Supplemental Material: A Laplacian Framework for
Option Discovery in Reinforcement Learning

Marlos C. Machado! Marc G. Bellemare? Michael Bowling '

This supplementary material contains details omitted from the main text due to space constraints. The list of contents is
below:

e Supporting lemmas and their respective proofs, as well as a more detailed proof of Theorem 3.1;

Description of how to easily compute the diffusion time in tabular MDPs;

The options leading to bottleneck states (doorways) we used in our experiments;

Performance comparisons between eigenoptions and options generated to reach randomly selected states;

e Demonstration of the applicability of eigenoptions in multiple tasks with a new set of experiments;

Further details on the empirical setting used in the Arcade Learning Environment.

A. Lemmas and Proofs

Lemma 4.1. Suppose (I + A) is a non-singular matrix, with ||A|| < 1. We have:

1 1
(I + A) HSW-
Proof. !
(I+AI+A)"t=1
IT+A) T+ AT +A) =T
(IT+A) P =T—-AT+A)™!
I +A)7H =1 - AT+ A)7Y]
< |||+ [|A(+ A) 7] because |[A+ B|| < [|All + |[B]|
< THJJAJIT +A)7H] because ||AB|| < [|A| - [|B||

I+A)7 = AT+ A7 <1
(L= [AIDNT + 7Y <1

1
I+ A)7H < if [|A]] <1.
1—[|A]
O
Lemma 4.2. The induced infinity norm of (I — T)~'T is bounded by
1
I —T) T < .

"University of Alberta >Google DeepMind. Correspondence to: Marlos C. Machado <machado@ualberta.ca>.

'0ur proof follows closely the proof of Parnell in lecture notes available at http://www-solar.mcs.st-and.ac.uk/
~clare/Lectures/num-analysis.html.

http://www-solar.mcs.st-and.ac.uk/~clare/Lectures/num-analysis.html
http://www-solar.mcs.st-and.ac.uk/~clare/Lectures/num-analysis.html

Title Suppressed Due to Excessive Size

Proof.
(L =7T) " Tloe < NI =2T) " Hlool T o0 because [|AB]|s < [[Allso - |[Bllo
(I =~T) '] < ﬁI\T”c>o Lemma 3.1
(I =~T) "'l < %Hﬂh because [[AB|| = |Al[|B]]
_ 1
(=70 Tl < 2

O

Theorem 4.1 (Option’s Termination). Consider an eigenoption o = (Z,, 7, T,) and v < 1. Then, in an MDP with finite
state space, T, is nonempty.

Proof. This proof is more detailed than the one presented in the main paper. We can write the Bellman equation in the
matrix form: v = r + y7'v, where v is a finite column vector with one entry per state encoding its value function. From
equation (1) in the main paper we have r = T'w — w with w = ¢(s) " e, where e denotes the eigenpurpose of interest.
Therefore:

v=Tw—-w+~Tv
v+w=Tw+~yTv
=Tw+~yIv+~yTw—~yTw
=1 —9)Tw+~T(v+w)

v+w—T(v+w)=(1—-9)Tw
(I =AT)(v +w) = (1 - 7)Tw
viw=(1-yI—-~T)"'Tw (I —~T)~" is guaranteed to be nonsigular because
[|T)| <1,where ||T||= sup |[|TV]||c- By
vi||v||eo=1
Neumann series we have (I —~yT)~! = Z AT
n=0
[V 4 W|loo = (1 = NI = AT) ' TW] |00 using the induced norm
v+ Wl < (1= NI =)' Tl|os|[Wlloc because [|Ax]| < [|A]| - [|x]|
1

[V + Wl < (1—7) W] o Lemma 3.2

(1-7)

IV + wlleo < [[Wlloo

We can shift w by any finite constant without changing the reward, i.e. Tw —w = T (w+68)— (w+4) because 71 = 14
since) . T; ; = 1. Therefore, we can assume w > 0. Let s* = arg max, w,-, so that we« = ||W||. Clearly v < 0,
otherwise ||V 4+ W||oo > |Vs* + W | = Vo + Wex > Wer = ||W]|0, arriving at a contradiction.

O

Lemma 5.1. In the tabular case, if all transitions in the MDP have been sampled once, TTT = 2L.

Proof. Lett;; and tt;; denote the entries in the i-th row and j-th column of matrices 7" and 7' T T". We can write tt;; as:
tt;; = Ztik X k- (D
k

In the tabular case, ¢;; has three possible values:

Title Suppressed Due to Excessive Size

e 1;; = +1, meaning that the agent arrived in state j at time step ¢,
e 1;; = —1, meaning that the agent left state j at time step 4,

e 1;; = 0, meaning that the agent did not arrive nor leave state j at time step 4.

We decompose TTT in two matrices, X and Z, suchthat T'T = K+ Z. Here Z is a diagonal matrix such that z;; = tt;;,
for all 7; and K contains all elements from 7' T that lie outside the main diagonal.

