CTC         |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |i |_ |  |  |t |t |h |o |u |g |h |t |  |s |h |e |e |' |' |s |s |  |_ |i |_ |n |_ |  |  |w |a |_ |_ |s |h |_ |i |i |n |g |g |_ |_ |o |o |n |_ |  |  | 

Gram-CTC    |_    |_    |_    |_    |i    |     |t    |ho   |u    |g    |h    |t    |     |     |she  |     |was  |     |in   |     |     |w    |a    |sh   |i    |ng   |t    |on   |on   |     |     | 

True Text did they stay with you for the whole two weeks  

CTC         |d |d |i |d |d |  |t |h |e |y |  |  |s |t |a |y |y |  |w |w |i |t |h |  |  |y |o |u |_ |  |  |f |o |r |  |t |t |h |e |  |w |h |o |l |e |  |t |w |o |_ |_ |  |  |w |e |_ |e |k |_ |s |_ |_ |_ |  | 

Gram-CTC    |did  |     |     |the  |y    |     |st   |a    |y    |w    |it   |it   |h    |     |you  |     |for  |for  |     |the  |     |who  |le   |     |     |two  |     |we   |we   |e    |k    |s    | 

True Text he will take the luggage  

CTC         |_ |h |e |_ |_ |_ |  |  |w |_ |i |l |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |_ |  |_ |t |_ |a |_ |k |e |_ |_ |_ |  |  |t |h |e |_ |_ |_ |  |  |_ |l |_ |u |_ |_ |g |g |_ |g |g |_ |a |g |e |_ |_ |_ | 

Gram-CTC    |_    |he   |_    |     |     |w    |ill  |_    |     |     |     |     |     |ta   |ta   |k    |e    |     |     |     |the  |     |     |     |lu   |g    |_    |g    |g    |age  |age  |     | 

 

	
Figure 3. Max-decoding results (without collapsing) of CTC and Gram-CTC on utterances from Switchboard dataset. The predicted
characters (by CTC) or grams (by Gram-CTC) at each timestep are separated by "|". As the Gram-CTC model is trained with doubled
stride as that of CTC model, we place the grams at a doubled width as we do with characters for better viewing. The "_" represents
blank.

apart is forced to be decomposed as [ap, ar, t]. Gram-
CTC removes this constraint by allowing the model to de-
compose words into larger units into the most convenient
or sensible decomposition. Comparison results show this
change enables Gram-CTC to work much better than bi-
gram CTC, as in Table 2.

In Table 2, we compare the performance of trained model
and training efficiency on two strides, 2 and 4. For Gram-
CTC, we use the auto-refined gram set from previous sec-
tion. As expected, using stride 4 almost cuts the train-
ing time per epoch into half, compared to stride 2. From
stride 2 to stride 4, the performance of uni-gram CTC
drops quickly. This is because small grams inherently need
higher time resolutions. As for Gram-CTC, from stride 2
to stride 4, its performance decreases a little bit, while in
experiments on the other datasets, Gram-CTC constantly
works better in stride 4. One possible explanation is that
WSJ is too small for Gram-CTC to learn large grams well.
In contrast, the performance of bi-gram CTC is not as good
as that of Gram-CTC in either stride.

5.4. Decoding Examples

Figure 3 illustrates the max-decoding results of both CTC
and Gram-CTC on nine utterances. Here the label set for
CTC is the set of all characters, and the label set for Gram-
CTC is an auto-refined gram set containing all uni-grams
and some high-frequency high-order grams. Here Gram-

CTC uses stride 4 while CTC uses stride 2.

From Figure 3, we can find that: 1) Gram-CTC does auto-
matically find many intuitive and meaningful grams, such
as ‘the’, ‘ng’, and ‘are’. 2) It also decomposes the sen-
tences into segments which are meaningful in term of pro-
nunciation. This decomposition resembles the phonetic de-
composition, but in larger granularity and arguably more
natural. 3) Since Gram-CTC predicts a chunk of charac-
ters (a gram) each time, each prediction utilizes larger con-
text and these characters in the same predicted chunk are
dependent, thus potentially more robust. One example is
the word ‘will’ in the last sentence in Figure 3. 4) Since
the output of network is the probability over all grams, the
decoding process is almost the same as CTC, still end-to-
end. This makes such decomposition superior to phonetic
decomposition. In summary, Gram-CTC combines the ad-
vantages of both CTC on characters and CTC on phonemes.

5.5. Comparison with Other Methods

5.5.1. WSJ DATASET

The model used here is [2x2D conv, 3x1280 Bidi GRU]
with a CTC or Gram-CTC loss. The results are shown
in Table 3. For all models we trained, language model
can greatly improve their performances, in term of WER.
Though this dataset contains very limited amount of text
data for learning gram selection and decomposition, Gram-
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Architecture WER

Phoneme CTC + trigram LM (Miao et al., 2015) 7.3
Grapheme CTC + trigram LM (Miao et al., 2015) 9.0
Attention + trigram LM (Bahdanau et al., 2016) 9.3
DeepConv LAS + no LM (Zhang et al., 2016) 10.5
DeepConv LAS + LSD + no LM (Chan et al., 2016b) 9.6
Temporal LS + Cov + LM

(Chorowski and Navdeep, 2016) 6.7

Vanilla CTC + no LM (ours) 16.91
Vanilla CTC + LM (ours) 7.11

Gram-CTC + no LM (ours) 16.66
Gram-CTC + LM (ours) 6.75

Table 3. Comparison with previous published results with end-to-
end training on WSJ speech dataset. The numbers in bold are the
best results with and without a language model

CTC can still improve the vanilla CTC notably.