When computing the elements of Z we have i = j. Thus z;; = Y, t% . Because we square all elements, we are in fact
summing over all transitions leaving (—12) and arriving (12) in state 4, counting the node’s degree twice. Thus, Z = 2D.

‘When not computing the elements in the main diagonal, for the element ¢Z;;, we add all transitions that leave state 7 arriving
in state j (—1 x 1), and those that leave state j arriving in state ¢ (1 X —1). We assume each transition has been sampled
once, thus:
t — { —2, if the transition between states ¢ and j exists,
J 0, otherwise.

Therefore, we have K = —2W and T'T = K + Z = 2(D — W). O

B. Diffusion Time Computation

In the main paper we introduced diffusion time as a new metric to evaluate exploration, but we did not discuss how it can
be computed. Diffusion time encodes the expected number of time steps required to navigate between any two states in
the MDP when following a random walk. In tabular domains, we can easily compute the diffusion time with dynamic
programming. To do so we define a new MDP such that the value function of a state s, under a uniform random policy,
encodes the expected number of steps required to navigate between state s and a chosen goal state. We can then compute
the expected number of steps between any two states by averaging, for each possible goal, the value of all other states.

The MDP in which the value function of state s encodes the expected number of time steps from s to a goal state has v = 1
and a reward function where the agent observes +1 at every time step in which it is not in the goal state. Policy evaluation
in this case encodes the expected number of time steps the agent will take before arriving to the goal state. To compute the
diffusion time we iterate over all possible states, defining them as terminal states, and averaging the value function of the
other states in that MDP.

C. Options Leading to Doorways in the 4-room Domain

Figure 1 depicts the four options we refer to in Section 4 as the options leading to bootleneck states, i.e., doorways. Each
option is defined in a room and it moves the agent toward the closest doorway. These options were inspired by Solway et
al. (2014)’s discussion about the optimal options discovered by their algorithm.

Figure 1. Options leading to bottleneck states. Each option is defined in a single room, moving the agent to the closest doorway.

Title Suppressed Due to Excessive Size

1.2

4 Ei t
% 10 igenoptions
] c Random options
Y= S 08 R
O -
)
CILJ o 0.6
()
'g 2 04
2 2
Z- Z 0.2]
o ,
> 0.0
< , =======
10% 20 40 60 80 100 % 200 300
Number of Options Episode
(a) Diffusion time. The y-axis is in logarithmic scale. (b) Learning curve using 64 options.

Figure 2. Diffusion time and learning performance of eigenoptions and of random options in the 4-room domain.

D. Comparison to Random Options

In this section we show the importance of using information about diffusion in the environment to define the option’s
purposes. This information impacts the sequence of subgoal locations the options’ seek after, as well as the time scales
they operate at. The ordering in which the eigenoptions are discovered and the different time scales they operate at can
have a major impact on the agents’ performance.

We demonstrate the importance of using the environment’s diffusion information by comparing our approach to random
options, a simple baseline that does not use such information. This baseline defines an option to be the policy, defined in
the whole state space, that terminates in a randomly selected state of the environment. We performed our experiments in
the tabular case because it is not clear how we can extend this baseline to settings in which states cannot be enumerated.

Figure 2a depicts the diffusion time (c.f Section B) of random options and eigenoptions in the 4-room domain. We used
the same method described in Section 4.2 to obtain the eigenoptions’ performance. For the random options results, we
added them incrementally to the agent’s action set until having added all possible options. We repeated this process 24
times to verify the impact of adding random options in a different order. Each blue line represents the performance of one
of the evaluated sequences. The results clearly show that eigenoptions do more than going to a randomly selected state.
Most of the obtained sequences of random options fail to reduce the agent’s diffusion time. They increase it by several
orders of magnitude (notice the y-axis is in logarithmic scale) until having enough options available to the point that the
graph is almost fully connected, that is, when the agent basically has an option leading it to each possible state in the MDP.

Figure 2b was generated following the protocol described in Section 4.3. It depicts the learning curve of agents equipped
with eigenoptions and of agents equipped with random options. As before, the blue lines indicate the agent’s performance
in individual runs. We can see that no individual run is competitive to eigenoptions. When fewer options are used (not
shown), the variance across individual runs is even larger, depending on whether one of the random options terminates near
the goal state. In some runs the agent never even learns to reach the goal. Therefore, as in the diffusion time, on average,
random options are not competitive to eigenoptions, demonstrating the importance of the diffusion model we use.

D. Empirical Evaluation of the Agent’s Performance in Multiple Tasks

In Section 4 we argued that eigenoptions are useful for multiple tasks, based on results showing that eigenoptions allow us
to find and to accumulated rewards faster. Here we explicit demonstrate the uselfuness of eigenoptions to multiple tasks.
We evaluate the agents’ performance for different starting and goal states in the 4-room domain. As in Section 4.3, we
use Q-Learning (o = 0.1,y = 0.9) to learn a policy over primitive actions. The behavior policy chooses uniformly over
primitive actions and options, following them until termination. Episodes were 100 time steps long, and we learned for
250 episodes. For clarity, we zoom in the plots on the interval in which agents are still learning.