5.5.2. FISHER-SWITCHBOARD

The acoustic model trained here is composed of two 2D
convolutions and six bi-directional GRU layer in 2048 di-
mension. The corresponding labels are used for training
N-gram language models.

• Switchboard English speech 97S62
• Fisher English speech Part 1 - 2004S13, 2004T19
• Fisher English speech Part 2 - 2005S13, 2005T19

We use a sample of the Switchboard-1 portion of the NIST
2002 dataset (2004S11 RT-02) for tuning language model
hyper-parameters. The evaluation is done on the NIST
2000 set. This configuration forms a standard benchmark
for evaluating ASR models. Results are in Table 4.

We compare our model against best published results on
in-domain data. These results can often be improved using
out-of-domain data for training the language model, and
sometimes the acoustic model as well. Together these tech-
niques allow (Xiong et al., 2016b) to reach a WER of 5.9
on the SWBD set.

5.5.3. 10K SPEECH DATASET

Finally, we experiment on a large noisy dataset collected by
ourself for building large-vocabulary Continuous Speech
Recognition (LVCSR) systems. This dataset contains about
10000 hours speech in a diversity of scenarios, such as far-
field, background noises, accents. In all cases, the model
is [2x2D Conv, 3x2560 Fwd GRU, LA Conv] with only a
change in the loss function. ‘LA Conv’ refers to a look
ahead convolution layer as seen in (Amodei et al., 2015)
which works together with forward-only RNNs for deploy-
ment purpose.

As with the Fisher-Switchboard dataset, the optimal stride
is 4 for Gram-CTC and 2 for vanilla CTC on this dataset.
Thus, in both experiments, both Gram-CTC and vanilla

Architecture SWBD CH
WER WER

Iterated-CTC (Zweig et al., 2016b) 11.3 18.7
BLSTM + LF MMI (Povey et al., 2016) 8.5 15.3
LACE + LF MMI 2 (Xiong et al., 2016b) 8.3 14.8
Dilated convolutions (Sercu and Goel, 2016) 7.7 14.5

Vanilla CTC (ours) 9.0 17.7
Gram-CTC (ours) 7.9 15.8
Vanilla CTC + Gram-CTC (ours) 7.3 14.7

Table 4. Comparison with previous published results on Fisher-
Switchboard benchmark (“SWBD” and “CH” represent Switch-
board and Callhome portions, respectively) using in-domain data.
We only list results using single models here.

Architecture WER(No LM) WER(With LM)

Vanilla CTC 29.1 19.77
Gram-CTC 27.56 19.53
Vanilla CTC + Gram-CTC 25.59 18.52

Table 5. LVCSR results on 10K speech dataset.

CTC + Gram-CTC are trained mush faster than vanilla
CTC itself. The result is shown in Table 5. Gram-CTC
performs better than CTC. After joint-training with vanilla
CTC and alignment information through a CE loss, its per-
formance is further boosted, which verifies joint-training
helps training. In fact, with only a small additional cost
of time, it effectively reduces the WER from 27.56% to
25.59% (without language model).

6. Conclusions and Future Work
In this paper, we have proposed the Gram-CTC loss to
enable automatic decomposition of target sequences into
learned grams. We also present techniques to train the
Gram-CTC in a clean and stable way. Our extensive exper-
iments demonstrate the proposed Gram-CTC enables the
models to run more efficiently than the vanilla CTC, by
using larger stride, while obtaining better performance of
sequence labelling. Comparison experiments on multiple-
scale datasets show the proposed Gram-CTC obtains state-
of-the-art results on various ASR tasks.

An interesting observation is that the learning of Gram-
CTC implicitly avoids the “degenerated solution” that oc-
curring in the traditional “unit discovery” task, without in-
volving any Bayesian priors or the “minimum description
length” constraint. Using a small gram set that contains
only short (up to 5 in our experiments) as well as high-
frequency grams may explain the success here.

We will continue investigating techniques of improving the
optimization of Gram-CTC loss, as well as the applications
of Gram-CTC for other sequence labelling tasks.
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FranÃğoise Beaufays. Fast and accurate recurrent neural
network acoustic models for speech recognition. CoRR,
abs/1507.06947, 2015.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint
ctc-attention based end-to-end speech recognition using
multi-task learning. arXiv preprint arXiv:1609.06773,
2016.

Yoon Kim and Alexander M Rush. Sequence-level knowl-
edge distillation. arXiv preprint arXiv:1606.07947,
2016.

Yajie Miao, Mohammad Gowayyed, and Florian Metze.
Eesen: End-to-end speech recognition using deep rnn
models and wfst-based decoding. In Automatic Speech
Recognition and Understanding (ASRU), 2015 IEEE
Workshop on, pages 167–174. IEEE, 2015.

Yu Zhang, William Chan, and Navdeep Jaitly. Very deep
convolutional networks for end-to-end speech recogni-
tion. arXiv preprint arXiv:1610.03022, 2016.

Geoffery Zweig, Ghengzhu Yu, Jasha Droppo, and An-
dreas Stolcke. Advances in all-neural speech recogni-
tion. arXiv preprint arXiv:1609.05935, 2016b.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahrmani, Vimal Manohar, Xingyu Na, Yiming Wang,
and Sanjeev Khudanpur. Purely sequence-trained neural

networks for asr based on lattice-free mmi. Submitted to
Interspeech, 2016.

Jan Chorowski and Jaitly Navdeep. Towards better decod-
ing and language model integration in sequence to se-
quence models. arXiv preprint arXiv:1612.02695, 2016.