Figure 5 depicts, after learning for a pre-determined number of episodes, the average over 100 trials of the agents’ final
performance, as well as the starting (S) and goal (G) states. Based on our previous results, we fixed the number of used
eigenoptions to 64 (32 options and their negations). In this set of experiments we also compare our approach to traditional

Title Suppressed Due to Excessive Size

(a) FREEWAY (b) MONTEZUMA’S REVENGE (c) Ms PAC-MAN

Figure 3. Pre-defined start states in Atari 2600 games.

bottleneck options (Figure 1).

The obtained results show that switching the positions of the starting and goal states have no effect in the performance
of our algorithm. Also, in almost all settings, the agents augmented by eigenoptions outperfom those equipped only
with primitive actions. The comparison between eigenoptions and options that look for bottleneck states is more subtle.
As expected, agents equipped with eigenoptions outperform agents equipped with options leading to bottleneck states in
settings in which the goal state is far from the doorways, as discussed in the main paper. In scenarios where the goal state
is closer to bottleneck states, the options leading to doorways are more competitive. Importantly, this analysis is based on
the results when using 64 eigenoptions, which may not encode all options required to go to a specific region of the state
space.

E. Experimental Setup in the Arcade Learning Environment

We defined six different starting states in each Atari 2600 game, letting the agent take random actions from that point until
termination. The agent follows a pre-determined sequence of actions leading it to each starting state. We store the observed
transitions leading the agent to the start states as well as those obtained from the random actions. In the main paper we
provided results for FREEWAY and MONTEZUMA’S REVENGE. In this section we also provide results for MS PAC-MAN.
The starting states for all three games are depicted in Figure 3.

The agent plays rounds of six episodes, with each episode starting from a different start state, until it observes at least 25,000
new transitions. The final incidence matrix in which we ran the SVD had 25,000 rows, which we sampled uniformly from
the set of observed transitions. The agent used the deterministic version of the Arcade Learning Environment (ALE), the
games’ minimal action set and, a frame skip of 1.

We used three games to evaluate the options we discover in the
sample-based setting with linear function approximation. We dis-
cussed the results for FREEWAY and MONTEZUMA’S REVENGE .Option 4969
in the main paper. The results we obtained in MS. PAC-MAN are
similar to those we already discussed. MS. PAC-MAN is a game
in which the agent needs to navigate through a maze eating pellets

while avoiding ghosts. As in the other games, the agent has the Qim”” i 220

clear intent of reaching particular positions in the screen, such as

corners and intersections. Figure 4 depicts the positions in which Option #212

agents tend to spend most of their time on. A video of the high- B B []
lighted options can be found online.? Option #80 Option #852

Figure 4. Options in MS. PAC-MAN (c.f. text for details).

https://youtu.be/2BVicx4CDWA

https://youtu.be/2BVicx4CDWA

Title Suppressed Due to Excessive Size

w w w w w
3]
2] Q
2] Q

12
Primitive
actions
Bottleneck
£ options
3
2
[
-4 Eigenoptions
v
o
©
o
v
>
<
Z0.2
‘0 100 200 300 400 500
Episode
1.2
Bottleneck Eigenoptions
1.0 options
£
5 0.8
2
[
o 0.6
&
© 0.4 Primitive
o actions
>
<

Average Return Average Return

Average Return

w w w (o) w (")
9]
2] Q
w

60 80 100 120 140
Episode

Primitive
actions

Bottleneck
options

Eigenoptions

~0.2
0% 20 40 60 80 100 120 140
Episode

Primitive
actions

Eigenoptions

Bottleneck

J]__—options

—0.2
0% 20 40 60 80 100 120 140
Episode

Bottleneck Primitive

options

Eigenoptions

0 10 20 30 40 50 60 70
Episode

Average Return Average Return Average Return Average Return

Average Return

Iy
o

o
@

Primitive
actions

o
S

Bottleneck
options

14
kY

0% 50 150 200 250

100
Episode

0.8 Eigenoptions

o
S

e
o

Bottleneck
options

o
o

e
&

0 5 10 20 25 30

15
Episode

Primitive
actions

Eigenoptions

Bottleneck
options

50 150 200

100
Episode

Bottleneck Primitive

options

Eigenoptions

70 60 0
Episode

12
Bottleneck
1.0l options
0.8
Eigenoptions
0.6
0.4 Primitive
actions
0.2)
0.0
0 20 40 60 80 100 120 140
Episode

Figure 5. Agents performance in different tasks when using eigenoptions, bottleneck options, and primitive actions.

